Υ and ψ decays as probes of solutions to the $R(D^{(*)})$ puzzle

Daniel Aloni QWG 2019 - Torino

In collaboration with Aielet Efrati, Yuval Grossman, Yossi Nir JHEP 1706 (2017) 019, Arxiv: 1702.07356

Daniel Aloni, Weizmann institute of Science

Torino derives its name from a Celtic word **tau**, meaning mountain.....

Torino derives its name from a Celtic word **tau**, meaning mountain.....

Today: Υ to tau tau!

 $\equiv \frac{BR(B \to D^{(*)} \tau \bar{\nu})}{BR(B \to D^{(*)} \ell \bar{\nu})} \quad , \quad \ell = \mu, e$ (*)• R(

•
$$\mathrm{R}(\mathrm{D}^{(*)}) \equiv \frac{BR(B \to D^{(*)} \tau \bar{\nu})}{BR(B \to D^{(*)} \ell \bar{\nu})}$$
, $\ell = \mu, e$

- At the quark level: $b
ightarrow c au(\ell) ar{
u}$

• SM: $b
ightarrow c au(\ell) ar{
u}$ transition is mediated by the W boson

The SM prediction

- $R^{SM}(D) = 0.299 \pm 0.003$, $R^{SM}(D^*) = 0.258 \pm 0.005^*$
- How do we know that so well?
 - → Semileptonic
 - Unknown parameters cancel in the ratio
 - → In the heavy quark limit $m_b, m_c \rightarrow \infty$, we have only phase space suppression
 - → In the degenerate lepton masses limit $m_{ au} o m_{\ell}$, R(D)=R(D*)=1
- We know to expand systematically around this small parameters

* HFLAV Average

Daniel Aloni, Weizmann institute of Science

Measurement

• $\sim 4\sigma$ deviation from SM prediction

Conclusion / Preliminary $R(D^{(*)})$ averages

- Most precise measurement of R(D) and R(D*) to date
- First **R(D)** measurement performed with a semileptonic tag
- Results compatible with SM expectation within 1.20
- R(D) R(D*) Belle average is now within 20 of the SM prediction
- R(D) R(D*) exp. world average tension with SM expectation decreases from 3.80 to 3.10

22/03/2019

Giacomo Caria

This is puzzling

If new physics

• Central values are enhanced by 30% compared to SM \rightarrow NP amplitude 15%-30% compared to SM

• New physics is non-universal and breaks lepton flavor symmetry

• New physics is probably heavy → Can work with an effective theory

EFT – complete basis

- Demand $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$ invariance
- Assume no RH neutrinos, i.e. $B \to D au ar{
 u}_L$
- A complete set for $b\to c\tau\bar\nu$ transitions contains only four operators
 - $(\bar{e}L)(\bar{u}Q)$
 - $\ \ \, (\bar{e}\sigma^{\mu\nu}L)(\bar{u}\sigma_{\mu\nu}Q)$
 - $\ \ \, \cdot \ \, (\bar{L}\gamma^{\mu}\tau_{a}L)(\bar{Q}\gamma^{\mu}\tau_{a}Q)$
 - $\rightarrow (\bar{Q}d)(\bar{e}L)$

EFT – complete basis

- Demand $G_{SM} = SU(3)_C \times SU(2)_L \times U(1)_Y$ invariance
- Assume no RH neutrinos, *i.e.* $B \rightarrow D \tau \bar{\nu}_L$
- A complete set for $b \to c\tau\bar{\nu}$ transitions contains only four operators • $(\bar{e}L)(\bar{u}Q)$ • $(\bar{e}\sigma^{\mu\nu}L)(\bar{u}\sigma_{\mu\nu}Q)$

 - $\rightarrow (\bar{Q}d)(\bar{e}L)$

EFT – unavoidable NC

- All four operators contain also neutral currents (NC)
 - → For instance $(\bar{e}L)(\bar{u}Q) = \overbrace{(\bar{e}_R\nu_L)(\bar{u}_Rd_L)}^{CC} - \overbrace{(\bar{e}_Re_L)(\bar{u}_Ru_L)}^{NC}$
- We looked for observables sensitive to those NC

- Neutral currents unavoidably modify $b\bar{b}$ and/or $c\bar{c}
ightarrow auar{ au}$

