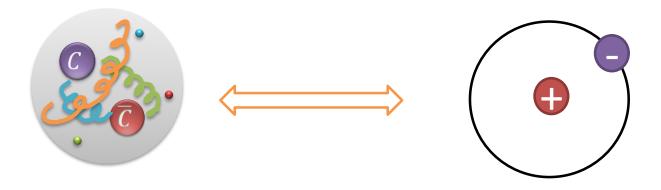
The remaining parts for the longstanding J/ψ polarization puzzle

Yu Feng


Army Medical University, Chongqing, China

Based on our work: Phys.Rev.D99,014044;
In collaboration with Bin Gong (IHEP,CAS), Chao-Hsi Chang (ITP,CAS)
& Jian-Xiong Wang (IHEP,CAS)

Quarkonium 2019 workshop May 13, 2019, Torino, Italy

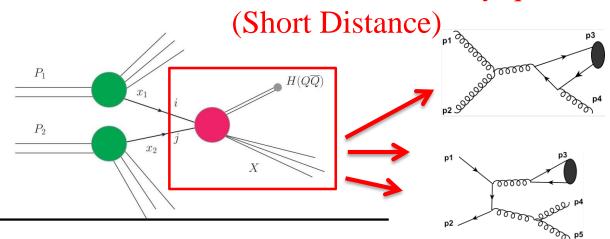
Heavy quarkonium

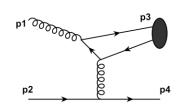
- \blacktriangleright Bound state of Qar Q under strong interaction
 - First discovered: J/ψ in 1974
 - Family members: $\psi(2S)$, η_c , χ_{cl} , $\Upsilon(nS)$, $\chi_{bl}(nP)$

Good features

- ✓ Heavy enough for perturbative calculation
- ✓ Clear signal— Lepton pair (e⁺e⁻ and u⁺u⁻) decay
- ✓ Simplist system in QCD

NRQCD Factorization

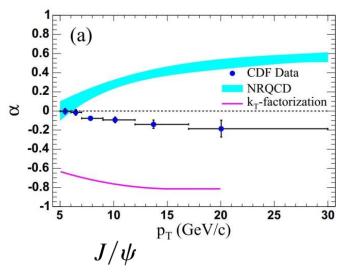

An effective theory to describe quarkonium productions and decays

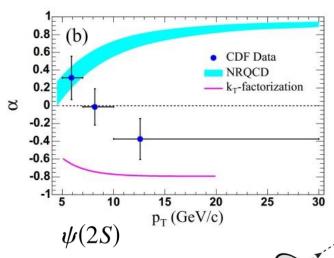

$$d\sigma[pp\to HX] = \sum_n \int dx_1 dx_2 G_i(x_1) G_j(x_2) \, d\hat{\sigma}[ij\to (Q\bar{Q})_n X] \langle O^H(n) \rangle$$

Parton Distribution Function

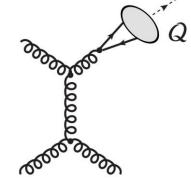
Hadronization(LDME)

Production of Heavy quark Pair

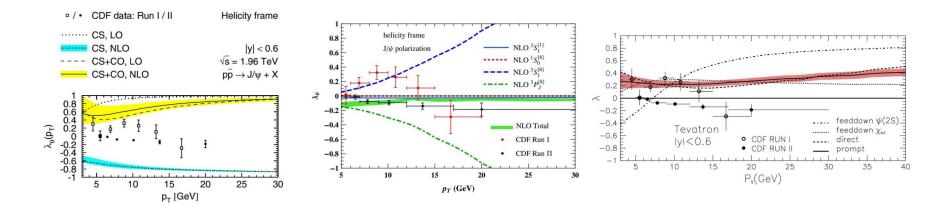




Bodwin, Braaten and Lepage, PRD 51, 1125 (1995)

