

NLO QCD Corrections to Exclusive Quarkonium Electroproduction

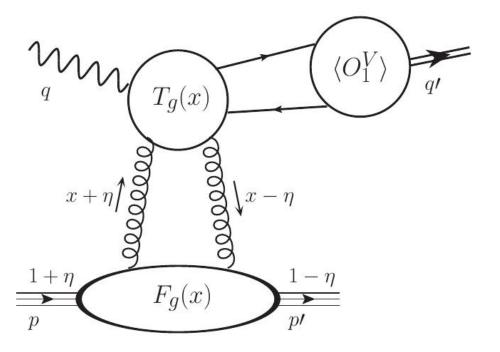
Zi Qiang Chen University of Chinese Academy of Sciences Based on arXiv: 1903.00171

In collaboration with Cong Feng Qiao

OWG 2019

2. Some technical details

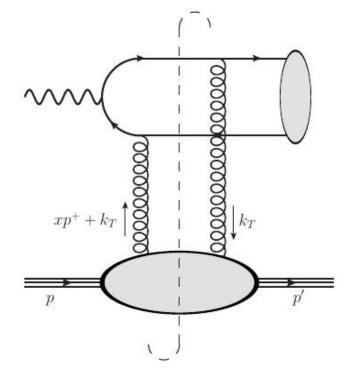
3. Numerical results


2. Some technical details

3. Numerical results

We study the exclusive production of vector quarkonium:

$$\gamma^* p \to V p$$
 , with $V = J/\psi$ or Υ real for photoproduction virtual for electroproduction



Motivations:

- \succ Study low x behaviour of the gluon distribution.
- \blacktriangleright Study pQCD validity in a large range of photon virtuality Q^2 .
- Rich experimental data have been accumulated in HERA.
- For future, many projects are in progress or proposed, like ENC at FAIR, eRHIC at BNL, LHeC at CERN and EIC in China.

 $(x + \eta)\bar{p}^+$

 k_T factorization:

- scaling limit: $s \to \infty, \ Q^2, \ m_V^2$ fixed
- Based on BFKL, resum $\log(1/x)$ term
- amplitude: $\mathcal{M} \propto \frac{\alpha_s(\bar{Q}^2)}{\bar{Q}^4} x g(x, \bar{Q}^2)$

QCD collinear factorization:

- scaling limit: $s
 ightarrow \infty, \; m_V^2/s, \; Q^2/s$ fixed
- concept GPD (like the case of DVCS)
- **amplitude:** $\mathcal{M} \sim \int_{-1}^{1} C(x,\eta) F(x,\eta,t) dx$

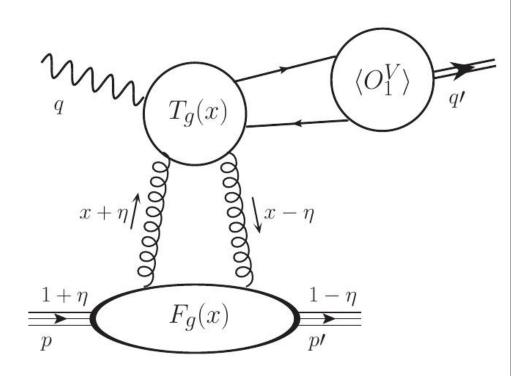
k_{T} factorization:

- The first step was made by Ryskin in 1993^[1]. Some improvements were made in the following years^[2].
- It is still unclear how to perform the full NLO calculation.

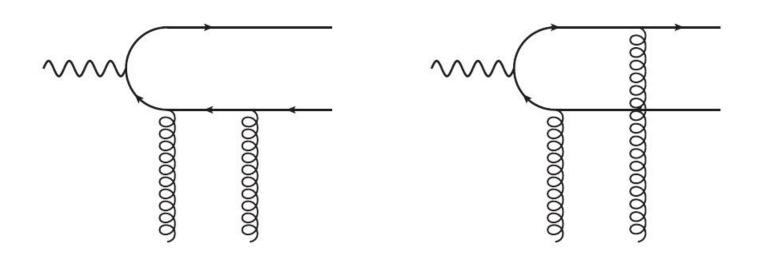
QCD collinear factorization:

- Going from LO to NLO is straightforward.
- NLO calculation for photoproduction were made by two groups^[3,4].
- Perturbative convergence is poor for J/ψ photoproduction.
- We consider the more general electroproduction case, where the photon virtuality can provide an extra hard scale.