EFT – NC observables

• D. A. Faroughy, A. Greljo, J. F. Kamenik * – High P_T distribution of $\tau \bar{\tau}$ signature at the LHC

- We looked on lepton non universality of Υ and ψ decays

$$R_{\tau/\ell}^{V} \equiv \frac{\Gamma(V \to \tau^{+} \tau^{-})}{\Gamma(V \to \ell^{+} \ell^{-})}, \quad (V = \Upsilon, \psi(2s); \ \ell = e, \mu)$$

* $\Upsilon = b\bar{b}$ bound state * $\psi = c\bar{c}$ bound state

* D. A. Fraoughy, A. Greljo, J. F. Kamenik, Phys. Lett. B764 (2017) 126-134

Vector meson decay - SM

• Within the SM

$$\begin{split} R_{\tau/\ell}^V \simeq \left[1+\frac{2m_\tau^2}{m_V^2}\right] \left[1-\frac{4m_\tau^2}{m_V^2}\right]^{1/2} = 1-\mathcal{O}\left(\frac{m_\tau^4}{m_V^4}\right) \\ & \cdot \\ \end{split} \\ \text{where } V = \Upsilon, \ \psi \end{split}$$

• Dominantly QED – 1 photon mediated

$$R_{\tau/\ell}^V$$
 - Prediction vs. measurement

$$R_{\tau/\ell}^V$$
 - Prediction vs. measurement

The need for assumptions

- There are four independent CC operators
- There are eight independent NC operators
- CC + Gauge invariance NC
 - Not enough measurements to fix the values of the Wilson coefficients of the four CC operators
 - → No information on the other four NC operators

EFT from simplified models

- Recall that

 - Central value is ~ 30% enhanced compared to prediction
- Huge enhancement of tree-level suggests new bosons which also modify $b \to c \tau \bar{\nu}$ at tree-level
- There are eight different possible mediators $W'_{\mu} \sim (1,3)_0, U_{\mu} \sim (3,1)_{2/3}, X_{\mu} \sim (3,3)_{2/3}, S \sim (3,1)_{-1/3},$ $T \sim (3,3)_{-1/3}, \phi \sim (1,2)_{1,2}, D \sim (3,2)_{7/6}, V_{\mu} \sim (3,2)_{-5/6}$
- Each boson breaks LFU in Υ and/or ψ decays in a different way

Results

UV field content	$R_{ au/\ell}^{\Upsilon(1S)}$	$R^{\psi(2S)}_{\tau/\ell}$	Predicted modification to $R_{\tau/\ell}^{\Upsilon(1S)}$
$W'_{\mu} \sim (1,3)_0$	0.989-0.991	0.390	Decrease by $0.2\% - 0.4\%$
$U_{\mu} \sim (3,1)_{+2/3}$	0.952-0.990	SM	Decrease by $0.3\% - 4.0\%$
$S \sim (3,1)_{-1/3}$	SM	0.389-0.390	_
$V_{\mu} \sim (3,2)_{-5/6}$	0.976-0.987	SM	Decrease by $0.5\% - 1.6\%$
SM	0.992	0.390	
Current measurement	1.005 ± 0.025	0.39 ± 0.05	
Achievable uncertainty (with current data)	± 0.01	± 0.02	
Projected uncertainty ($\mathcal{L}^{\Upsilon(3S)} = 1/ab$ in Belle II)	± 0.004	_	

• $R_{\tau/\ell}^{\Upsilon(1S)}$ is starting to probe relevant models

Results

UV field content	$\begin{array}{ c c } R^{\Upsilon(1S)}_{\tau/\ell} \end{array}$	$\begin{array}{ c c } R^{\psi(2S)}_{\tau/\ell} \end{array}$	Predicted modification to $R_{\tau/\ell}^{\Upsilon(1S)}$
$W'_{\mu} \sim (1,3)_0$	0.989-0.991	0.390	Decrease by $0.2\% - 0.4\%$
$U_{\mu} \sim (3,1)_{+2/3}$	0.952-0.990	SM	Decrease by $0.3\% - 4.0\%$
$S \sim (3,1)_{-1/3}$	SM	0.389-0.390	-
$V_{\mu} \sim (3,2)_{-5/6}$	0.976-0.987	SM	Decrease by $0.5\% - 1.6\%$
SM	0.992	0.390	
Current measurement	1.005 ± 0.025	0.39 ± 0.05	
Achievable uncertainty (with current data)	± 0.01	± 0.02	
Projected uncertainty ($\mathcal{L}^{\Upsilon(3S)} = 1/ab$ in Belle II)	± 0.004	_	

