Quarkonium production in p-Pb and Pb-Pb collisions with ALICE

Biswarup Paul
University and INFN Cagliari (Italy)
On behalf of the ALICE Collaboration

QWG 2019 - 13th International Workshop on Heavy Quarkonium
Torino, Italy
13th – 17th May 2019
Outline

- ALICE detector
- p-Pb results at \(\sqrt{s_{NN}} = 8.16 \text{ TeV} \)
 - Rapidity, \(p_T \) and centrality dependence of quarkonium (J/\(\psi \), \(\psi(2S) \) and \(\Upsilon \))
 (new J/\(\psi \) results at mid rapidity)
 - Multi-differential study of J/\(\psi \)
 - Azimuthal anisotropy of J/\(\psi \)
- Pb-Pb results at \(\sqrt{s_{NN}} = 5.02 \text{ TeV} \)
 - Multi-differential study of J/\(\psi \)
 - Azimuthal anisotropy of J/\(\psi \)
 - Centrality dependence of \(\psi(2S) \)
 - Rapidity, \(p_T \) and centrality dependence of \(\Upsilon(1S) \)
 - Elliptic flow of \(\Upsilon(1S) \) NEW!!
- New results on the polarization of J/\(\psi \) will be presented by Luca in the next talk
Quarkonia in ALICE are measured in two rapidity ranges:

- Central barrel: $J/\psi \rightarrow e^+e^- (|y| < 0.9)$
 - Electrons tracked using ITS and TPC
 - Particle identification: TPC (+TOF)

- Forward muon arm: $J/\psi \rightarrow \mu^+\mu^- (2.5 < y < 4)$
 - Muons identified and tracked in the muon spectrometer

Acceptance coverage in both y regions is down to zero p_T.

The ALICE results presented in this talk refer to inclusive J/ψ.

Central barrel: $J/\psi \rightarrow e^+e^- (|y| < 0.9)$

Electrons tracked using ITS and TPC
Particle identification: TPC (+TOF)

Forward muon arm: $J/\psi \rightarrow \mu^+\mu^- (2.5 < y < 4)$

Muons identified and tracked in the muon spectrometer
p-Pb
cold nuclear matter effects:
shadowing/CGC, energy loss...
p-Pb collisions in ALICE

→ To understand Cold Nuclear Matter (CNM) effects such as nuclear parton shadowing/color glass condensate, energy loss and comovers absorption

→ No Quark-Gluon Plasma (QGP) is expected in pA collisions.

→ The measurement of CNM effects in pA collisions is important to quantify the QGP effects in AA collisions

→ ALICE has collected p-Pb data at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV

→ ALICE data are collected with two beam configurations: p-Pb and Pb-p, with $\Delta y = +/- 0.465$
Nuclear modification factor: R_{pPb}

- Stronger suppression is observed at forward rapidity, while R_{pPb} is compatible with unity both at mid and backward rapidity.

- Models based on different shadowing implementations, CGC, energy loss, transport models and comovers fairly describe the data.

\[R_{pPb}^{J/\psi} = \frac{Y_{pPb}^{J/\psi}}{\langle T_{pPb} \rangle \sigma_{pp}^{J/\psi}} \]
\(J/\psi \ R_{pPb} \ vs \ p_T \) at \(\sqrt{s_{NN}} = 8.16 \ \text{TeV} \)

- \(R_{pPb} \) shows a \(p_T \) dependence, with an increase from low to high \(p_T \) at both forward and backward rapidity.
- At mid rapidity \(R_{pPb} \) is compatible with unity with almost no \(p_T \) dependence.
- Run2 results are more precise than the Run1 measurements at \(\sqrt{s_{NN}} = 5.02 \ \text{TeV} \) [JHEP 06 (2015) 55].
- Uncertainties on the theoretical predictions are large compared to data.
We use the symbol Q_{pPb} instead of R_{pPb} for nuclear modification factor due to potential bias from the centrality estimator.

Two sets of Zero Degree Calorimeters (ZDC) have been used for the centrality estimation.

