

η_c' hadroproduction at NLO and Its Relevant to ψ' Production

HUA-SHENG SHAO

QUARKONIUM 2019, TORINO 14 MAY 2019

QWG2019, TORINO

- Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?

- Why we are interested in $\eta_{c,b}$ and $h_{c,b}$?
- Test heavy quark spin symmetry Bodwin, Braaten, Lepage (1995)

$$\begin{split} \eta_{c} &\leftrightarrow J/\psi \qquad h_{c} \leftrightarrow \chi_{c} \\ \langle \mathcal{O}^{\eta_{c}}({}^{1}S_{0}^{[1,8]}) \rangle &= \langle \mathcal{O}^{J/\psi}({}^{3}S_{1}^{[1,8]}) \rangle / 3 \quad \langle \mathcal{O}^{h_{c}}({}^{1}S_{0}^{[8]}) \rangle = 3 \langle \mathcal{O}^{\chi_{c0}}({}^{3}S_{1}^{[8]}) \rangle \\ \langle \mathcal{O}^{\eta_{c}}({}^{1}P_{1}^{[8]}) \rangle &= 3 \langle \mathcal{O}^{J/\psi}({}^{3}P_{0}^{[8]}) \rangle \qquad \langle \mathcal{O}^{h_{c}}({}^{1}P_{1}^{[1]}) \rangle = 3 \langle \mathcal{O}^{\chi_{c0}}({}^{3}P_{0}^{[1]}) \rangle \\ \langle \mathcal{O}^{\eta_{c}}({}^{3}S_{1}^{[8]}) \rangle &= \langle \mathcal{O}^{J/\psi}({}^{1}S_{0}^{[8]}) \rangle \end{split}$$

Power counting	η_c,η_b	$J/\psi, \psi(2S), \Upsilon$	h_c, h_b	χ_{cJ}, χ_{bJ}
v^3	${}^{1}\!S_{0}^{[1]}$	${}^{3}\!S_{1}^{[1]}$	_	_
v^5	_	_	${}^{1}\!P_{1}^{[1]}, {}^{1}\!S_{0}^{[8]}$	${}^{3}\!P_{J}^{[1]}, {}^{3}\!S_{1}^{[8]}$
v^7	${}^{1}\!S_{0}^{[8]}, {}^{3}\!S_{1}^{[8]}, {}^{1}\!P_{1}^{[8]}$	${}^{1}\!S_{0}^{[8]}, {}^{3}\!S_{1}^{[8]}, {}^{3}\!P_{J}^{[8]}$	_	_

- HQSS basically plays a central role in quarkonium physics
- In quarkonium production, we always assumed

$$\langle \mathcal{O}^{\chi_{QJ}}({}^{3}P_{J}^{[1]})\rangle = (2J+1)\langle \mathcal{O}^{\chi_{Q0}}({}^{3}P_{0}^{[1]})\rangle \\ \langle \mathcal{O}^{\chi_{QJ}}({}^{3}S_{1}^{[8]})\rangle = (2J+1)\langle \mathcal{O}^{\chi_{Q0}}({}^{3}S_{1}^{[8]})\rangle \\ \langle \mathcal{O}^{\psi}({}^{3}P_{J}^{[8]})\rangle = (2J+1)\langle \mathcal{O}^{\psi}({}^{3}P_{0}^{[8]})\rangle$$

 In quarkonium polarisation, it is assumed no spin-flip for electric (like) dipole transitions

$$\hat{S}_{z} \left| c\bar{c} ({}^{3}S_{1}^{[8]}) \right\rangle = \hat{S}_{z} \left| \psi \right\rangle$$
 two EI transitions
$$\hat{S}_{z} \left| c\bar{c} ({}^{3}P_{J}^{[8]}) \right\rangle = \hat{S}_{z} \left| \psi \right\rangle$$
 an EI transition

 NRQCD velocity scaling rule tells us the above equations are violated only by higher-order in v²

MOTIVATION

HEAVY QUARKONIUM PHYSICS

hep-ph/0412158

Authors: *QWG & Topic conveners*: N. Brambilla⁴², M. Krämer¹⁶, R. Mussa²⁶, A. Vairo^{42,36}; *Topic Conveners*: G. Bali¹⁹, G. T. Bodwin¹, E. Braaten⁴⁵, E. Eichten¹⁷, S. Eidelman⁶, S. Godfrey⁷, A. Hoang⁴³, M. Jamin⁴⁴, D. Kharzeev⁵, M. P. Lombardo²⁴, C. Lourenço¹¹, A. B. Meyer²⁰, V. Papadimitriou^{17,58}, C. Patrignani²⁵, M. Rosati²⁸, M. A. Sanchis-Lozano⁶², H. Satz⁴, J. Soto²; *Contributors*: D. Z. Besson³⁰, D. Bettoni²³, A. Böhrer⁵⁵, S. Boogert³⁷, C.-H. Chang^{9,29}, P. Cooper¹⁷, P. Crochet¹³, S. Datta⁴, C. Davies¹⁹, A. Deandrea³⁹, R. Faustov⁵³, T. Ferguson⁸, R. Galik¹⁴, F. A. Harris²¹, O. Iouchtchenko¹¹, O. Kaczmarek⁴, F. Karsch⁴, M. Kienzle¹⁸, V. V. Kiselev⁵⁴, S. R. Klein³³, P. Kroll⁶⁴, A. Kronfeld¹⁷, Y.-P. Kuang⁶¹, V. Laporta³, J. Lee³², A. Leibovich⁴⁹, J. P. Ma²⁹, P. Mackenzie¹⁷, L. Maiani⁵⁰, M. L. Mangano¹¹, A. Meyer¹⁷, X. H. Mo²², C. Morningstar⁸, A. Nairz¹¹, J. Napolitano⁵¹, S. Olsen²¹, A. Penin³¹, P. Petreczky⁵², F. Piccinini⁴⁷, A. Pineda², A. D. Polosa^{3,10}, L. Ramello⁴⁸, R. Rapp⁵⁷, J. -M. Richard¹², V. Riquer¹¹, S. Ricciardi³⁸, E. Robutti²⁵, O. Schneider³⁴, E. Scomparin⁶⁰, J. Simone¹⁷, T. Skwarnicki⁵⁶ G. Stancari^{17,23}, I. W. Stewart⁴¹, Yu. Sumino⁵⁹, T. Teubner³⁵, J. Tseng⁴⁶, R. Vogt^{15,33}, P. Wang²², B. Yabsley⁶³, C. Z. Yuan²², F. Zantow⁴, Z. G. Zhao⁴⁰, A. Zieminski²⁷

