PNRQCD FACTORIZATION OF ELECTROMAGNETIC QUARKONIUM PRODUCTION

HEE SOK CHUNG TECHNICAL UNIVERSITY OF MUNICH

In collaboration with Nora Brambilla, Daniel Müller, and Antonio Vairo (TUM)

The 13th International Workshop on Heavy Quarkonium 13-17 May 2019, Turin

OUTLINE

- Exclusive electromagnetic production of quarkonia and precision tests of nonrelativistic EFTs
- Relativistic corrections and quarkonium Fock states
- Calculation of NRQCD LDMEs in pNRQCD
- Improved prediction of $e^+e^- \rightarrow \chi_{cJ} + \gamma$ cross section

EM QUARKONIUM PRODUCTION

- Exclusive electromagnetic production provide good tests of nonrelativistic EFT description of quarkonia.
 - Same long-distance matrix elements (LDMEs) appear in cross section and in electromagnetic decays.
 - Have been measured in lepton collider experiments, experimental precision will continue to improve.
- Improving theoretical precision requires not only the calculation of short-distance coefficients to higher orders, but also the inclusion of LDMEs of higher orders in v.

EM QUARKONIUM PRODUCTION

LDMEs beyond leading order in v include operators that probe the color-octet Fock states of quarkonia.

 $|H\rangle = O(1)|Q\bar{Q}\rangle + O(v)|Q\bar{Q}g\rangle + O(v^2)|Q\bar{Q}gg\rangle + \cdots$

- Hence, precision studies of EM quarkonium processes can probe color octet production of quarkonia.
- Generally, LDMEs beyond leading order in v are not well determined.
- In potential NRQCD, LDMEs simplify into wave functions and universal gluonic correlators, which can be computed in potential models and Lattice QCD.

EM PRODUCTION OF χ_{cJ}

- > The process $e^+e^- \rightarrow \chi_{cJ} + \gamma$ have been proposed to be measured in lepton colliders.
 - LO in α_s and v: **HSC**, J. Lee, C. Yu, PRD78 (2008) 074022
 - NLO QCD correction at LO in v

W.-L. Sang and Y.-Q. Chen, PRD81 (2010) 034028
D. Li, Z.-G. He, K.-T. Chao, PRD80 (2009) 114014- Partial order- v^2 and order- $a_s v^2$ corrections
Y.-J. Li, G.-Z. Xu, K.-Y. Liu, Y.-J. Zhang, JHEP01 (2014) 022
K.-T. Chao, Z.-G. He, D. Li, C. Meng, arXiv:1310.8597
G.-Z. Xu, Y.-J. Li, K.-Y. Liu, Y.-J. Zhang, JHEP10 (2014) 71- Complete order- v^2 correction at LO in a_s including color-
octet productionBrambilla, Chen, Jia, Shtabovenko, Vairo,
PRD97 (2018) 096001

The cross section for χ_{c1} have been measured by Belle.

NRQCD MATRIX ELEMENTS

• Up to relative order v^2 accuracy,

$$\sigma = \frac{F_1({}^3P_J)}{m^4} \langle \operatorname{vac} | \mathcal{O}_1^{\chi_{cJ}}({}^3P_J) | \operatorname{vac} \rangle + \frac{G_1({}^3P_J)}{m^6} \langle \operatorname{vac} | \mathcal{P}_1^{\chi_{cJ}}({}^3P_J) | \operatorname{vac} \rangle + \frac{T_8({}^3P_J)}{m^5} \langle \operatorname{vac} | \mathcal{T}_8^{\chi_{cJ}}({}^3P_J) | \operatorname{vac} \rangle$$

Brambilla, Chen, Jia, Shtabovenko, Vairo, PRD97 (2018) 096001
At leading order in v, one LDME contributes to the cross section. For J=0,

$$\langle \operatorname{vac} | \mathcal{O}_{1}^{\chi_{c0}}({}^{3}P_{0}) | \operatorname{vac} \rangle = \frac{1}{3} \langle \operatorname{vac} | \psi^{\dagger}(-\frac{i}{2}\overleftrightarrow{D} \cdot \boldsymbol{\sigma}) \chi | \chi_{c0} \rangle \langle \chi_{c0} | \chi^{\dagger}(-\frac{i}{2}\overleftrightarrow{D} \cdot \boldsymbol{\sigma}) \psi | \operatorname{vac} \rangle$$

$$\overset{3}{\longrightarrow} H^{1} P'(0) |^{2}$$

This LDME is known at leading order in v as $\frac{\sigma}{2\pi}N_c|R'(0)|^2$.

