

Inclusive production of quarkonium in ATLAS

Konstantin Toms
on behalf of the ATLAS Collaboration

University of New Mexico

Outline

The ATLAS detector @ LHC

- Recent ATLAS results covered in this talk:
 - b-hadron pair production cross-section @ 8 TeV
 - quarkonium production in p-Pb and pp @ 5.02 TeV

Conclusions

The ATLAS detector @ LHC

- Subsystems essential for B-physics: Inner detector and Muon spectrometer.
- Inner detector: tracking, momentum and vertexing, $|\eta| < 2.5$, d_0 resolution ~10 μ m.
- Muon spectrometer: trigger and muon identification, $|\eta| < 2.7$.
- J/ ψ mass resolution: 60±1 MeV, Υ (1S): 119±1 MeV (depend on η).

b-hadron pair production cross-section

- JHEP 11 (2017) 062
- 11.4 fb⁻¹ @ 8 TeV, luminosity uncertainty 1.9%
- Motivation:
 - test of QCD predictions
 - disagreements among theoretical predictions and between predictions and data
 - important background for Higgs production
 (H→bb̄) with association of a vector boson

Analysis overview (1)

- Search for 1st b \rightarrow J/ $\psi(\mu\mu)+X$, 2nd b \rightarrow $\mu+X$
- Dimuon trigger, $p_T(\mu_1, \mu_2) > 4$ GeV, 2.5<m($\mu \mu$)<4.3 GeV
- Primary vertex of at least two tracks with p_T>400 MeV
- Muon candidates are "dressed" by adding fourmomenta of nearby photons ($\Delta R < 0.1$)
- J/ ψ candidates are formed from oppositely charged muons, p_T(μ)>6 GeV, | η |<2.3, 2.6<m(J/ ψ)<3.5
- In case of multiple J/ψ candidates per event the one with the mass closest to the world average is chosen
- Third muon: the one with the highest p_T which is not included in the J/ψ reconstruction
- The J/ ψ and the third μ may come from feed-down or cascade decay

Analysis overview (2)

- J/ψ candidates are required to be separated from the primary vertex
- Requirement on the pseudo-proper lifetime τ , τ >0.25 mm/c (τ =L_{xy}m(J/ ψ _{PDG})/p_T($\mu\mu$))
- Simultaneous maximum likelihood fit is performed to the invariant mass of the muon pair and the pseudo-proper lifetime
- Various MC-based corrections:
 - trigger efficiency (including spatial resolution of the dimuon trigger and vertexing)
 - muon reconstruction efficiency (including "fake" muons from kaon/pion decays/punch-throughs

Results (1)

- Measured total cross-section in the fiducial region: $\sigma(B(\rightarrow J/\psi(\mu\mu)+X)B(\rightarrow \mu+X))=17.7\pm0.1_{stat}\pm0.2_{syst}$ nb
- Various differential cross-sections compared to MCgenerators output
 - separation between the J/ ψ and the third μ in the azimuth-rapidity plane (Δ ϕ (J/ ψ , μ), see next slide)
 - mass of the J/ψμ system
 - azimuthal separation $\Delta \varphi$ between the J/ ψ and the third μ
 - transverse momentum p_T of the 3-muon system
 - rapidity separation Δy between the J/ ψ and the third μ
 - magnitude y_{boost} of the average rapidity of the J/ ψ and the third μ
 - ratio of the p_T to the invariant mass of the 3-muon system
 - ratio of the invariant mass of the 3-muon system to its p_T

Results (2)

- Comparison with Pythia 8: a set of production options for the g→bb splitting kernel which dominates smallangle quarkonium production
- The shape of the angular distributions is not accurately predicted by any of the production options

Results (3)

- Comparison with HERWIG++, SHERPA, and MadGraph5_aMC@NLOv2.2.2 + PYTHIA8.186 parton shower model
- HERWIG++ has the best correspondence with data for for ΔR and Δφ
- 4 massless flavours model has a better correspondence than 5 one for ΔR and $\Delta \varphi$
- Δy distribution is well described by MADGraph and Sherpa
- 5-massless flavor MadGraph models low mass distribution better than 4,
- But 4-massless flavor MadGraph models high p_T/m best.