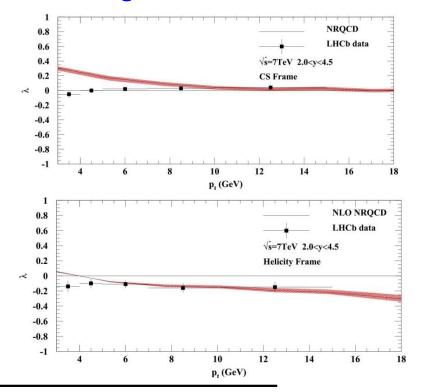

J/ ψ polarization puzzle $\alpha(or \lambda_{\theta}) = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}$

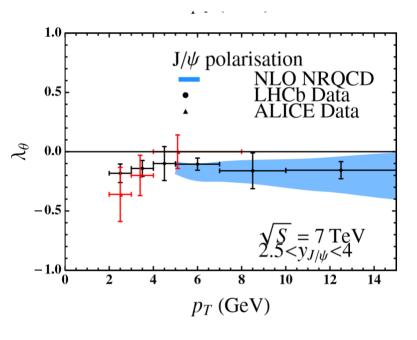
- \triangleright LO NRQCD failed in the description of J/ ψ polarization.
 - Prediction contradicts with CDF data



- > Analysis
 - Dominant: gluon fragmentation \rightarrow cc(${}^3S_1^{[8]}$)
 - Gluon is transversely polarized

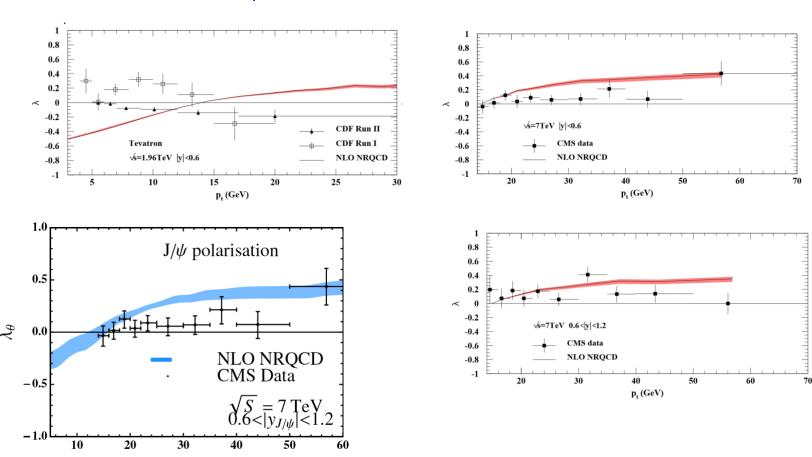
Polarization at NLO


- Left (missing feeddown): Global fit, bad agreement
- Middle(missing feeddown): ¹S₀^[8] dominance, agree with CDF RunII data
- Right(complete):agree with CDF Runl data, contradict CDF Run II data


- Differenct fitting strategy → different LDMEs → different phenomenology
- Three LDMEs to be determined, too many!

η_c and J/ψ hadroproduction data reconciled

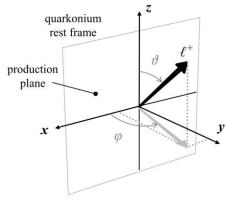
- η_c data help to determine LDMEs.
- Heavy quark spin symmetry (HQSS)
- Good agreement at LHCb


$$egin{aligned} &\langle O^{J/\psi}(^{3}S_{1}^{[n]})
angle &pprox 3 \langle O^{\eta_{c}}(^{1}S_{0}^{[n]})
angle \ &\langle O^{J/\psi}(^{1}S_{0}^{[8]})
angle &pprox \langle O^{\eta_{c}}(^{3}S_{1}^{[8]})
angle \ &\langle O^{J/\psi}(^{3}P_{0}^{[8]})
angle &pprox rac{1}{3} \langle O^{\eta_{c}}(^{1}P_{1}^{[8]})
angle \end{aligned}$$

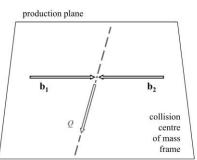
Zhang, Sun, Sang and Li. PRL 114,092006 (2015) Han, Ma, Meng, Shao and Chao. PRL114,092005(2015)

