

Quarkonium properties at T>0 from lattice NRQCD and pNRQCD

Alexander Rothkopf

Faculty of Science and Technology Department of Mathematics and Physics University of Stavanger

References:

S.Kim, P. Petreczky, A.R., JHEP 1811 (2018) 088 P. Petreczky, A.R., J. Weber, NPA982 (2019) 735 & in preparation D. Lafferty, A.R. in preparation

13TH INTERNATIONAL WORKSHOP ON HEAVY QUARKONIUM (QWG 2019) - 2019/05/14 - TORINO - ITALY

 \sim Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 0-10% 30-50% ALICE nclusive J/ψ, 2.5<y<4.0, ALICE Prompt D⁰, |y|<1.0, CMS h[±], |n|<0.8, ALICE collaboration] JHEP 1902 (2019) 012 0. ς, 0. 0.05 -0.05 ^{3 10 12} ρ_τ (GeV/*c*) 6 8 6 10 p_{_} (GeV/c)

Bottomonium: a non-equilibrium probe of the full QGP evolution

Charmonium: a partially equilibrated probe, sensitive to the late stages

Here idealized setting: properties of **quarkonium in a static medium** For recent work on open-quantum-system dynamics see e.g. N. Brambilla et.al. arXiv:1903.08063 and PRD97 (2018) 074009

J.P. Blaizot, M. Escobedo JHEP 1806 (2018) 034 S. Kajimoto et.al. Phys.Rev. D97 (2018) no.1, 014003

Equilibrium strategy

ALEXANDER ROTHKOPF - UIS

13th International Workshop on Heavy Quarkonium – 2019/05/14 – Torino – Italy

Lattice NRQCD

Exploit separation of scales to treat heavy quarks non-relativistically

University of Stavanger

Lattice Non-Relativistic QCD (NRQCD) well established at T=0, applicable at T>0

■ no modeling, systematic expansion of QCD action in 1/m_Qa, includes v≠0 contributions Thacker, Lepage Phys.Rev. D43 (1991) 196-208

Jour implementation uses O(v⁴), i.e. O(1/(m_Qa)³) and leading order Wilson coefficients

Realistic & high statistics simulations of the QCD medium by HotQCD
 HotQCD PRD85 (2012) 054503, PRD90 (2014) 094503

 m_{π} =161MeV T= [140 - 407] MeV $m_{b}a$ = [2.759 - 1.559] Lepage n_{b} =4

 $T=0 N_{T}=32-64 T= [140 - 251] MeV m_{c}a= [0.757 - 0.427] Lepage n_{c}=8$

For FASTSUM results see C. Alltons talk at 10:05h (better m_Qa , less realistic medium m_π) ALEXANDER ROTHKOPF - UIS 13th International Workshop on Heavy Quarkonium – 2019/05/14 – Torino – Italy

QUARKONIUM PROPERTIES AT T>0 FROM LATTICE NRQCD AND PNRQCD NRQCD Euclidean correlators

University of Stavanger

Non-rel. propagator of a single heavy quark G

Davies, Thacker Phys.Rev. D45 (1992)

see talk on extended sources by R. Larsen at 10:30h today QQ propagator projected to a certain channel "correlator of QQ wavefct. $D_{J/\psi}(T) \triangleq \langle \Psi_{J/\psi}(T) \Psi^{\dagger}_{J/\psi}(0) \rangle$ "

Brambilla et. al. Rev.Mod.Phys. 77 (2005) 1423

Bayesian spectral reconstruction

Inversion of Laplace transform required to obtain spectra from correlators

 $D(\mathbf{D}) = \sum_{n=1}^{\infty} \exp[-\operatorname{deve}_{i}] \overline{\rho}_{1}^{\omega} \operatorname{p}(\mathbf{u})$

- 1. N_u parameters $\rho_1 >> N_{\tau}$ datapoints
- 2. simulation input D_i has finite precision

Bayes: regulate χ^2 fit (P[D| ρ]=exp[-L]) with prior information (P[ρ |I]=exp[S])

 $P[\rho|D,I] \propto P[D|\rho] P[\rho|I] \qquad \frac{\delta}{\delta\rho} P[\rho|D,I] \bigg|_{\rho=\rho^{BR}} = 0 \quad \begin{array}{c} \text{for standard MEM see e.g.} \\ \text{Asakawa, Hatsuda, Nakahara} \\ \text{Prog.Part.Nucl.Phys. 46 (2001) 459} \end{array}$

University of Stavanger

I Regularization affects the end result: convergence to unique result as $N_{\tau} \rightarrow \infty dD/D \rightarrow 0$