- It was suggested to look at η_c in 2004
- It was overlooked since then because of "difficult to measure"

 $\eta_c \to \gamma \gamma$

overwhelmed by background

variation has also been observed in a ratio of production rates of P-wave states, namely the χ_{c1} to χ_{c2} ratio. More precise measurements of these and other ratios would be valuable. Of particular importance would be measurements of ratios of production rates of spin-singlet and spin-triplet quarkonium states, such as the η_c to J/ψ ratio. The absence of clean signatures for spin-singlet quarkonium states makes such measurements difficult.

- It was proposed to use $\eta_c
ightarrow p \overline{p}$ in 2012

Barsuk, He, Kou, Viaud (2012)

• In 2014, LHCb released a first measurement Aaij et al., (2014)

- The LHCb measurement inspires theoretical studies Butenschoen, He, Kniehl, (2014); Han et al., (2014); Zhang et al., (2014)
- Global fit + HQSS greatly overshoot the LHCb data Butenschoen, He, Kniehl, (2014)

Actually, the constrain is more powerful under HQSS

Butenschoen, He, Kniehl, (2014)

- The measurement provides additional constraint on the LDME of J/psi based on HQSS
- Interestingly, the only relevant channels are

QWG2019, TORINO

- Another upper limit without ignoring colour-singlet $\langle \mathcal{O}^{\eta_c}({}^3S_1^{[8]}) \rangle \lesssim 5 \times 10^{-3} \text{ GeV}^3$ Lansberg (1903.09185)
- It challenges the simple interpretation of " $\langle O^{J/\psi}({}^{1}S_{0}^{[8]}) \rangle$ dominance" in order to explain the unpolarised data
- How about the excited state η_c' ?
 - Is $\eta'_c
 ightarrow p \bar{p}$ still feasible ? The channel is just seen !

$\Gamma(\eta_c(2S))$	$\rightarrow p\bar{p}$)/ Γ_{t}	otal				PDG 2018
VALUE	EVTS		DOCUMENT ID		TECN	COMMENT
seen	106		1 AAIJ	2017AD	LHCB	$p \ p \to B^+ X \to p \overline{p} K^+ X$
1 AAIJ 201 ±0.0033 ±0	17AD repo).0009.	rt a 6.4 standard	deviation signal, with	h B($B^+ \rightarrow \eta$	$c(2S)K^+ \rightarrow p$	$\overline{p}K^+$)/B($B^+ \rightarrow J/\psi K^+ \rightarrow p\overline{p}K^+$) = 0.0158
Reference	es:					

The possible decay channels at the LHCb

• Like other (inclusive) quarkonium states, it is necessary to include NLO QCD at large pT

Giant K factor

Reduce scale uncertainty

• Using different $\langle \mathcal{O}^{\psi'}({}^{1}S_{0}^{[8]}) \rangle$ extractions Reminding HQSS: $\langle \mathcal{O}^{\psi'}({}^{1}S_{0}^{[8]}) \rangle = \langle \mathcal{O}^{\eta'_{c}}({}^{3}S_{1}^{[8]}) \rangle$

Shao et al. (2014)Gong et al. (2013) Bodwin et al. (2015)

	Shao et al. [21]	Gong et al. [22]	Bodwin et al. [23]
$\langle O^{\eta'_c}({}^{3}S_{1}^{[8]})\rangle$ [10 ⁻² GeV ³]	[0, 3.82]	[-0.881, 0.857]	[2.35, 3.93]

• As anticipated, the predicted yields strongly depend on $\langle \mathcal{O}^{\eta'_c}({}^3S_1^{[8]})\rangle$

Potential power to differentiate different extractions

Lansberg, HSS, Zhang (2017)

As anticipated, the predicted yields strongly depend on ⟨O^{η'_c}(³S₁^[8])⟩
 I would favor a larger p_T but less precise

measurement than a smaller p_T and precise one

I. Like IS state, by assuming the observed data described by CS alone

2. Use CO to saturate the data to draw a conservative upper limit

FINAL WORDS

- NRQCD predicts HQSS should be hold also in the colour-octet sector, which definitely should be tested by experiments.
- η_c and η'_c provide very useful information of CO LDMEs of J/ψ and ψ' , while the measurement of the former by the LHCb already gives us many surprises.
- Our study shows that there are already enough statistics to measure η'_c at the LHCb.
- To our LHCb colleagues, please also open a specific trigger window for η'_c , like what you did for η_c in run I and run II.

I NOW WELCOME YOUR COMMENTS

QWG2019, TORINO