Q_{pPb} decreases slightly from peripheral to central collisions at forward rapidity, while trend is opposite at backward-\(y\).
Clear evolution of Q_{pPb} vs p_T in different centrality classes

At backward rapidity, enhancement in most central collisions for $p_T > 3$ GeV/c

At forward rapidity, stronger suppression at low p_T in most central collisions and Q_{pPb} is compatible with unity for $p_T > 7$ GeV/c within uncertainties for all centrality intervals
Multi-differential J/ψ Q_{pPb} compared to theoretical models

- In central collisions:
 - shadowing predicts a weaker p_T dependence w.r.t. the one observed in data
 - energy loss predicts an increase of Q_{pPb} with a different steepness than the measured one

- In peripheral collisions:
 - both theory models show no p_T dependence, consistent with the Q_{pPb} measurement, within uncertainties

- The models cannot describe simultaneously all aspects of J/ψ suppression (rapidity, p_T and centrality)
Azimuthal anisotropy (v_2) of J/ψ

- In a strongly-interacting medium, pressure gradients convert any initial spatial anisotropy into a momentum anisotropy.

- Anisotropy is quantified by the 2nd order coefficient v_2 of the Fourier expansion of the particle azimuthal distribution:

$$E \frac{d^3N}{dp^3} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos (n(\phi - \Psi_n)) \right)$$

$$v_n = \langle \cos (n(\phi - \Psi_n)) \rangle$$

- Observation of non-zero v_2 in p-Pb for $p_T > 3$ GeV/c!
- Total significance (forward + backward, 5.02+8.16 TeV, 3 < p_T < 6 GeV/c) ~ 5σ
- Values are similar to the ones obtained in Pb-Pb for $p_T > 3$ GeV/c.
- In Pb-Pb collisions, non-zero J/ψ v_2 suggests charm quark participation to the collective expansion of the system.
- Common mechanism in p-Pb and Pb-Pb?
ψ(2S) suppression is stronger than the J/ψ one, especially at backward rapidity.

- Theoretical predictions based on shadowing and energy loss cannot describe the stronger ψ(2S) suppression.
- Models including final-state effects reproduce ψ(2S) behaviour at both forward and backward rapidity.
- Similar $\Upsilon(1S)$ suppression at forward and backward rapidity
- $\Upsilon(1S)$ and J/ψ R_{pPb} agree within ~ 1σ both at forward and backward rapidity
- Theoretical predictions based on shadowing and energy loss describe the forward rapidity results but slightly overestimate the backward rapidity results
- $\Upsilon(2S)$ suppression is consistent with $\Upsilon(1S)$ but a small hint of being more suppressed (as also observed by CMS and ATLAS at mid-y, and by LHCb at forward-y)
\[\Upsilon(1S) \, R_{p\text{Pb}} \, \text{vs} \, p_T \, \text{at} \, \sqrt{s_{\text{NN}}} = 8.16 \, \text{TeV} \]

- Similar behaviour at both forward and backward rapidity with a hint of a stronger suppression at low \(p_T \)
- Theoretical predictions based on shadowing describe the forward rapidity results but slightly overestimate the backward rapidity results
Pb-Pb

hot matter effects: suppression vs regeneration
\[R_{AA}^{J/\psi} \text{ in Pb-Pb collisions at } \sqrt{s_{NN}} = 5.02 \text{ TeV} \]

- Forward-\(y\) J/\(\psi\) suppression measured precisely in fine bins of centrality
- Clear J/\(\psi\) suppression with almost no centrality dependence for \(N_{\text{part}} > 100\)
- Weaker low-\(p_T\) suppression measured by ALICE compared to PHENIX
- Different behaviour in RHIC and LHC \(R_{AA}\) is related to the interplay of suppression and regeneration mechanisms

\[R_{AA}^{J/\psi} = \frac{Y_{AA}^{J/\psi}}{\langle T_{AA} \rangle} \sigma_{pp}^{J/\psi} \]
Comparison with theoretical models

- All models fairly describe the data but large uncertainties associated to charm cross section and shadowing
- Precise charm cross section measurement and more differential analyses needed
Multi-differential $J/\psi R_{AA}$ in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- Constraints to the theoretical models can be imposed by more differential R_{AA} studies

- The suppression is stronger at high p_T and for central collisions

- R_{AA} decreases by 60-80% at large p_T and for most central collisions

- TM1 prediction agrees with data within uncertainties
Elliptic (v_2) and triangular (v_3) flow of J/ψ in Pb-Pb at $\sqrt{s_{NN}} = 5.02$ TeV

- J/ψ v_2 at mid-y shows agreement with forward-y result within uncertainties
- Non-zero J/ψ v_2 is consistent with that of open-charm mesons
- The transport model predictions are not able to describe the data in higher p_T region
- A significant fraction of the observed J/ψ comes from charm quarks thermalized in the QGP
- First observation of positive J/ψ v_3 in Pb-Pb collisions (3.7 σ significance)
- v_3 is sensitive to fluctuations of initial nucleon distributions in the overlap region
• $\psi(2S)$ shows a stronger suppression, in semi-central and central collisions, than the J/ψ one