Standard BR method (BR)

$$S_{\text{BR}} = \alpha \int d\omega \left(1 - \frac{\rho}{m} + \log\left[\frac{\rho}{m}\right]\right)$$

- Resolves narrow peaked structures with high accuracy
- Ringing in broad structures if reconstructed from small # of datapoints

"high gain – high noise"

Low ringing BR method (BR)

$$S_{\mathsf{BR}_{\ell}} = \alpha \int d\omega \left(\kappa \left(\frac{\partial \rho}{\partial \omega} \right)^2 + 1 - \frac{\rho}{m} + \log \left[\frac{\rho}{m} \right] \right)$$

- Introduces penalty on arc length of reconstruction (dL/dw)²=1+(dp/dw)²
- Efficiently removes ringing but may lead to overestimated peak widths

"low gain – low noise"

Calibrating the smooth BR method

University of Stavanger

Hyperparameter κ makes smoothing explicit (c.f. in MEM implicit in # datapoints)

- Use prior knowledge: free spectral functions known analytically
- In reconstruction from N_{τ} =12 data: κ =1 successfully suppresses ringing

Use smooth BR to verify peak existence, standard BR for peak position etc.

"High-gain" BR method resolves T=0 ground state very well from N_{τ} =48-64 points

How does accuracy suffer from limited Euclidean extent at T>0 (N_T =12) ?

Systematic shift of peaks to higher frequencies, as well as broadening. needs to be accounted for when analyzing T>0 spectra

Correlator ratios

Overall in-medium modification hierarchically ordered with vacuum binding energy

QUARKONIUM PROPERTIES AT T>0 FROM LATTICE NRQCD AND PNRQCD S-wave bottomonium melting at T>0 University of Stavanger

Naïve definition of melting temperatures: disappearance of peak structures

Three methods: BR (colored), smooth BR (gray solid) & MEM (gray dashed)

Very similar results for MEM and smooth BR for ground state strength

All three methods show consistently **GS peak remnant at T=407 MeV**

Three methods: BR (colored), smooth BR (gray solid) & MEM (gray dashed)

- Ringing artifacts fully absent in smooth BR method at higher frequencies
- Smooth BR shows disappearance of GS peak similar to MEM at T~223MeV
- We now understand: standard BR method GS peak at T=251MeV is ringing

Our updated melting T are lower than before and move closer to FASTSUM

In-medium mass shifts

University of Stavanger

Crucial ingredient: establish the correct baseline to interpret the in-medium masses

Truncated T=0 reconstruction shows artificial shift to higher frequencies (gray sq.)

In-medium shifts at T=140MeV very close to truncated results (no in-medium mod.)

At higher temperatures masses lie clearly below the baseline (compatible with non-perturbative potential based computations (pNRQCD))

Equilibrium strategy

II. Via pNRQCD potential from the lattice QCD Wilson loop

(see e.g. P. Petreczky, A.R., J. Weber, NPA982 (2019) 735 see also Y.Burnier, O.Kaczmarek, A.R. JHEP 1512 (2015) 101)

0.0

In-medium meson spectra

& Static medium from lattice QCD

schematic depiction

3.4

3.6

 ω [GeV]

3.8

4.0

4.2

3.2

3.0

The real-time interquark potential

$$i\partial_t \langle \psi_s(t) \psi_s(0) \rangle = \Big(V^{\rm QCD}(R) + \mathcal{O}(m_Q^{-1}) + \Theta(R,t) \Big) \langle \psi_s(t) \psi_s(0) \rangle$$

Matching to underlying QCD in the infinite mass limit: Wilson loop

$$\langle \psi_{S}(R,t)\psi_{S}^{*}(R,0)
angle_{pNRQCD}\equiv W_{\Box}(R,t)=\left\langle \mathsf{Tr}\left[\exp\left(-ig\int_{\Box}dx^{\mu}A_{\mu}(x)
ight)
ight]
ight
angle_{QCD}$$

Wilson loop: potential emerges at late times

$$V(R) = \lim_{t \to \infty} \frac{i \partial_t W_{\Box}(R, t)}{W_{\Box}(R, t)} \in \mathbb{C}$$

Im[V]: Laine et al. JHEP03 (2007) 054; Beraudo et. al. NPA 806:312,2008 Brambilla et.al. PRD 78 (2008) 014017

University of Stavanger

In this form: Minkowski time quantities and not directly accessible on the lattice

Spectral Decomposition

$$V^{QCD}(R) = \lim_{t \to \infty} \frac{\int_{-\infty}^{\infty} d\omega \, \omega \, e^{-i\omega t} \, \rho_{\Box}(R, \omega)}{\int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(R, \omega)}$$