NRQCD MATRIX ELEMENTS

At relative order v^2 , two more LDMEs appear. For J=0, $\langle \operatorname{vac} | \mathcal{P}_1^{\chi_{c0}}({}^{3}P_0) | \operatorname{vac} \rangle = \frac{1}{6} \langle \operatorname{vac} | \psi^{\dagger}(-\frac{i}{2}\overleftrightarrow{D} \cdot \sigma)(-\frac{i}{2}\overleftrightarrow{D})^2 \chi | \chi_{c0} \rangle \langle \chi_{c0} | \chi^{\dagger}(-\frac{i}{2}\overleftrightarrow{D} \cdot \sigma) \psi | \operatorname{vac} \rangle + \operatorname{c.c.}$ $\langle \operatorname{vac} | \mathcal{T}_8^{\chi_{c0}}({}^{3}P_0) | \operatorname{vac} \rangle = -\frac{1}{3} \langle \operatorname{vac} | \psi^{\dagger}(igE \cdot \sigma) \chi | \chi_{c0} \rangle \langle \chi_{c0} | \chi^{\dagger}(-\frac{i}{2}\overleftrightarrow{D} \cdot \sigma) \psi | \operatorname{vac} \rangle + \operatorname{c.c.}$ Brambilla, Chen, Jia, Shtabovenko, Vairo,

The LDME $\langle vac | \mathcal{T}_8^{\chi_{c0}}({}^3P_0) | vac \rangle$ receives contribution from the $|Q\bar{Q}g\rangle$ Fock state.

PRD97 (2018) 096001

Therefore calculation of this **color-octet** LDME requires knowledge of the $|Q\bar{Q}g\rangle$ Fock state.

NRQCD MATRIX ELEMENTS

- Computation of LDMEs in pNRQCD beyond LO in v requires calculation of corrections to the quarkonium state, which include the color octet Fock states.
- In general, this can be done as a formal expansion in 1/m. NRQCD Hamiltonian :

$$\begin{split} H &= \int d^3x \, \frac{1}{2} (\boldsymbol{E}^a \cdot \boldsymbol{E}^a + \boldsymbol{B}^a \cdot \boldsymbol{B}^a) \\ &+ \frac{1}{m} \bigg[-\frac{1}{2} \int d^3x \, \psi^{\dagger} (\boldsymbol{D}^2 + gc_F \boldsymbol{\sigma} \cdot \boldsymbol{B}) \psi + \frac{1}{2} \int d^3x \, \chi^{\dagger} (\boldsymbol{D}^2 + gc_F \boldsymbol{\sigma} \cdot \boldsymbol{B}) \chi \bigg] \\ &+ O(1/m^2) \end{split}$$
Brambilla, Pineda, Soto, Vairo, PRD63 (2001) 014023

Pineda and Vairo, PRD63 (2001) 054007

QM PERTURBATION THEORY IN NRQCD

- Corrections to the quarkonium state can be computed using the corrections to the eigenstates of the leadingorder Hamiltonian.
 Brambilla, Pineda, Soto, Vairo, PRD63 (2001) 014023
- Leading-order Hamiltonian : $H^{(0)} = \int d^3x \frac{1}{2} (\mathbf{E}^a \cdot \mathbf{E}^a + \mathbf{B}^a \cdot \mathbf{B}^a)$
- ► Eigenstates : |n⟩ ≡ |n; x₁, x₂⟩ encode the gluon content at heavy quark and antiquark positions x₁ and x₂., with eigenenergies E_n ≡ E_n(x₁, x₂), and |<u>n</u>⟩ ≡ ψ[†](x₁)χ(x₂)|n⟩
- Perturbation: $\frac{1}{2m}\int d^3x \,\psi^{\dagger} (\mathbf{D}^2 + gc_F \boldsymbol{\sigma} \cdot \boldsymbol{B})\psi + \text{c.c.}$

