The 13th International Workshop on Heavy Quarkonium Luca Micheletti (INFNTorino) on behalf of the ALICE collaboration

Istituto Nazionale di Fisica Nucleare SEZIONE DI TORINO

$\frac{1}{\sqrt{\psi}} Preliminary results on \\ \frac{1}{\sqrt{\psi}} polarization in Pb-Pb collisions$

Introduction

J/ψ polarization basic concepts

In two-body decays the geometrical shape of the angular distribution of the two decay products reflects the polarization of the quarkonium state

Observable angular distribution

$$W(\cos\theta,\varphi) \propto \frac{1}{3+\lambda_{\theta}} \cdot (1+\lambda_{\theta}\cos^2\theta+\lambda_{\varphi}\sin^2\theta\cos^2\theta+\lambda_{\theta\varphi}\sin^2\theta\cos\varphi)$$

 $(\lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}) = (0, 0, 0)$ $(\lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}) = (-1, 0, 0) \implies$ Pure longitudinal polarization $(\lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}) = (+1, 0, 0) \implies$ Pure transverse polarization

No polarization

Polarization can be measured in different reference frames

polarization axis:

- \Box <u>Helicity</u> (HX): direction of J/ψ in the collision center of mass frame
- □ <u>Collins-Soper</u> (CS): the bisector of the angle between the beam and the opposite of the other beam, in the J/ ψ rest frame
- **Gottfried-Jackson (GJ):** direction of one beam in the J/ψ rest frame (used for fixed target experiments)

Figures from P.Faccioli et al. EPJ C69 (2010) 657-673

QWG 2019

Introduction

Polarization in pp and AA collisions

Polarization in pp collisions

Crucial for the understanding of the J/ ψ production mechanism

Polarization in AA collisions

- \square LONRQCD predicted transverse polarization for high- $p_{\rm T}$ J/ ψ
- □ NLO color singlet model predicted longitudinal polarization

Ļ (a) (c) 0.4 0.2 -0.2 -0.4 (b) 0.4 (d) 0.2 -0.2 -0.4 1.5 2 50 250 100 150 p_{T} (GeV/c)

R.Arnaldi et al. (NA60), NPA830 (2009) 345c

"Dense parton matter may then screen out of the existence a large part of <u>quarkonia</u>... but those of them <u>that survive will carry the information about the</u> <u>mechanism of their formation throughout the collision</u>"

loffe & Kharzeev, Phys. Rev. C68 (2003) 061902

- □ QGP is produced at LHC energies
- The suppression mechanism induced by the strongly interacting medium produced in heavy ion collisions affects differently the various quarkonium states
- $\hfill \hfill \hfill$

NA60 is the only experiment that measured polarization parameters for J/ ψ in nuclear collisions (In-In, $\sqrt{s_{NN}} = 17$ GeV)

No sizeable polarization observed

Quarkonium polarization at LHC

• The ALICE experiment published the first measurement of <u>inclusive</u> J/ ψ polarization in pp collisions at $\sqrt{s} = 7$ TeV, 2.5 < y < 4

 $\implies \lambda_{\theta}$ and λ_{φ} compatible with zero

Quarkonium polarization at LHC

Introduction

QWG 2019

The ALICE experiment published the first measurement of <u>inclusive</u> J/ ψ polarization in pp collisions at $\sqrt{s} = 7$ TeV, 2.5 < y < 4

 \Longrightarrow λ_{θ} and λ_{φ} compatible with zero

> LHCb measured with increased precision prompt J/ ψ polarization in pp collisions at $\sqrt{s} = 7$ TeV, 2 < y < 4.5 [EPJ C 73 (2013) 2631]

Luca Micheletti

> ALICE measured <u>inclusive</u> J/ ψ polarization in pp collisions at $\sqrt{s} = 8$ TeV [EPJ C 78 (2018) 562]

 $\implies \lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}$ compatible with zero

Quarkonium polarization at LHC

Introduction

QWG 2019

The ALICE experiment published the first measurement of <u>inclusive</u> J/ψ polarization in pp collisions at $\sqrt{s} = 7$ TeV, 2.5 < y < 4

 \Longrightarrow λ_{θ} and λ_{φ} compatible with zero

LHCb measured with increased precision prompt J/ ψ polarization in pp collisions at $\sqrt{s} = 7$ TeV, 2 < y < 4.5 [EPJ C 73 (2013) 2631]

> ALICE measured <u>inclusive</u> J/ ψ polarization in pp collisions at $\sqrt{s} = 8$ TeV [EPJ C 78 (2018) 562]

 $\implies \lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}$ compatible with zero

Substitution for MS measured prompt J/ ψ and ψ (2S) polarization in pp up to 70 GeV/c at $\sqrt{s} = 7$ TeV, |y| < 1.5

Luca Micheletti

 $\rightarrow \lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}$ compatible with zero

The ALICE experiment

The ALICE experiment at LHC is designed for the study of heavy ion collisions

ALICE

The ALICE experiment

The ALICE experiment at LHC is designed for the study of heavy ion collisions

Central barrel :