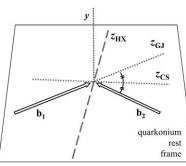
J/ψ polarization puzzle remains

• Not very good with J/ψ polarization in midrapidity region


Zhang, Sun, Sang and Li. PRL 114,092006 (2015)

 p_T (GeV)


The parameters describing J/ψ polarization


• J/ψ polarization can be analyzed via the angular distribution of the decayed positively charged leptons, which can be expressed as:

$$\frac{d\sigma}{d\Omega dy} \propto 1 + \lambda_{\theta} cos^2 \theta + \lambda_{\theta\phi} \sin 2\theta cos \phi + \lambda_{\phi} sin^2 \theta cos 2\phi$$

- θ polar angle between momentum of a positive lepton in the J/ψ rest frame and the polaization axis Z
- ϕ corresponding azimuthal angle
 - Polarization axis Z
 - ✓ Helicity (HX) frame: along the J/ψ momentum in the center-of-mass of the colliding beams
 - ✓ Collins-Soper (CS) frame: bisector of the angle formed by one beam direction and the opposite direction of the other beam in the J/ψ rest frame

The parameters describing J/ψ polarization

• J/ψ polarization can be analyzed via the angular distribution of the decayed positively charged leptons, which can be expressed as:

$$\frac{d\sigma}{d\Omega dy} \propto 1 + \lambda_{\theta} cos^2 \theta + \lambda_{\theta\phi} \sin 2\theta cos\phi + \lambda_{\phi} sin^2 \theta cos 2\phi$$

Where

$$\lambda_{\theta} = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}} \qquad \lambda_{\theta\phi} = \frac{\sqrt{2}Re(d\sigma_{10})}{d\sigma_{11} + d\sigma_{00}} \qquad \lambda_{\phi} = \frac{d\sigma_{1,-1}}{d\sigma_{11} + d\sigma_{00}}$$

- $> d\sigma_{\lambda\lambda'}(\lambda,\lambda'=0,\pm 1)$ is the spin density matrix of J/ψ hadroproduction
- > All three parameters provide interesting and independent information
- \triangleright The parameters are depending on the J/ ψ polarization frames
- \blacktriangleright Most available works of J/ ψ polarization are restricted to λ_{θ}

New opportunity: polarization parameters $\lambda_{\theta\phi}$, λ_{ϕ}

- Experiment measurement:
 - CMS Collaboration, Phys.Lett.B 727(2013)381
 - LHCb Collaboration, EPJC (2013) 73:2631
- Theoretical prediction at QCD NLO:
 - $-\lambda_{\rm o}$: PRL108.172002(2012) with three data points.
 - $-\lambda_{\theta\phi}$: No theoretical prediction.

- Are the theoretical predictions on $\lambda_{\theta \varphi}$, λ_{φ} coincide with the experimental data?
- Could the uncertainty on the related LDMEs be reduced by fitting on these measurements together with previous data fit?

QCD NLO calculation for prompt J/ψ

- $+ \, d\hat{\sigma} \! \left({}^3S_1^8 \right) \, \left< \mathcal{O}^{J/\psi} \! \left({}^3S_1^{[8]} \right) \right> \, + \sum d\hat{\sigma} \! \left({}^3P_I^8 \right) \left< \mathcal{O}^{J/\psi} \! \left({}^3P_0^{[8]} \right) \right> \, d\hat{\sigma} \! \left({}^3P_I^{(8)} \right) \, d\hat{\sigma} \! \left({}^$
- \triangleright Feed-down contribution from χ_{cI} and $\psi(2S)$