A.R., T.Hatsuda & S.Sasaki PoS LAT2009 (2009) 162

well defined V(R) ρ_(R,ω) if low lying Breit-Wigner present in Wilson loop spectral function Y.B., A.R. PRD86 (2012) 051503

 $V(R) = \omega_0(R) - i\Gamma_0(R)$

For technical details see

Spectral Reconstruction

rm

In case of usual $\Delta W/W = 10^{-2}$ statistical uncertainty in W₋: **Bayesian inference**

incorporate prior information to regularize the inversion task (BR method)

In case of small ΔW/W<10⁻³ statistical uncertainty in W_n also **Pade approximation**

> exploit the analyticity of the Wilson correlator to extract spectra

QUARKONIUM PROPERTIES AT T>0 FROM LATTICE NRQCD AND PNRQCD Non-perturbative evaluation of V(R)

How to connect to the Euclidean domain: **spectral functions**

A.R., T.Hatsuda & S.Sasaki PRL 108 (2012) 162001

$$W_{\Box}(\mathbf{R},t) = \int_{-\infty}^{\infty} d\omega \, e^{-i\omega t} \, \rho_{\Box}(\mathbf{R},\omega) \quad \longleftrightarrow \quad W_{\Box}(\mathbf{R},\tau) = \int_{-\infty}^{\infty} d\omega \, e^{-\omega \tau} \, \rho_{\Box}(\mathbf{R},\omega)$$

Extracting the potential

ALEXANDER ROTHKOPF - UIS 13th International Workshop on Heavy Quarkonium – 2019/05/14 – Torino – Italy

0.8

0.1

-15

HISQ β=7.825

N_τ=12

- Always find well defined lowest peak: potential picture appears viable
- Beware of Pade artifacts besides peak: e.g. positivity violation, spikes
- Not yet conclusive since also reasonable χ^2 for model fit where additional low lying structures compensate change in dominant peak

lattice FT 🔫

Pade

0.4

0.3

0.2

0.1

-0.1

-0.2

-0.3

0

(wi_{llSQ}](r,iw) س

lattice FT

Pade

15

Latest results on the lattice potential

Lattices with dynamical u,d,s quarks (HISQ action, HotQCD & TUMQCD)

A. Bazavov et.al. PRD97 (2018) 014510, HotQCD PRD90 (2014) 094503

- I realistic m_{π} ~161MeV (T=151-1451MeV)
- fixed box (N_s=48 N_T=12, N_T=16) & very high statistics 4000-9000 realizations
- Pade based extraction for Re[V] possible

- Smooth transition from Cornell @ T=0 to Debye screened @ T>T_c
- Finite Im[V] above T_c present

Coulombic: a=-1 $q=\alpha_s$

 $ec{
abla} \left(ec{
abla} V_{C}(R)
ight) = -4\pilpha_{S}\delta(ec{R})$

An improved Gauss law approach

For use in phenomenology applications: analytic expression for Re[V] and Im[V]

$$V_{Q\bar{Q}}^{T=0}(R) = V_C(R) + V_S(R) = -\frac{\alpha_S}{r} + \sigma r + c$$

$${\cal G}_a[V(R)] = ec
abla \left(rac{ec
abla V(R)}{R^{a+1}}
ight) = -4\pi q \delta^{(3)}(ec R) \; .$$

Strategy:

 α_s, σ and c are vacuum prop. and do not change with T

University of Stavanger

 $V(R) = aqR^a$

V. V. Dixit, Mod. Phys. Lett. A 5, 227 (1990)

Immerse non-perturbative charge in weak coupling HTL medium: permittivity ε original idea: Y.Burnier, A.R. Phys.Lett. B753 (2016) 232 improved derivation D.Lafferty and A.R. in preparation

$$V^{med}(\mathbf{p}) = V^{vac}(\mathbf{p})/\epsilon(\mathbf{p}) \qquad \epsilon^{-1}(\vec{p}, m_D) = \frac{p^2}{p^2 + m_D^2} - i\pi T \frac{pm_D^2}{(p^2 + m_D^2)^2}$$
$$\mathcal{G}_a[V^{med}(\mathbf{r})] = \mathcal{G}_a \int d^3y \left(V^{vac}(\mathbf{r} - \mathbf{y})\epsilon^{-1}(\mathbf{y}) \right) = 4\pi q \epsilon^{-1}(\mathbf{r}, m_D)$$

String-like: a=+1 $q=\sigma$

 $ec{
abla}\left(rac{ec{
abla}V_{\mathcal{S}}(R)}{R^2}
ight) = -4\pi\sigma\delta(ec{R})$

3 vacuum parameters and 1 temperature dependent m_D fix both Re[V] and Im[V].