- $\Box Q\bar{Q}$ decay mode : e^+e^-
- □ Rapidity coverage : |y| < 0.9

Muon spectrometer:

□ $Q\bar{Q}$ decay mode : $\mu^+\mu^-$ □ Rapidity coverage : 2.5 < y < 4

The ALICE experiment

The ALICE experiment at LHC is designed for the study of heavy ion collisions

QWG 2019

Central barrel:

- $\Box Q\bar{Q}$ decay mode : e^+e^-
- □ Rapidity coverage : |y| < 0.9

Muon spectrometer:

- □ $Q\bar{Q}$ decay mode : $\mu^+\mu^-$ □ Rapidity coverage : 2.5 < y < 4
 - In this analysis J/ψ is studied decaying to a muon pair

- Front absorber
- II. Tracking system
- III. Dipole magnet
- IV. Trigger system

Introduction

Data sample and analysis procedure In this analysis J/ψ is studied using the Pb-Pb collision dataset collected at $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$ in 2015 ($L_{\rm int} \sim 0.2 n b^{-1}$) SINGLE MUON CUTS \Box -4 < η_{μ} < -2.5 to reject tracks at the edge of the spectrometer acceptance □ Matching of a track reconstructed in the tracking chambers with a track reconstructed in the trigger system with $p_{\rm T} > 1 \, {\rm GeV}/c$ □ Cut on the distance of closest approach to primary interaction vertex **DIMUON CUTS** \Box 2.5 < $y_{\mu\mu}$ < 4 to cope with the spectrometer acceptance

Signal extraction \square $\mu^+\mu^-$ angular distribution as a function of $cos\theta$ and φ for 2 < $m_{\mu\mu}$ < 5 GeV/ c^2 ALICE Preliminary, Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 3 1600 Inclusive J/ $\psi \rightarrow \mu^+ \mu^ 2 < p_{\tau} < 4 \text{ GeV}/c$, 2.5 < y < 4, Helicity 1400 2.5 1200 2 |*φ*| (rad) 1000 800 600 400 0.5 200 0 n -0.8 -0.6 -0.4 -0.2 0.6 0.8 0.2 0 0.4 -1 $\cos\theta$ ALI-PREL-314865

ALICE

Signal extraction

 $\Box \ \mu^+\mu^- \text{ angular distribution as a function of } cos\theta$ and φ for 2 < $m_{\mu\mu}$ < 5 GeV/ c^2

□ Creation of a 2D grid for signal extraction

Signal extraction

ALICE

$\textbf{Acceptance} \times \textbf{Efficiency}$

 $A \times \varepsilon$ evaluated in a Monte-Carlo simulation

- □ In the MC simulation J/ ψ are generated flat as a function of $cos\theta$ and φ ($\lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi} = 0$)
- $A \times \varepsilon$ sensitive to the input MC shape?

 $A \times \varepsilon$ from "flat Monte-Carlo"

 $N_{I/\psi}$ distribution corrected with $A \times \varepsilon$

Evaluation of $\lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}$

 $\lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}$ from previous step used for a new "polarized" Monte-Carlo

STOP: no significant variation from one iteration to the other (5 iterations done)

QWG 2019

New

evaluation of

 $A \times \varepsilon$

Extraction of the polarization parameters

Extraction of the polarization parameters

Signal extraction

- Choice of various signal and background shapes for the fit to the invariant mass distributions
- Fix to the MC or keep free the J/ψ width in the signal extraction procedure

Input MC shape

• Evaluation of the impact of different $p_{\rm T}$, y MC input shapes on the polarization parameters

Trigger efficiency

Use single muon trigger response function extracted from data or MC

Tracking efficiency

Calculated from single muon tracking efficiencies extracted from data or MC (negligible)

QWG 2019

Polarization parameters as a function of $p_{\rm T}$ in the Helicity and Collins-Soper reference frames

- $\rightarrow \lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}$ compatible with zero
- This first measurement suggests weak or no J/ψ polarization also in heavy-ion collisions

Luca Micheletti

- Polarization parameters as a function of p_T in the Helicity and Collins-Soper reference frames
 - $\implies \lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}$ compatible with zero
 - This first measurement suggests weak or no J/ψ polarization also in heavy-ion collisions
 - Somparison with ALICE results at $\sqrt{s} = 7$ and 8 TeV in pp collisions

Luca Micheletti

No significant difference between $\lambda_{\theta}, \lambda_{\varphi}, \lambda_{\theta\varphi}$ obtained in Pb-Pb and pp collisions

First measurement of J/ψ polarization in Pb-Pb collisions at the LHC

> ALICE preliminary results suggest polarization parameters close to zero in Pb-Pb collisions

- Results in agreement with
 - \Box ALICE measurements of J/ ψ polarization in pp collisions
 - \Box NA60 measurement of J/ ψ polarization in a different colliding system (In-In) at lower energies

Future steps

□ Study of the centrality dependence of the J/ψ polarization using the high statistics 2018 data set □ Study of the J/ψ polarization with respect to the event plane of the collision

In more peripheral events, the collision geometry may lead to the formation of an intense magnetic field and/or to the formation of a fluid with non-zero vorticity