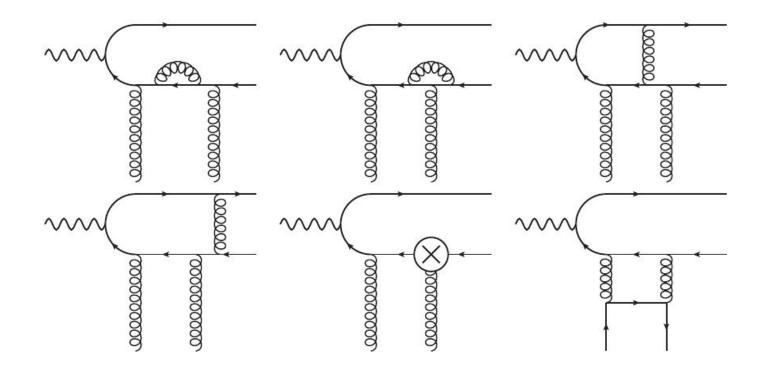
M. G. Ryskin, Z. Phys. C 57, 89 (1993).
 A. D. Martin, C. Nockles, M. G. Ryskin, T. Teubner, Phys. Lett. B 662, 252 (2008).
 D. Yu. Ivanov, A. Schafer, L. Szymanowski, G. Krasnikov, Eur. Phys. J. C 34, 297 (2004); 75, 75(E) (2015).
 S. P. Jones, A. D. Martin, M. G. Ryskin, T. Teubner, J.Phys. G 43, 035002 (2016).


2. Some technical details

3. Numerical results


Factorization assumption :

- Partonic process (hard scale m_c^2, Q^2) $\gamma^*g \rightarrow [c\bar{c}]g$ $\gamma^*q \rightarrow [c\bar{c}]q$
- transition from heavy quark pair to quarkonium state. Described by NRQCD LDMEs.
- parton distribution within nucleon, the GPD here.



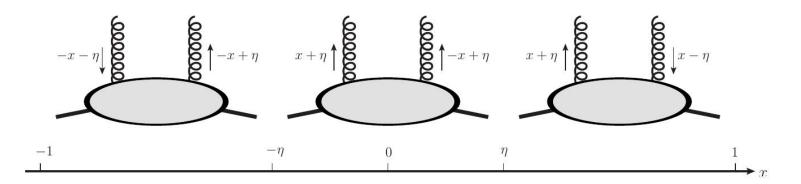
Typical Feynman diagram at LO:

Typical Feynman diagram at NLO:

Singularities:

- UV singularities: removed by renormalization.
- IR singularities: partly cancelled each other, the remaining absorbed into GPD:

$$F^p(x,\eta,\mu_F) = F^p(x,\eta) - \frac{1}{\epsilon} \left[\frac{\alpha_s}{2\pi} \frac{\Gamma(1-\epsilon)}{\Gamma(1-2\epsilon)} \left(\frac{4\pi\mu_R^2}{\mu_F^2} \right)^\epsilon \right] \sum_{p'} \int_{-1}^1 V_{pp'}(x,y,\eta) F^{p'}(y,\eta) dy$$


We obtained finite analytical results for partonic amplitude. By taking limit $Q \rightarrow 0$, the amplitude of quarkonium photoproduction can be reproduced.

Full amplitude is the convolution of partonic amplitude with the GPD:

$$\mathcal{M} \sim \int_{-1}^{1} T^{g}(x,\eta) F_{g}(x,\eta) dx + \int_{-1}^{1} T^{q}(x,\eta) F_{q}(x,\eta) dx$$

- DGLAP region: $|x| > \eta$, ERBL region: $|x| < \eta$
- the imaginary parts of amplitude from DGLAP region

2. Some technical details

3. Numerical analysis

GPD model: initial condition + NLO GPD evolution equation

• Forward Model at
$$\mu_0 = 1$$
 GeV:
 $H^g(x, \eta, \mu_0) = xg(x, \mu_0), \ H^q(x, \eta, \mu_0) = q(x, \mu_0) \text{ for } x > \eta$

• GPD evolution equation:

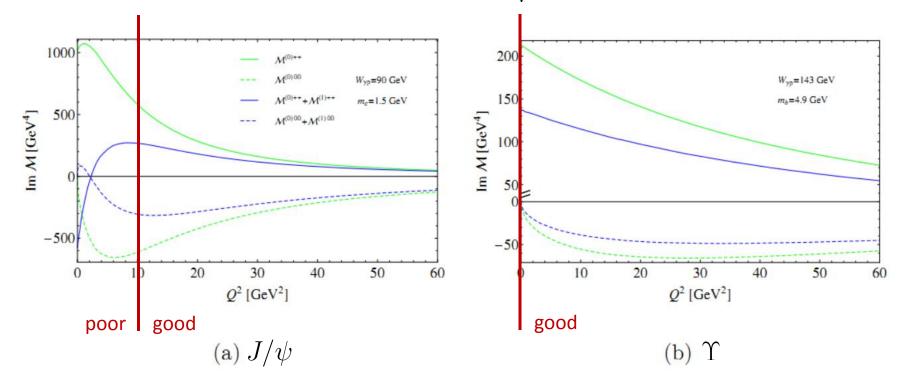
$$\mu \frac{d}{d\mu} \boldsymbol{H}(x,\eta) = \int_{-1}^{1} dx' \boldsymbol{V}(x,x',\eta) \boldsymbol{H}(x',\eta)$$

The skewed effect at initial scale are neglected! But,

By compairing the GPD results from *Forward Model, Shuvaevtransformation approach, FMS Model, Double Distribution Model*, we find: as evolution proceeding, the discrepancy from initial condition shrunk.