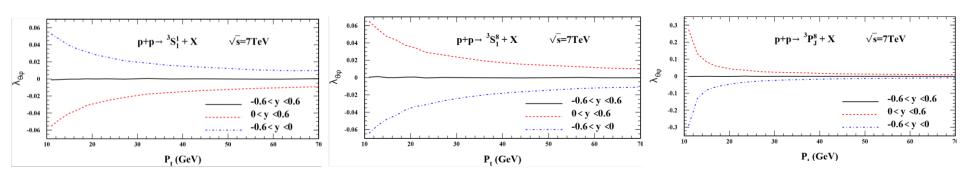
$$d\sigma_{\lambda\lambda'}^{J/\psi}|_{\chi_{cJ}} = \mathcal{B}[\chi_{cJ} \to J/\psi] \sum_{J_z,J_z'} \delta_{J_z - \lambda,J_z' - \lambda'} C_{J,J_z}^{\lambda,J_z - \lambda} C_{J,J_z'}^{*\lambda',J_z' - \lambda'} d\sigma_{J_zJ_z'}^{\chi_{cJ}} \qquad d\sigma_{\lambda\lambda'}^{J/\psi}|_{\psi(2S)} = \mathcal{B}[\psi(2S) \to J/\psi] d\sigma_{\lambda\lambda'}^{\psi(2S)}$$

√ 87 parton level sub-processes

package

✓ Updated FDCHQHP

✓ HPC Cluster of ITP-C (Thanks!)


STATES	LO sub-process	number of	NLO sub-process	number of
		Feynman diagrams		Feynman diagrams
³ S ₁ ⁽¹⁾	$g+g \rightarrow (Q\bar{Q})_n+g$	6	$g+g ightarrow (Qar Q)_n + g ext{(one-loop)}$	128
			$g+g\rightarrow (Q\bar{Q})_n+g+g$	60
			$g+g \rightarrow (Q\bar{Q})_n + b + \bar{b}$	42
			$g+g \rightarrow (Q\bar{Q})_n + q + \bar{q}$	6
			$g+q(\bar{q})\rightarrow (Q\bar{Q})_n+g+q(\bar{q})$	6
${}^{1}S_{0}^{(8)}(\text{also }{}^{3}P_{J}^{8})$	$g+g \rightarrow (Q\bar{Q})_n+g$	(12,16,12)	$g+g ightarrow (Qar Q)_n + g ext{(one-loop)}$	(369,644,390)
or	$g+q(\bar{q}) \rightarrow (Q\bar{Q})_n+q(\bar{q})$	(2,5,2)	$g+q(ar q) o (Qar Q)_n + q(ar q) ext{(one-loop)}$	(61,156,65)
$^{3}S_{1}^{(8)}$	$q + \bar{q} \rightarrow (Q\bar{Q})_n + g$	(2,5,2)	$q + ar{q} ightarrow (Qar{Q})_n + g(ext{one-loop})$	(61,156,65)
or			$g+g\rightarrow (Q\bar{Q})_n+g+g$	(98,123,98)
$^{3}P_{J}^{1}$			$g+g \rightarrow (Q\bar{Q})_n + q + \bar{q}$	(20,36,20)
			$g+q(\bar{q})\rightarrow (Q\bar{Q})_n+g+q(\bar{q})$	(20,36,20)
			$q + \bar{q} \rightarrow (Q\bar{Q})_n + g + g$	(20,36,20)
CAS			$q + \bar{q} \rightarrow (Q\bar{Q})_n + q + \bar{q}$	(4,14,4)
			$q + \bar{q} \rightarrow (Q\bar{Q})_n + q' + \bar{q'}$	(2,7,2)
			$q+q \rightarrow (Q\bar{Q})_n + q + q$	(4,14,4)
			$q+q' ightarrow (Q\bar{Q})_n + q + q'$	(2,7,2)

Interesting Featrues

• In helicity frame for inclusive J/ψ production at the LHC, a symmetry (antisymmetry) relations can be deduced as

