Quarkonium production in p-Pb and Pb-Pb collisions with ALICE

Biswarup Paul University and INFN Cagliari (Italy) On behalf of the ALICE Collaboration

QWG 2019 - 13th International Workshop on Heavy Quarkonium Torino, Italy 13th - 17th May 2019

Istituto Nazionale di Fisica Nucleare

Outline

- p-Pb results at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$
 - Rapidity, p_T and centrality dependence of quarkonium (J/ ψ , ψ (2S) and Υ) (new J/ ψ results at mid rapidity)
 - Multi-differential study of J/ψ
 - Azimuthal anisotropy of $J\!/\psi$
- Pb-Pb results at $\sqrt{s_{\text{NN}}} = 5.02 \text{ TeV}$
 - Multi-differential study of J/ψ
 - Azimuthal anisotropy of J/ψ
 - Centrality dependence of $\psi(2S)$
 - Rapidity, $p_{\rm T}$ and centrality dependence of $\Upsilon(1S)$
 - Elliptic flow of Y(1S) NEW!!
 - New results on the polarization of J/ψ will be presented by Luca in the next talk

A Large Ion Collider Experiment

 \rightarrow Quarkonia in ALICE are measured in two rapidity ranges:

- \rightarrow Acceptance coverage in both y regions is down to zero $p_{\rm T}$
- \rightarrow The ALICE results presented in this talk refer to inclusive J/ ψ

Central barrel: J/ $\psi \rightarrow e^+e^-$ (|y| < 0.9)

Electrons tracked using ITS and TPC Particle identification: TPC (+TOF)

Forward muon arm: $J/\psi \rightarrow \mu^+\mu^- (2.5 \le y \le 4)$

Muons identified and tracked in the muon spectrometer

Biswarup Paul

p-Pb collisions in ALICE

- → To understand Cold Nuclear Matter (CNM) effects such as nuclear parton shadowing/color glass condensate, energy loss and comovers absorption
- \rightarrow No Quark-Gluon Plasma (QGP) is expected in pA collisions.
- \rightarrow The measurement of CNM effects in pA collisions is important to quantify the QGP effects in AA collisions
- → ALICE has collected p-Pb data at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV
- → ALICE data are collected with two beam configurations: p-Pb and Pb-p, with Δy = +/- 0.465

 $J/\psi R_{pPb}$ vs y_{cms} at $\sqrt{s_{NN}} = 8.16$ TeV

• Nuclear modification factor:

$$R_{
m pPb}^{
m J/\psi} = rac{Y_{
m pPb}^{
m J/\psi}}{\langle T_{
m pPb}
angle \,\, \sigma_{
m pp}^{
m J/\psi}}$$

- Stronger suppression is observed at forward rapidity, while R_{pPb} is compatible with unity both at mid and backward rapidity
- Models based on different shadowing implementations, CGC, energy loss, transport models and comovers fairly describe the data

$J/\psi R_{\rm pPb}$ vs $p_{\rm T}$ at $\sqrt{s_{\rm NN}} = 8.16$ TeV

- R_{pPb} shows a p_T dependence, with an increase from low to high p_T at both forward and backward rapidity
- At mid rapidity R_{pPb} is compatible with unity with almost no p_T dependence
- Run2 results are more precise than the Run1 measurements at $\sqrt{s_{NN}} = 5.02$ TeV [JHEP 06 (2015) 55]
- Uncertainties on the theoretical predictions are large compared to data

- We use the symbol Q_{pPb} instead of R_{pPb} for nuclear modification factor due to potential bias from the centrality estimator
- Two sets of Zero Degree Calorimeters (ZDC) have been used for the centrality estimation
- $Q_{\rm pPb}$ decreases slightly from peripheral to central collisions at forward rapidity, while trend is opposite at backward-y

Multi-differential study of J/ ψQ_{pPb} at $\sqrt{s_{NN}} = 8.16$ TeV

- Clear evolution of Q_{pPb} vs p_T in different centrality classes
- At backward rapidity, enhancement in most central collisions for $p_T > 3 \text{ GeV}/c$
- At forward rapidity, stronger suppression at low p_T in most central collisions and Q_{pPb} is compatible with unity for $p_T > 7 \text{ GeV}/c$ within uncertainties for all centrality intervals

Multi-differential J/ ψQ_{pPb} compared to theoretical models

- In central collisions:
 - shadowing predicts a weaker $p_{\rm T}$ dependence w.r.t. the one observed in data
 - energy loss predicts an increase of $Q_{\rm pPb}$ with a different steepness than the measured one
 - In peripheral collisions: both theory models show no $p_{\rm T}$ dependence, consistent with the $Q_{\rm pPb}$ measurement, within uncertainties
- The models can not describe simultaneously all aspects of J/ψ suppression (rapidity, p_T and centrality)