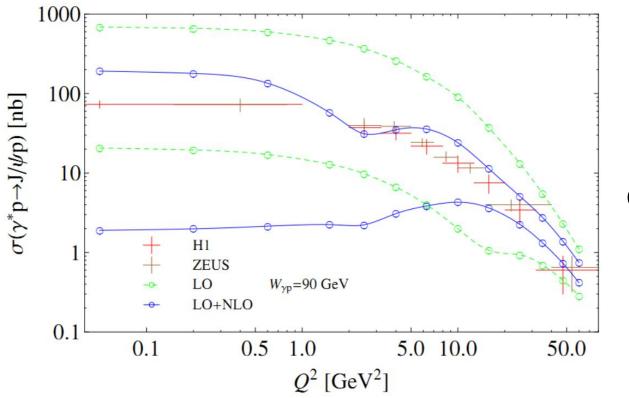
For the real part of amplitude

- Unlike the case in DGLAP region, the properties of GPD at ERBL region are less clear.
- The imaginary parts of amplitude are dominant at high energy. In our case, ${\rm Re}\mathcal{M}/{
 m Im}\mathcal{M}<0.5$.
- The real parts are restored via the derivative dispersion relation:


$$\operatorname{Re}\frac{\mathcal{M}}{s} \approx \operatorname{tan}\left(\frac{\pi}{2}\frac{d}{d\ln s}\right)\operatorname{Im}\frac{\mathcal{M}}{s} \approx \frac{\pi}{2}\frac{d}{d\ln s}\operatorname{Im}\frac{\mathcal{M}}{s}$$

the accuracy is about 1%.

Exhibit perturbative convergence

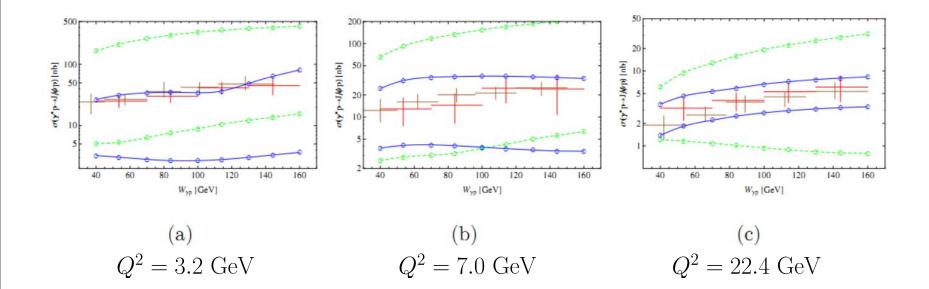

 ${
m Im}{\cal M}$ as function of Q^2 . Energy scale $\mu=\sqrt{m^2+rac{Q^2}{4}}$.

 J/ψ electroproduction at HERA

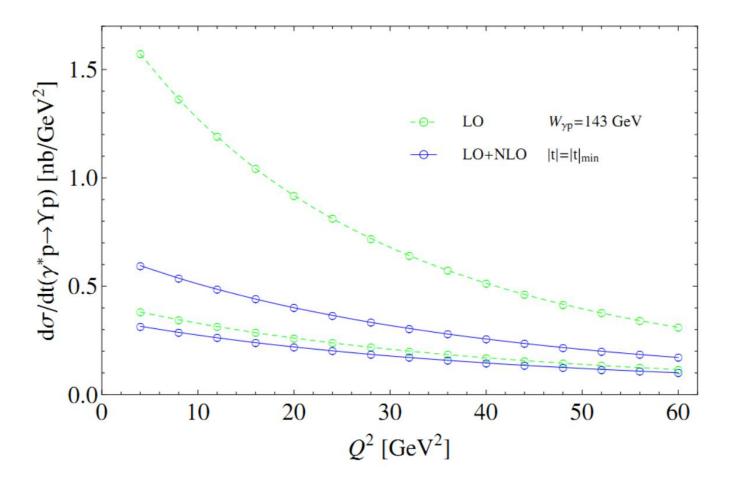
Cross section as function of Q^2 .

Energy scale:

 $\left[\frac{1}{2}\sqrt{m^2+\frac{Q^2}{4}}, 2\sqrt{m^2+\frac{Q^2}{4}}\right]$


Quark mass:

[1.4, 1.6]


J/ψ electroproduction at HERA

Cross section as function of W.

Prediction for Υ electroproduction

2. Some technical details

3. Numerical results

- We calculated analytically the exclusive electroproduction of quarkonium in the NRQCD framework and collinear factorization scheme up to the NLO QCD accuracy.
- For J/ ψ electroproduction, large photon virtuality is required to guarantee the legitimacy of pQCD use.
- At large Q², say Q²>10 GeV², the NLO corrections may greatly reduce the theoretical uncertainty. We find a good agreement with the H1 and ZEUS data.



- At small η, the skewed effect of GPD mainly from the evolution. And the Forward Model is adequate to explain the data.
- In the future, we are expected to get more information on the GPD while confronting to the new experimental data.

Last...

THANKS