QUARKONIUM PROPERTIES AT T>0 FROM LATTICE NRQCD AND PNRQCD Gauss-law solution to Re[V] & Im[V] University of Stavanger

We find an interesting connection to the classic Karsch-Mehr-Satz result:

$$Re[V^{med}](r) = \frac{2\sigma}{m_D} \left(1 - e^{-m_D r}\right) - \sigma r e^{-m_D r} - \frac{\alpha_s}{r} e^{-m_D r}$$
$$V^{KMS}(r) = \frac{\sigma}{m_D} \left(1 - e^{-m_D r}\right) + V^{entropic} = \frac{\partial}{\partial T} V^{KMS}(r, T)$$

c.f. e.g. H. Satz, EPJC75 (2015) 193 and Guo et.al. arXiv:1806.04376

- Explicit and closed expressions for Im[V] are also obtained
- Gauss-Law result allows to fit the lattice data even in the non-perturbative regime

QUARKONIUM PROPERTIES AT T>0 FROM LATTICE NRQCD AND PNRQCD

Spectral functions from the potential

University of Stavanger

Lattice pNRQCD based in-medium spectra: shift to lower masses and broadening

We find behavior **consistent with lattice NRQCD** extracted spectral functions

- Lattice QCD and EFT are powerful tools to elucidate T>0 quarkonium
- Direct reconstruction of in-medium spectra from lattice NRQCD
 - **Use of multiple Bayesian methods** provide better control over systematics
 - Convergence of **melting T's** from different methods and groups
 - Determination of **negative in-medium mass shifts** consistent with pNRQCD
- Extracting the nonperturbative pNRQCD T>0 static interquark potential
 - Exploring a **Pade based** extraction of the in-medium heavy quark potential
 - Solution Close to first determination of complex V(R) on lattices with realistic m_{π}
 - Lattice vetted Gauss-law parametrization with m_D single T dep. parameter

Grazie per l'attenzione - Thank you for your attention

Mass splittings at T=0

University of Stavanger

With T>0 spectra goal, no T=0 specific NRQCD improvements: Accuracy?

6.9

6.9

6.9

7

7

ß

NROCD

7.1

NRQCD

7.1

charmonium n=8 T=0

7.1

PDG =====

7.2

7.2

7.2

7.3

7.3

7.3

Spin weighted difference between S- and P-wave (c.f. potential model: dep. only on central pot.)

P-wave ${}^{1}P_{1} {}^{3}P_{2}$ splitting (c.f. potential model: spin-orbit coupling)

Max 35MeV deviation. (HFS: NRQCD O(v^6) and O($\alpha_s v^4$))

Reasonable agreement but no competition with high-prec. T=0 NRQCD

S-wave splitting (c.f. potential model: HFS)

Perform mock data analysis with resummed perturbative Wilson correlators (HTL)

At N_{τ} =12, errors of dD/D=10⁻² detrimental to Im[V] but Re[V] well reconstructed

 V_{eff} =-log[W_i/W_{i+1}]: large spectral widths

HTL correlators: Y.Burnier, A.R. PRD87 (2013) 114019

ALEXANDER ROTHKOPF - UIS

13th International Workshop on Heavy Quarkonium – 2019/05/14 – Torino – Italy

QUARKONIUM PROPERTIES AT T>0 FROM LATTICE NRQCD AND PNRQCD

Information content at T=0

- Offer alternative interpretation of correlator: two peaks and a box. Fits correlator χ²/N_τ ≈1
- After subtracting two peaks, only small # of relevant points remain.

How to improve reconstructions?

Towards the continuum: no significant improvement of bound state reconstruction

University

of Stavanger

With e.g. anisotropic lattices, the continuum will be better under control

Progress needs new ideas: e.g. full QCD multilevel algorithm.

Three methods: BR (colored), smooth BR (gray solid) & MEM (gray dashed)

At T<185MeV: all methods show remnant structure (threshold enhancement?)

For T=185MeV: only original BR shows peak (amplitude higher than next structure)

For T>185MeV: lowest peak in original BR smaller than next, most likely ringing

QUARKONIUM PROPERTIES AT T>0 FROM LATTICE NRQCD AND PNRQCD

Spectral functions from the potential

Correlator ratio approximated from the pNRQCD spectral function

University

of Stavanger

- Continuum corrected pNRQCD spectral functions: shift to lower m and broadening
- Translated into correlator ratios: qualitatively consistent with lattice NRQCD