Biswarup Paul

Azimuthal anisotropy (v_2) of J/ ψ

- In a strongly-interacting medium, pressure gradients convert any initial spatial anisotropy into a momentum anisotropy
- Anisotropy is quantified by the 2^{nd} order coefficient v_2 of the Fourier expansion of the particle azimuthal distribution

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}p^{3}} = \frac{1}{2\pi} \frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y} \left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos\left(n\left(\varphi - \Psi_{n}\right)\right)\right)$$
$$v_{n} = \left\langle\cos\left(n\left(\varphi - \Psi_{n}\right)\right)\right\rangle$$

- Observation of non-zero v_2 in p-Pb for $p_T > 3 \text{ GeV}/c!$
- Total significance (forward + backward, 5.02+8.16 TeV, $3 < p_T < 6 \text{ GeV}/c$) ~ 5σ
- Values are similar to the ones obtained in Pb-Pb for $p_{\rm T} > 3 \text{ GeV}/c$
- In Pb-Pb collisions, non-zero J/ ψ v₂ suggests charm quark participation to the collective expansion of the system
- Common mechanism in p-Pb and Pb-Pb?

 $\psi(2S) R_{\text{pPb}} \text{ vs } y_{\text{cms}} \text{ at } \sqrt{s_{\text{NN}}} = 8.16 \text{ TeV}$

- $\psi(2S)$ suppression is stronger than the J/ ψ one, especially at backward rapidity
- Theoretical predictions based on shadowing and energy loss can not describe the stronger $\psi(2S)$ suppression
- Models including final-state effects reproduce $\psi(2S)$ behaviour at both forward and backward rapidity

- Similar $\Upsilon(1S)$ suppression at forward and backward rapidity
- $\Upsilon(1S)$ and $J/\psi R_{pPb}$ agree within ~ 1 σ both at forward and backward rapidity
- Theoretical predictions based on shadowing and energy loss describe the forward rapidity results but slightly overestimate the backward rapidity results
- Y(2S) suppression is consistent with Y(1S) but a small hint of being more suppressed (as also observed by CMS and ATLAS at mid-y, and by LHCb at forward-y)

$\Upsilon(1S) R_{\text{pPb}} \text{ vs } p_{\text{T}} \text{ at } \sqrt{s_{\text{NN}}} = 8.16 \text{ TeV}$

- Similar behaviour at both forward and backward rapidity with a hint of a stronger suppression at low $p_{\rm T}$
- Theoretical predictions based on shadowing describe the forward rapidity results but slightly overestimate the backward rapidity results

hot matter effects: suppression vs regeneration

$J/\psi R_{AA}$ in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- Forward-y J/ ψ suppression measured precisely in fine bins of centrality
- Clear J/ ψ suppression with almost no centrality dependence for $N_{\text{part}} > 100$
- Weaker low- $p_{\rm T}$ suppression measured by ALICE compared to PHENIX
- Different behaviour in RHIC and LHC R_{AA} is related to the interplay of suppression and regeneration mechanisms

Comparison with theoretical models

- All models fairly describe the data but large uncertainties associated to charm cross section and shadowing •
- Precise charm cross section measurement and more differential analyses needed •

 $R_{\rm AA}$

1 4

1.2

0.8

0.6

0.4

0.2

0

Multi-differential J/ ψ R_{AA} in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- Constraints to the theoretical models can be imposed by more differential R_{AA} studies
- The suppression is stronger at high $p_{\rm T}$ and for central collisions
- R_{AA} decreases by 60-80% at large p_{T} and for most central collisions
- TM1 prediction agrees with data within uncertainties

ALICE

Elliptic (v_2) and triangular (v_3) flow of J/ ψ in Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV

- J/ ψ v₂ at mid-y shows agreement with forward-y result within uncertainties
- Non-zero $J/\psi v_2$ is consistent with that of open-charm mesons
- The transport model predictions are not able to describe the data in higher $p_{\rm T}$ region
- A significant fraction of the observed J/ψ comes from charm quarks thermalized in the QGP
- First observation of positive $J/\psi v_3$ in Pb-Pb collisions (3.7 σ significance)
- v_3 is sensitive to fluctuations of initial nucleon distributions in the overlap region

$\psi(2S) R_{AA}$ in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- $\psi(2S)$ shows a stronger suppression, in semi-central and central collisions, than the J/ ψ one
- However, the low significance limits the precision of the measurements [95% CL is provided for bins with too low significance]
- Results are compatible with CMS
- The 2018 data sample with ~ 3 times increase in statistics will give more precise measurement, stay tuned!