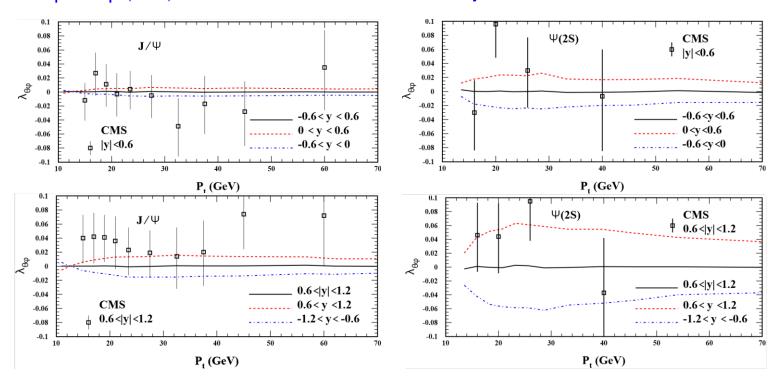
$$\frac{d\sigma_{\lambda\lambda'}^H}{dy}\big|_{y=a} = n_{\lambda\lambda'} \frac{d\sigma_{\lambda\lambda'}^H}{dy}\big|_{y=-a} \quad n_{\lambda\lambda'} = \begin{cases} 1 & \lambda = \pm \lambda' \\ -1 & \lambda = \pm 1, \lambda' = 0 \end{cases} \quad y = \frac{1}{2} \ln \left(\frac{E + p_z}{E - p_z} \right)$$

- Conclusion:
 - \checkmark $\lambda_{\theta \varphi}$ =0 for experiment with symmetry rapidity range (a<|y|<b), e.g. CMS and ATLAS.
 - \checkmark $\lambda_{\theta \phi} \neq 0$ for half rapidity range (y>b), such as the case at LHCb.
 - \checkmark λ_{θ} , λ_{ϕ} are symmetry for y>0 and y<0.

New fitting on the J/ψ LDMEs

- The data used:
 - yield:
 - CDF: PRD71,032001(2005)
 - LHCb: EPJC71,1645(2011)
 - Polarization:
 - $-\lambda_{\theta}$, λ_{ϕ} CMS : Phys.Lett.B 727(2013)381
 - $\lambda_{\theta}, \, \lambda_{\theta\phi}, \, \lambda_{\phi}$ LHCb : EPJC (2013) 73:2631

- LDMEs Strategy:
 - CS: potential model

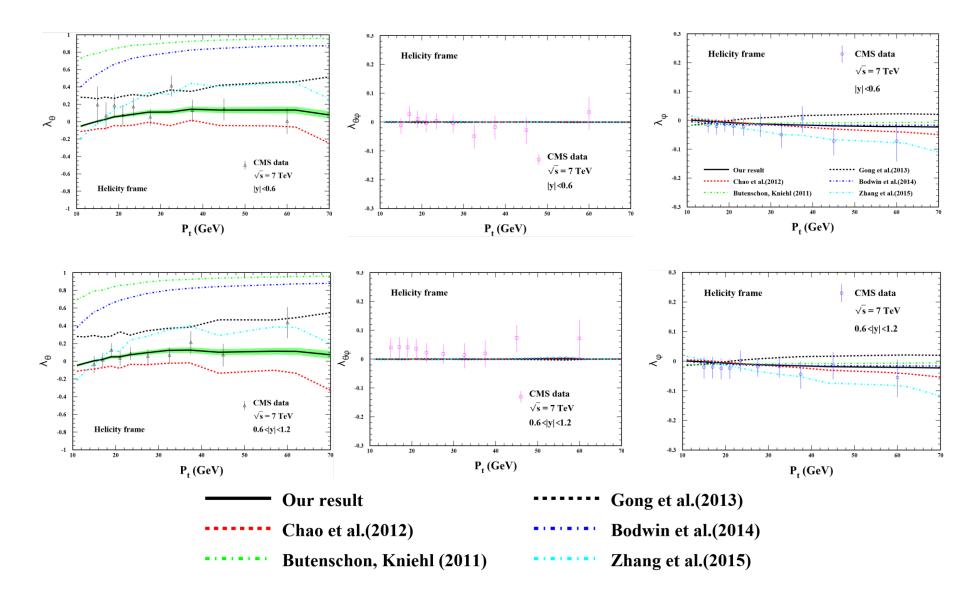

$$\langle \mathcal{O}^{\psi}(^{3}S_{1}^{[1]})\rangle = \frac{3N_{c}}{2\pi}|R_{\psi}(0)|^{2},$$

$$\langle \mathcal{O}^{\chi_{cJ}}(^{3}P_{J}^{[1]})\rangle = \frac{3}{4\pi}(2J+1)|R'_{\chi_{c}}(0)|^{2}.$$