Contributes to $|QQg\rangle$ Fock state through orbital angular momentum flip

Contributes to $|QQg\rangle$ Fock state through spin-flip interaction

QM PERTURBATION THEORY IN NRQCD

First order correction to the eigenstate (spin-independent part) Brambilla, Pineda, Soto, Vairo, PRD63 (2001) 014023 $|\underline{n}\rangle^{(1)} = -\sum_{k\neq n} |\underline{k}\rangle^{(0)} \left[\frac{(0)\langle k|g\boldsymbol{E}_{1}|n\rangle^{(0)}}{(E_{n}^{(0)} - E_{k}^{(0)})^{2}} \cdot \overleftarrow{\nabla}_{1} - \frac{1}{2} \frac{(0)\langle k|[\boldsymbol{D}_{1}\cdot,g\boldsymbol{E}_{1}]|n\rangle^{(0)}}{(E_{n}^{(0)} - E_{k}^{(0)})^{2}} \right]$ $+2\left(\boldsymbol{\nabla}_{1}E_{n}^{(0)}\right)\cdot\frac{{}^{(0)}\langle k|g\boldsymbol{E}_{1}|n\rangle^{(0)}}{(E_{n}^{(0)}-E_{k}^{(0)})^{3}}+\sum_{i\neq n}\frac{{}^{(0)}\langle k|g\boldsymbol{E}_{1}|j\rangle^{(0)}\cdot{}^{(0)}\langle j|g\boldsymbol{E}_{1}|n\rangle^{(0)}}{(E_{n}^{(0)}-E_{k}^{(0)})^{2}(E_{n}^{(0)}-E_{i}^{(0)})}\right]$ $+\sum_{k\neq n} |\underline{k}\rangle^{(0)} \left[\frac{(0)\langle k|g \boldsymbol{E}_{2}^{T}|n\rangle^{(0)}}{(E_{n}^{(0)} - E_{k}^{(0)})^{2}} \cdot \overleftarrow{\boldsymbol{\nabla}}_{2} - \frac{1}{2} \frac{(0)\langle k|[\boldsymbol{D}_{c2}\cdot, g \boldsymbol{E}_{2}^{T}]|n\rangle^{(0)}}{(E_{n}^{(0)} - E_{k}^{(0)})^{2}} \right]$ $+2\left(\boldsymbol{\nabla}_{2}E_{n}^{(0)}\right)\cdot\frac{{}^{(0)}\langle k|g\boldsymbol{E}_{2}^{T}|n\rangle^{(0)}}{(E_{n}^{(0)}-E_{L}^{(0)})^{3}}+\sum_{i\neq n}\frac{{}^{(0)}\langle k|g\boldsymbol{E}_{2}^{T}|j\rangle^{(0)}\cdot{}^{(0)}\langle j|g\boldsymbol{E}_{2}^{T}|n\rangle^{(0)}}{(E_{n}^{(0)}-E_{L}^{(0)})^{2}(E_{n}^{(0)}-E_{j}^{(0)})}\right]$

POTENTIAL NRQCD

• We work in the strong-coupling regime where $mv \ge \Lambda_{\rm QCD} \gg mv^2$, and integrate out scales above mv^2 .

The weak-coupling regime ($mv \gg mv^2 \gtrsim \Lambda_{QCD}$) leads to a different version of pNRQCD, which is appropriate for systems with small radii such as the Y.