• However, the low significance limits the precision of the measurements
 [95% CL is provided for bins with too low significance]

• Results are compatible with CMS

• The 2018 data sample with ~ 3 times increase in statistics will give more precise measurement, stay tuned!
- The suppression is stronger in central collisions than in peripheral events.
- R_{AA} does not show a significant dependence on p_T and y.
- Amount of direct $\Upsilon(1S)$ suppression is an open question since feed-down fraction to $\Upsilon(1S)$ is not precisely known.
- Transport models describe the results with and without a regeneration component within uncertainties.
- Only upper edge of hydro-dynamical model agrees with data.
Elliptic flow (v_2) of Υ(1S) in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- Υ(1S) v_2 is compatible with zero and with the small values predicted by the available theoretical models within uncertainties.
- Excluding low p_T, Υ(1S) v_2 is 2.6σ lower with respect to that of inclusive J/ψ.
- This Υ(1S) result includes both 2015 and 2018 Pb-Pb data sets. This is the first result coming out of this new data set.

- The Kent State University (KSU) model calculations consider only the path-length dissociation of initially-created bottomonia inside the QGP medium.
- The Texas A&M University (TAMU) model incorporates in addition a regeneration component originating from the recombination of thermalized bottom quarks.
Conclusions

- We have shown quarkonium production results measured in p-Pb and Pb-Pb collisions.
- Run2 results increased significantly the precision of the measurements.
- Models face difficulties in describing consistently all results.

p-Pb:

- J/ψ shows a stronger suppression at forward-y than at backward-y, where R_{pPb} is compatible with unity.
- Theoretical models based on CNM effects qualitatively describe J/ψ results.
- $\psi(2S)$ shows a stronger suppression than J/ψ, final-state effects needed to explain the $\psi(2S)$ behaviour.
- Similar $\Upsilon(1S)$ and $\Upsilon(2S)$ suppression at backward and forward-y.
- Shadowing and energy loss models describe $\Upsilon(1S)$ behaviour at forward-y results while they overestimate backward-y results.

Pb-Pb:

- $J/\psi R_{\text{AA}}$ at LHC shows an interplay of suppression and (re)generation.
- Differential R_{AA} results put strong constraints on the models.
- Non zero J/ψ elliptic flow agrees with regeneration picture.
- Clear suppression of $\Upsilon(1S)$ with no indication of a significant regeneration component.
- $\Upsilon(1S) v_2$ is compatible with zero and with the current model predictions within uncertainties.
Thank you
Comparison with theoretical models

- All models fairly describe the data but large uncertainties associated to charm cross section and shadowing
- Precise charm cross section measurement and more differential analyses needed
The $\psi(2S)$ suppression is stronger than J/ψ one, especially at backward rapidity.

At forward rapidity the Q_{pPb} of $\psi(2S)$ follows the same trend as J/ψ while at backward rapidity trend is different.

At backward rapidity, final-state effects needed to explain the $\psi(2S)$ behaviour. Some discrepancies between the data and the model in the peripheral region.
Almost no centrality dependence of Q_{pPb} both at forward and backward rapidity

A hint for a stronger suppression at forward rapidity
No significant \sqrt{s}-dependence also at mid-rapidity, confirming observation at forward-y.

Small R_{AA} increase in most central collisions, wrt forward-y, as expected in a (re)generation scenario (but fluctuations cannot be yet excluded).
Run2 analysis with increased luminosity ($L_{\text{int}}(2016) = 256 \text{ } \mu \text{b}^{-1}$, $L_{\text{int}}(2013) = 51 \text{ } \mu \text{b}^{-1}$) shows increased precision.

R_{pPb} increases with p_T.

No centrality dependence of Q_{pPb} is observed.
• Theoretical models based on shadowing and/or energy loss, CGC and comovers are in fair agreement with the data
Azimuthal anisotropy (v_2) of J/ψ in p-Pb collisions

Low multiplicity
Clear away-side correlation presumably due to recoil jet

High multiplicity
Additional enhancement at both near and away sides

Low multiplicity
High multiplicity
Jet correlations eliminated via subtraction

- $p_T < 3 \text{ GeV/c} \rightarrow v_2$ compatible with 0
 In line with expectation of no recombination
- $3 < p_T < 6 \text{ GeV/c} \rightarrow v_2 > 0$
 Total (forward+backward, 5.02+8.16 TeV) significance about 5σ
 Values comparable to the measurements in central Pb-Pb collisions