• $R_{\tau/\ell}^{\Upsilon(1S)}$ is starting to probe relevant models

Results

UV field content	$\left \begin{array}{c} R^{\Upsilon(1S)}_{\tau/\ell} \end{array} \right $	$R^{\psi(2S)}_{\tau/\ell}$	Predicted modification to $R_{\tau/\ell}^{\Upsilon(1S)}$
$W'_{\mu} \sim (1,3)_0$	0.989-0.991	0.390	Decrease by $0.2\% - 0.4\%$
$U_{\mu} \sim (3,1)_{+2/3}$	0.952-0.990	SM	Decrease by $0.3\% - 4.0\%$
$S \sim (3,1)_{-1/3}$	SM	0.389-0.390	-
$V_{\mu} \sim (3,2)_{-5/6}$	0.976-0.987	SM	Decrease by $0.5\% - 1.6\%$
SM	0.992	0.390	
Current measurement	1.005 ± 0.025	0.39 ± 0.05	
Achievable uncertainty (with current data)	± 0.01	± 0.02	
Projected uncertainty ($\mathcal{L}^{\Upsilon(3S)} = 1/ab$ in Belle II)	± 0.004	_	

• $R_{\tau/\ell}^{\Upsilon(1S)}$ is starting to probe relevant models

Future prospects - $\Upsilon(nS)$

• Current error is ~ $\sigma_{1S}^{\scriptscriptstyle BaBar} \sim 2\%, \ \sigma_{2S}^{\scriptscriptstyle CLEO} \sim 5\%, \ \sigma_{3S}^{\scriptscriptstyle CLEO} \sim 8\%$

- Babar and Belle have 16-20 times larger data samples than what was analyzed, giving $\sigma \sim 1\%$

• Running at $\Upsilon(3S)$ with $\mathcal{L} \sim 1/ab$ Belle II might reach $\sigma_{1S} \simeq 0.4\%$

Summary

- Current error is $\sigma_{1S}^{{}^{BaBar}}\sim 2\%$
- Running at $\Upsilon(3S)$ with $\mathcal{L} \sim 1/ab$ Belle II might covers most region of parameter space related to $R(D^{(*)})$
- LFU in Υ decays provide additional motivation to study $\Upsilon(3S)$ at Belle II
- Test the SM and Probe NP even if $R(D^{(*)})$ disappears

Thank you!

Daniel Aloni, Weizmann institute of Science

Backup

Daniel Aloni, Weizmann institute of Science

Vector meson decay – SM corrections

• Within the SM

$$R_{\tau/\ell}^V \simeq (1 + 2x_{\tau}^2)(1 - 4x_{\tau}^2)^{1/2}$$

where $x_{ au} = m_{ au}/m_V$.

- Leading corrections:
 - > Corrections due to m_{μ} are $\delta R_{\tau/\ell}^V \lesssim \mathcal{O}(10^{-7})$
 - ▶ Corrections due to Z exchange are $\delta R_{\tau/\ell}^V \lesssim \mathcal{O}(10^{-5})$
 - > QED at 1-loop $\delta R_{\tau/\ell}^V \simeq 6 \cdot 10^{-3} x_{\tau}^2 \sim \mathcal{O}(10^{-4})$ (inclusive)

EFT – fixing all NC

- Motivated by FCNC and LHC constraints
 - → We impose $U(2)_Q$ symmetry of the light left-handed quarks
 - → We assume flavor alignment to the down mass basis
- Choosing a simplified model
 - Fixes the 4 CC Wilson coefficients (up to overall normalization)
 - → Fixes the 4 corresponding NC, as well as the 4 other NC. For instance a mediator which generates $(\bar{u}L)(\bar{e}Q)$ will also generate $(\bar{u}L)(\bar{L}u), (\bar{e}Q)(\bar{Q}e)$