• The degrees of freedom are color-singlet fields $S(\mathbf{r},\mathbf{R},t)$ that depend on the relative coordinate $\mathbf{r}=\mathbf{x}_1-\mathbf{x}_2$ and the center-of momentum coordinate $\mathbf{R}=(\mathbf{x}_1+\mathbf{x}_2)/2$ of the $Q\bar{Q}$.

$$\mathcal{L}_{\text{pNRQCD}} = \text{tr}[S^{\dagger}(i\partial_0 - h)S]$$

The pNRQCD Hamiltonian h is found by matching pNRQCD to NRQCD. Matching condition :

 $h(\boldsymbol{x}_1, \boldsymbol{x}_2; \boldsymbol{\nabla}_1, \boldsymbol{\nabla}_2) = E_0(\boldsymbol{x}_1, \boldsymbol{x}_2; \boldsymbol{\nabla}_1, \boldsymbol{\nabla}_2) \longleftarrow \begin{array}{l} \text{Energy of the ground} \\ \text{state } |\underline{0}; \boldsymbol{x}_1, \boldsymbol{x}_2 \rangle \end{array}$

Pineda and Soto, NPB Proc. Suppl. 64 (1998) 428 Brambilla, Pineda, Soto, Vairo, NPB566 (2000) 275

POTENTIAL NRQCD

- At leading order in v, we obtain a Schrödinger-like picture of quark and antiquark interacting through a potential.
- Eigenstates $|njls\rangle$ of the pNRQCD Hamiltonian with principal quantum number n, total, orbital, and spin angular momentum quantum numbers j, l, s give the wave functions $\langle r|njls\rangle$, which diagonalize the real part of the Hamiltonian with eigenvalues given by the binding energy.
- The wave functions can be found by solving Schrödingerlike equations with QCD potentials.

Pineda and Soto, NPB Proc. Suppl. 64 (1998) 428 Brambilla, Pineda, Soto, Vairo, NPB566 (2000) 275

- Now NRQCD LDMEs can be computed in terms of pNRQCD matrix elements. For an NRQCD operator \mathcal{O} with a quarkonium state $|H\rangle$ with momentum P = 0, $\langle H|\mathcal{O}|H\rangle = \frac{1}{\langle P = 0|P = 0 \rangle} \int d^3r d^3r d^3R d^3R' \langle P = 0|R\rangle \langle njls|r\rangle$ $\times \langle \underline{0}; \boldsymbol{x}_1, \boldsymbol{x}_2| \int d^3\xi \mathcal{O}(\xi)|\underline{0}; \boldsymbol{x}'_1, \boldsymbol{x}'_2\rangle$ $\times \langle \boldsymbol{R}'|P = 0\rangle \langle \boldsymbol{r}'|njls\rangle$ Brambilla, Eiras, Pineda, Soto, Vairo, PRD67 (2003) 034018
- Since gluonic excitations are integrated out in pNRQCD, only the ground state $|\underline{0}; x_1, x_2\rangle$ appears.

• The matrix element $\langle \underline{0}; \boldsymbol{x}_1, \boldsymbol{x}_2 | \int d^3 \xi \mathcal{O}(\xi) | \underline{0}; \boldsymbol{x}_1', \boldsymbol{x}_2' \rangle$ yields, for the leading order LDME at leading order in 1/m,

In the NRQCD LDME, derivatives act on the wave functions and yield first derivative of the *P*-wave wave function at the origin.

Brambilla, Eiras, Pineda, Soto, Vairo, PRD67 (2003) 034018

The color-octet LDME yields

$$\sum_{k\neq 0} \left(\nabla_{1} \cdot \frac{\langle 0 \rangle \langle 0 | g \boldsymbol{E}_{1} | k \rangle^{\langle 0 \rangle}}{\langle \boldsymbol{E}_{0}^{(0)} - \boldsymbol{E}_{k}^{(0)} \rangle^{2}} - \nabla_{2} \cdot \frac{\langle 0 \rangle \langle 0 | g \boldsymbol{E}_{2}^{T} | k \rangle^{\langle 0 \rangle}}{\langle \boldsymbol{E}_{0}^{(0)} - \boldsymbol{E}_{k}^{(0)} \rangle^{2}} \right) \langle \underline{k}; \boldsymbol{x}_{1}, \boldsymbol{x}_{2} |$$