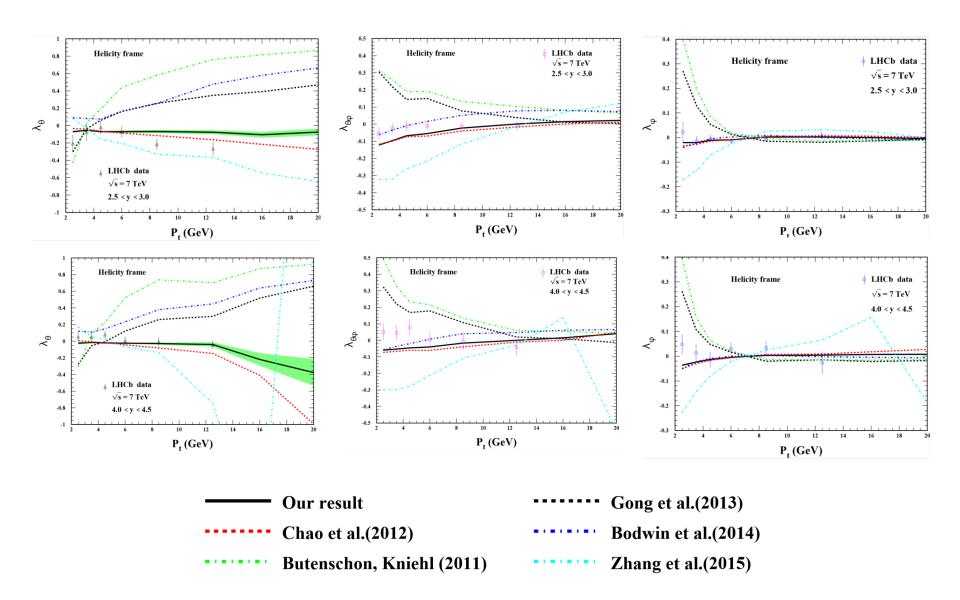
- CO: χ_{cJ} and $\psi(2S)$ are from PRL110.042002(2013)
- Totally 86 data points of J/ψ , by minimizing χ^2 , we obtain

$$\langle \mathcal{O}^{J/\psi}(^{1}S_{0}^{[8]})\rangle = (5.66 \pm 0.47) \times 10^{-2} GeV^{3},$$

 $\langle \mathcal{O}^{J/\psi}(^{3}S_{1}^{[8]})\rangle = (1.17 \pm 0.58) \times 10^{-3} GeV^{3},$
 $\langle \mathcal{O}^{J/\psi}(^{3}P_{0}^{[8]})\rangle/m_{Q}^{2} = (5.4 \pm 0.5) \times 10^{-4} GeV^{3},$


The antisymmetry for $\lambda_{\theta\phi}$

• J/ψ , $\psi(2S)$ Polarization in helicity frame



- $\succ \lambda_{\theta \phi}$ is exactly zero in the calculation for CMS kinematical region
- \succ Theoretical predictions describe the $\lambda_{\theta\phi}$ from CMS quite well

Results for λ_{θ} , $\lambda_{\theta\phi}$, λ_{ϕ} : CMS

Results for λ_{θ} , $\lambda_{\theta\phi}$, λ_{ϕ} : LHCb

Summary

- We finished calculation on $\lambda_{\theta\phi}$, λ_{ϕ} for J/ ψ polarization in helicity frame based on NRQCD.
- New fitting can describe both J/ψ production and polarization.
- \triangleright LDMEs uncertainties are large for λ_{θ} .
- \triangleright QCD NLO decribe $\lambda_{\theta\phi}$, λ_{ϕ} quite well (medium and high p_t) by different LDMEs schemes.

Thank you!