Results (4)

- Among all of the distributions, the 4-massless flavour model gives the best correspondence with the data (MadGraph5_aMC@NLO +Pythia8)
- HERWIG++ and Pythia8 demonstrate compatible agreement with the data
- Among the various Pythia8 production options the p_T -based splitting kernel is the best one (option 4b)

Quarkonium production in p-Pb and pp

- Eur. Phys. J C (2018) 171
- 28 nb^{-1} (p-Pb) and 25 pb^{-1} (pp) @ 5.02 TeV
- Motivation:
 - QGP (quark-gluon plasma) is not expected to occur in p-Pb collisions, so one can study the effects of CNM (cold nuclear matter)
 - compare the production of J/ ψ , ψ (2S), Υ (1S,2S,3S)
 - understand the background to QGP effects

Analysis overview (1)

 The double-differential cross section multiplied by the dimuon decay branching fraction is calculated for each measurement interval as:

$$\frac{\mathrm{d}^2 \sigma_{\mathcal{O}(n\mathrm{S})}}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} y^*} \times B(\mathcal{O}(n\mathrm{S}) \to \mu^+ \mu^-) = \frac{N_{\mathcal{O}(n\mathrm{S})}}{\Delta p_{\mathrm{T}} \times \Delta y \times L}$$

• The y* here is the center-of-mass p-Pb rapidity, which is shifted by Δy =0.465 with respect to y in the laboratory rest frame

Analysis overview (2)

- Dimuon trigger: $p_T(\mu_1, \mu_2) > 4$ GeV
- Primary vertex is formed with at least 4 tracks, at least 2 muons with common vertex
- All muons with $|\eta| < 2.4$ are considered as quarkonium candidates
- p-Pb events are divided into "centrality class"
 more participating nucleons leads to more transverse energy
- MC corrections for acceptance calculation: final state radiation, p_T , η , trigger and reconstruction efficiency

Analysis overview (3)

- Reconstruction and trigger efficiencies are taken from J/ψ→μμ data
- Pseudo-proper lifetime is used to separate prompt and non-prompt quarkonium candidates
- Simultaneous maximum likelihood fit to the μμ invariant mass and pseudo-proper lifetime is performed to extract the number of charmonium candidates
- Separate fits in every pT, rapidity, and centrality bins

Analysis overview (4)

- For the bottomonium the acceptance is recalculated in order to take into account peak overlaps
- Systematics include: acceptance, muon reconstruction efficiency, trigger effects, fit model, bin-to-bin migration, luminosity

Results (1)

- The differential non-prompt J/ ψ and ψ(2S) production crosssection is compared to FONLL theory predictions for three intervals of rapidity
- Non-prompt J/ ψ and ψ (2S) production in pp is in a good agreement with FONLL
- Prompt charmonium production is compatible with NRQCD
- The error bands in the prediction correspond to the combined factorisation scale, quark mass and parton distribution functions uncertainties.

Results (2)

 Bottomonium production is not in a good agreement with NRQCD

Results (3)

- Nuclear modification factors are calculated as functions of $p_{\scriptscriptstyle T}$ and rapidity for prompt and non-prompt production
- Bars on the plots represent statistical uncertainty, boxes uncorrelated systematical ones, and the gray boxes – correlated systematics.

Results (4)

 Double ratio of nuclear modifications factors versus centrality:

May 13, 2019 QWG 2019, Torino 19

Results (5)

- Prompt charmonium ρ decreases slightly from backward (Pb-side) to forward (p-side)
- Prompt $\psi(2S)$ suppressed with rerard to prompt J/ψ at the one-sigma level
- Prompt $\psi(2S)/J/\psi$ and prompt $\Upsilon(2S)/\Upsilon(1S)$ are suppressed in central collisions at the onesigma level
- $\Upsilon(nS)/\Upsilon(1S)$ suppressed for $p_T < 40$ GeV and $-2 < y^* < 1.5$ at the two-sigma level

Conclusions

- ATLAS has studied b-hadron pair production with 8 TeV pp collisions data
 - Various production options of several MC generators are compared to the data
 - Allowing better tuning of the corresponding underlying models
- ATLAS has performed a study of quarkonium production in p-Pb and pp collisions data
 - Number of observations on the production of prompt and non-prompt quarkonium, comparison with theoretical predictions
 - Constraints on CNM models

BACKUP

Trigger and datasets

 B-physics starts with single or di-muon triggers with various thresholds:

• $p_{T}(\mu) > 6 \text{ GeV}$

• $p_{T}(\mu) > 18 \text{ GeV}$

• $p_T(\mu_1) > 4 \text{ GeV } \& p_T(\mu_2) > 4 \text{ GeV}$

• $p_T(\mu_1) > 6 \text{ GeV } \& p_T(\mu_2) > 4 \text{ GeV}$

• $p_T(\mu_1) > 6 \text{ GeV } \& p_T(\mu_2) > 6 \text{ GeV}$

Di-muon mass range: m(μμ)∈[2.5; 4.3] GeV (final states containing J/ψ) and m(μμ)∈[4.0; 8.5] GeV (B to μ transitions).