$$(1) \langle \underline{0}; \boldsymbol{x}_{1}, \boldsymbol{x}_{2} | \int d^{3} \xi \left[-\frac{1}{3} \chi^{\dagger} (ig \boldsymbol{E} \cdot \boldsymbol{\sigma}) \psi | \text{vac} \rangle \langle \text{vac} | \psi^{\dagger} (-\frac{i}{2} \overleftarrow{\boldsymbol{D}} \cdot \boldsymbol{\sigma}) \chi \right] (\boldsymbol{z}) | \underline{0}; \boldsymbol{x}_{1}', \boldsymbol{x}_{2}' \rangle^{\langle 0 \rangle}$$

$$= -\frac{2}{3} \frac{N_{c}}{3} \nabla_{\boldsymbol{r}} \cdot \boldsymbol{\sigma} \mathcal{E}_{1} \delta^{\langle 3 \rangle}(\boldsymbol{r}) \nabla_{\boldsymbol{r}} \cdot \boldsymbol{\sigma} \delta^{\langle 3 \rangle} (\boldsymbol{x}_{1} - \boldsymbol{x}_{1}') \delta^{\langle 3 \rangle} (\boldsymbol{x}_{2} - \boldsymbol{x}_{2}')$$

For the color-singlet operator at relative order v^2 ,

▶ Results in dimensional regularization (*J*=0,1,2)

$$\langle \operatorname{vac} | \mathcal{O}_{1}^{\chi_{cJ}}({}^{3}P_{J}) | \operatorname{vac} \rangle = \frac{3}{2\pi} N_{c} | R'(0) |^{2} \left[1 + \frac{2}{3} \frac{i\mathcal{E}_{2}}{m} - \frac{1}{9} \left(\frac{\mathcal{E}_{2}}{m} \right)^{2} + O(v^{2}) \right]$$

$$\langle \operatorname{vac} | \mathcal{T}_{8}^{\chi_{cJ}}({}^{3}P_{J}) | \operatorname{vac} \rangle = -\frac{3}{2\pi} N_{c} | R'(0) |^{2} \left(\frac{4}{3} \frac{\mathcal{E}_{1}}{m} + O(v^{3}) \right) \qquad \mathsf{NEW}$$

$$\langle \operatorname{vac} | \mathcal{P}_{1}^{\chi_{cJ}}({}^{3}P_{J}) | \operatorname{vac} \rangle = \frac{3}{2\pi} N_{c} | R'(0) |^{2} \left(m E_{B} - \frac{2}{3} \frac{\mathcal{E}_{1}}{m} + O(v^{3}) \right) \qquad \mathsf{NEW}$$

$$Binding energy$$

In $\langle vac | \mathcal{P}_1^{\chi_{cJ}}({}^{3}P_J) | vac \rangle$, the pNRQCD Hamiltonian was used to rewrite higher derivatives of wave function at the origin with the binding energy.

GLUONIC CORRELATORS

- Gluonic correlators are purely gluonic quantities that involve only the scale Λ_{QCD} . $\mathcal{E}_n = \frac{T_F}{N_c} \int_0^\infty dt \, t^n \langle \operatorname{vac} | g \mathbf{E}^{i,a}(t) \Phi_{ab} g \mathbf{E}^{i,b}(0) | \operatorname{vac} \rangle$
- They are universal objects that do not depend on the heavy quark flavor or on specific heavy quarkonium states.
- > Correlators can be computed in Lattice QCD, but we need to convert them to $\overline{\rm MS}$ scheme to obtain LDMEs in $\overline{\rm MS}$.
- Same correlators appear in LDMEs of different quarkonium states; computation of the correlators can greatly simplify determination of LDMEs of many quarkonium states.