$\Upsilon(1S) R_{AA}$ in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- The suppression is stronger in central collisions than in peripheral events
- R_{AA} does not show a significant dependence on p_T and y
- Amount of direct $\Upsilon(1S)$ suppression is an open question since feed-down fraction to $\Upsilon(1S)$ is not precisely known
- Transport models describe the results with and without a regeneration component within uncertainties
- Only upper edge of hydro-dynamical model agrees with data

Solution Elliptic flow (v_2) of $\Upsilon(1S)$ in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- The Kent State University (KSU) model calculations consider only the path-length dissociation of initially-created bottomonia inside the QGP medium
- The Texas A&M University (TAMU) model incorporates in addition a regeneration component originating from the recombination of thermalized bottom quarks

- $\Upsilon(1S)$ v_2 is compatible with zero and with the small values predicted by the available theoretical models within uncertainties
- Excluding low $p_{\rm T}$, $\Upsilon(1S) v_2$ is 2.6 σ lower with respect to that of inclusive J/ ψ
- This $\Upsilon(1S)$ result includes both 2015 and 2018 Pb-Pb data sets. This is the first result coming out of this new data set

Conclusions

- \rightarrow We have shown quarkonium production results measured in p-Pb and Pb-Pb collisions
- \rightarrow Run2 results increased significantly the precision of the measurements
- \rightarrow Models face difficulties in describing consistently all results

p-Pb:

- \rightarrow J/ ψ shows a stronger suppression at forward-y than at backward-y, where R_{pPb} is compatible with unity
- → Theoretical models based on CNM effects qualitatively describe J/ ψ results
- \rightarrow $\psi(2S)$ shows a stronger suppression than J/ ψ , final-state effects needed to explain the $\psi(2S)$ behaviour
- → Similar $\Upsilon(1S)$ and $\Upsilon(2S)$ suppression at backward and forward-y
- \rightarrow Shadowing and energy loss models describe $\Upsilon(1S)$ behaviour at forward-y results while they overestimate backward-y results

Pb-Pb:

- → J/ ψ R_{AA} at LHC shows an interplay of suppression and (re)generation
- \rightarrow Differential R_{AA} results put strong constraints on the models
- → Non zero J/ ψ elliptic flow agrees with regeneration picture
- → Clear suppression of $\Upsilon(1S)$ with no indication of a significant regeneration component
- \rightarrow Y(1S) v_2 is compatible with zero and with the current model predictions within uncertainties

Thank you

Comparison with theoretical models

ALICE

- All models fairly describe the data but large uncertainties associated to charm cross section and shadowing
- Precise charm cross section measurement and more differential analyses needed

$\psi(2S) Q_{pPb}$ vs centrality at $\sqrt{s_{NN}} = 8.16$ TeV

- The $\psi(2S)$ suppression is stronger than J/ ψ one, especially at backward rapidity
- At forward rapidity the Q_{pPb} of $\psi(2S)$ follows the same trend as J/ ψ while at backward rapidity trend is different
- At backward rapidity, final-state effects needed to explain the $\psi(2S)$ behaviour. Some discrepancies between the data and the model in the peripheral region

$\Upsilon(1S) Q_{pPb}$ vs centrality at $\sqrt{s_{NN}} = 8.16$ TeV

- Almost no centrality dependence of $Q_{\rm pPb}$ both at forward and backward rapidity
- A hint for a stronger suppression at forward rapidity

- No significant \sqrt{s} -dependence also at mid-rapidity, confirming observation at forward-y.
- Small R_{AA} increase in most central collisions, wrt forward-y, as expected in a (re)generation scenario (but fluctuations cannot be yet excluded).

Biswarup Paul

4₄ ۲

ALICE, inclusive $J/\psi \rightarrow e^+e^-$

QWG 2019 – Torino, Italy

J/ ψR_{pPb} and Q_{pPb} at $\sqrt{s_{\text{NN}}} = 5.02$ TeV (mid-y)

- Run2 analysis with increased luminosity ($L_{int}(2016) = 256 \ \mu b^{-1}$, $L_{int}(2013) = 51 \ \mu b^{-1}$) shows increased precision
- $R_{\rm pPb}$ increases with $p_{\rm T}$
- No centrality dependence of $Q_{\rm pPb}$ is observed

J/ ψ R_{pPb} and Q_{pPb} compared to theory at $\sqrt{s_{NN}} = 5.02$ TeV(mid-y)

ALTCE

• Theoretical models based on shadowing and/or energy loss, CGC and comovers are in fair agreement with the data

Azimuthal anisotropy (v_2) of J/ ψ in p-Pb collisions

Clear away-side correlation presumably due to recoil jet

High multiplicity

Additional enhancement at both near and away sides

Low multiplicity

High multiplicity

Jet correlations eliminated via subtraction

- $p_T < 3 \text{ GeV}/c \rightarrow v_2$ compatible with 0 In line with expectation of no recombination
- $3 < p_{\rm T} < 6 \, {\rm GeV/c} \rightarrow v_2 > 0$
 - Total (forward+backward,5.02+8.16 TeV) significance about 5σ

Values comparable to the measurements in central Pb-Pb collisions