Vector meson decay – dim(6) operators

• Eight independent dim.(6) operators contribute to leptonic meson decays

$$\mathcal{L}_{\ell q} = C_{VRR}^{q\ell} (\bar{e}_R \gamma^{\mu} e_R) (\bar{q}_R \gamma_{\mu} q_R) + C_{VRL}^{q\ell} (\bar{e}_R \gamma^{\mu} e_R) (\bar{q}_L \gamma_{\mu} q_L) + C_{VLR}^{q\ell} (\bar{e}_L \gamma^{\mu} e_L) (\bar{q}_R \gamma_{\mu} q_R) + C_{VLL}^{q\ell} (\bar{e}_L \gamma^{\mu} e_L) (\bar{q}_L \gamma_{\mu} q_L) + C_T^{q\ell} (\bar{e}_L \sigma^{\mu\nu} e_R) (\bar{q} \sigma_{\mu\nu} q) + \text{h.c. (+scalar operators)}$$

• A straightforward calculation relates the 8 Wilson coefficient $C_A^{q\ell}$ to 4 form factors appearing in the ratio

$$R_{\tau/\ell}^{V} \simeq \frac{\sqrt{1 - 4x_{\tau}^{2}}}{(4\pi\alpha Q_{q})^{2}} \Big[|\tilde{A}_{V}^{q\tau}|^{2} \left(1 + 2x_{\tau}^{2}\right) + |\tilde{B}_{V}^{q\tau}|^{2} \left(1 - 4x_{\tau}^{2}\right) + \frac{|\tilde{C}_{V}^{q\tau}|^{2}}{2} \left(1 - 4x_{\tau}^{2}\right)^{2} + \frac{|\tilde{D}_{V}^{q\tau}|^{2}}{2} \left(1 - 4x_{\tau}^{2}\right) + 2\operatorname{Re}\left[\tilde{A}_{V}^{q\tau}\tilde{C}_{V}^{*q\tau}\right] x_{\tau} \left(1 - 4x_{\tau}^{2}\right) \Big]$$

Vector meson decay – Dim(6) operators

Relation between Wilson coefficient and Form-factors:

$$\begin{split} A_V^{q\ell} &= -4\pi\alpha Q_q + \frac{m_V^2}{4} \left[\left(C_{VLL}^{q\ell} + C_{VRR}^{q\ell} + C_{VLR}^{q\ell} + C_{VRL}^{q\ell} \right) + 16x_\ell \frac{f_V^T}{f_V} \operatorname{Re} \left[C_T^{q\ell} \right] \right] \\ B_V^{q\ell} &= \frac{m_V^2}{4} \left(C_{VRR}^{q\ell} + C_{VRL}^{q\ell} - C_{VLR}^{q\ell} - C_{VLL}^{q\ell} \right), \\ C_V^{q\ell} &= 2m_V^2 \frac{f_V^T}{f_V} \operatorname{Re} \left[C_T^{q\ell} \right], \\ D_V^{q\ell} &= 2m_V^2 \frac{f_V^T}{f_V} \operatorname{Im} \left[C_T^{q\ell} \right]. \end{split}$$

where

 $\langle 0|\bar{q}\gamma^{\mu}|V(p)\rangle = f_V m_V \epsilon^{\mu}(p) , \ \langle 0|\bar{q}\sigma^{\mu\nu}|V(p)\rangle = f_V^T [\epsilon^{\mu}(p)p^{\nu} - \epsilon^{\nu}(p)p^{\mu}]$

Numerical results – example $U_{\mu} \sim (3,1)_{2/3}$

• UV

$$\mathcal{L}_U = g_1 \bar{Q}_3 \psi L_3 + g_2 \bar{d}_3 \psi e_3 + h.c.$$

EFT

Numerical results – example $U_{\mu} \sim (3,1)_{2/3}$

• Results: $(g_1^{2\ bfp}, g_2^{2\ bfp}) = (3.3, 0.4) \left(\frac{M_U}{TeV}\right)^2$

• $R^{\psi(2S)}_{\tau/\ell}$ is not modified

Future prospects - $\psi(2S)$

- Current error is $\ \sigma \sim 13\%$
- Bess II already has 10 times larger data sample than what was analyzed, giving $\,\sigma\sim 4\%$
- We predict that $R^{\psi}_{ au/\ell}$ is modified by at most few per-mil
- Removing the imposed $U(2)_Q$ symmetry might lead to a much larger modification (work in progress)
- An order of magnitude improvement is needed to be achieved in Bess III

Charge current (CC)

Charge current (CC)

Neutral current (NC)

Charge current (CC)

Neutral current (NC)

 ν is part of a doublet \longrightarrow if we have ν we have τ