- Even though the correlators yet to be measured accurately, we can still estimate the LDMEs using EM decay rates $\Gamma(\chi_{cJ} \rightarrow \gamma \gamma)$ (J=0,2) and potential models.
- Using the Cornell potential to compute the wavefunction at the origin, we obtain

 $\langle \operatorname{vac} | \mathcal{O}_{1}^{\chi_{cJ}}({}^{3}P_{J}) | \operatorname{vac} \rangle = (0.072 \pm 0.036) \, \operatorname{GeV}^{5}$ $\langle \operatorname{vac} | \mathcal{T}_{8}^{\chi_{cJ}}({}^{3}P_{J}) | \operatorname{vac} \rangle = -(0.109 \pm 0.068) \, \operatorname{GeV}^{6}$ $\langle \operatorname{vac} | \mathcal{P}_{1}^{\chi_{cJ}}({}^{3}P_{J}) | \operatorname{vac} \rangle = (0.012 \pm 0.068) \, \operatorname{GeV}^{7}$

Compared to estimates simply based on power counting, the uncertainties reduce mildly.

EM CROSS SECTIONS

> The LDMEs we obtained allow us to make improved prediction of cross sections at $\sqrt{s} = 10.6 \,\text{GeV}$:

$$\sigma(e^+e^- \to \chi_{c0} + \gamma) = 1.3 \pm 0.7 \,\text{fb}$$

$$\sigma(e^+e^- \to \chi_{c1} + \gamma) = 22.2 \pm 4.0 \,\text{fb}$$

$$\sigma(e^+e^- \to \chi_{c2} + \gamma) = 8.0 \pm 1.3 \,\text{fb}$$

The χ_{c1} cross section agrees with recent Belle measurement within uncertainties.

$$\sigma(e^+e^- \to \chi_{c1} + \gamma) = 17.3^{+4.2}_{-3.9} \pm 1.7 \,\text{fb}$$

Belle, PRD98 (2018) 092015

SUMMARY AND OUTLOOK

- Exclusive electromagnetic production of heavy quarkonia provide precision tests of nonrelativistic EFTs, including color octet production of heavy quarkonia.
- Using pNRQCD, we computed X_cJ LDMEs of higher orders in v, that include effect of the color-octet Fock state of the P-wave quarkonia.
- We made improved prediction of $\sigma(e^+e^- \rightarrow \chi_{cJ} + \gamma)$.
- This approach may be useful in understanding the properties of NRQCD LDMEs and the NRQCD color octet mechanism in inclusive hadroproduction.

GLUONIC CORRELATORS

 Gluonic correlators are purely gluonic quantities that do not involve heavy quarks.

$$\mathcal{E}_n = \frac{T_F}{N_c} \int_0^\infty dt \, t^n \langle \operatorname{vac} | g \mathbf{E}^{i,a}(t) \Phi_{ab} g \mathbf{E}^{i,b}(0) | \operatorname{vac} \rangle$$

- In perturbative QCD, the correlators are scaless, and hence, vanish in dimensional regularization.
- \$\mathcal{E}_1\$ and \$\mathcal{E}_2\$ are quadratically and linearly power UV divergent, respectively.
- The correlators can be measured in Lattice QCD.

GREMM-KAPUSTIN RELATION

For any vacuum-to-quarkonium matrix element of an NRQCD operator \mathcal{O} ,

$$E_B \langle H | \mathcal{O} | \text{vac} \rangle = \langle H | [H, \mathcal{O}] | \text{vac} \rangle$$

Binding energy

- ► This leads to the following Gremm-Kapustin relation $\langle \operatorname{vac} | \mathcal{P}_1^{\chi_{cJ}}({}^{3}P_J) | \operatorname{vac} \rangle = m E_B \langle \operatorname{vac} | \mathcal{O}_1^{\chi_{cJ}}({}^{3}P_J) | \operatorname{vac} \rangle - \frac{m}{2} \langle \operatorname{vac} | \mathcal{T}_8^{\chi_{cJ}}({}^{3}P_J) | \operatorname{vac} \rangle$
- The pNRQCD expressions for the LDMEs automatically satisfy the above relation.