From identical S- and P-wave p_T/M spectra to maximally distinct polarizations: probing NRQCD with LHC data

Mariana Araujo, in collaboration with Pietro Faccioli, Carlos Lourenço, and João Seixas
Unexpectedly simple data patterns

All quarkonia have identical p_T/M-differential cross section shapes, for $p_T/M > 2$, at mid-rapidity, independently of mass and quantum numbers.
Scaling all data to match the J/ψ normalization
Same production dynamics for S- and P-wave states

Identical p_T/M cross section shapes for S- and P-wave states \(\Rightarrow\) no sign of dependence of the production dynamics on the quantum numbers!

CMS, pp @7 TeV
HX frame

$\Upsilon(1S): \approx 40\%$ from χ_b

$\Upsilon(2S):$ J/ψ feed-down free

$\psi(2S):$ J/ψ feed-down free

Small polar decay anisotropies, with no p_T dependences, for all S-wave states, despite very different P-wave feed-down contributions

PLB 727 (2013) 382
PRL 110 (2013) 081802
To quantify: a model independent global charmonium fit

We probe the seemingly negligible differences between S- and P-wave production dynamics by doing a simultaneous global fit to mid-rapidity differential cross sections and polarizations of the charmonium states $\psi(2S)$, J/ψ and $\chi_{c1,2}$

Includes a detailed account of the momentum and polarization transfer from the mother to the daughter particle in the relevant feed-down decays:

\[
\begin{align*}
\psi(2S) & \rightarrow \chi_{c1,2} \gamma \\
\psi(2S) & \rightarrow J/\psi \ X \\
\chi_{c1,2} & \rightarrow J/\psi \ \gamma
\end{align*}
\]

Momentum propagation: $p_T/m = P_T/M$

M (m) and P_T (p_T) are, respectively, the mass and laboratory transverse momentum of the mother (daughter) particle

Polarization propagation: calculated in the electric dipole approximation. Precisely accounts for the observable dilepton distribution with no need for higher-order terms

Perturbative calculations of the production kinematics are not used as ingredients anywhere in the analysis. The fit is *exclusively based on empirical parametrizations*
Parametrization

The J/ψ and $\psi(2S)$ cross sections are parametrized as a superposition of unpolarized ($\lambda_\theta = 0$) and transversely polarized ($\lambda_\theta = +1$) processes:

$$\sigma_{\text{dir}} \propto \left(1 - f_p\right) g_u + f_p g_p$$

- f_p: fractional contribution of the polarized process at an arbitrary reference point (p_T/M)*
- g_u, g_p: shape functions that describe the p_T/M dependences of the unpolarized and polarized yields, respectively, normalized to unity at the chosen (p_T/M)*:

$$g(p_T/M) = h(p_T/M) / h[(p_T/M)^*],$$

with

$$h(p_T/M) = (p_T/M) \left(1 + \frac{1}{\beta-2} \frac{(p_T/M)^2}{\gamma}\right)^{-\beta}$$

- f_p, g_u and g_p are identical for the two S-wave states. The unpolarized and polarized cross sections share the parameter γ, but have distinct β_u and β_p. By definition, the shapes and relative contributions of the g_u and g_p functions are constrained by the polarization data.

The same general shape parametrization is followed for χ_{c1} and χ_{c2}, without discriminating between polarized and unpolarized contributions, which cannot be individually constrained in the absence of χ_c polarization data.

There are, hence, four contributions to direct quarkonium production: the unpolarized and polarized ψ terms plus the χ_{c1} and χ_{c2} cross sections, altogether characterized by one γ and four β parameters, $\beta_u, \beta_p, \beta(\chi_1)$ and $\beta(\chi_2)$.
Correlated uncertainties

A crucial source of correlation between all the points being fitted is the dependence of the detection acceptances on the polarization.

For each set of parameter values considered while running the fit, the expected values of the polarizations and cross sections are calculated, for all states, as functions of p_T. The values obtained in this way for λ_θ can be immediately compared to the measured ones.

For the cross section, we first scale the measured cross sections by acceptance-correction factors calculated for the λ_θ value under consideration. These correction factors are computed using the tables published by the experiments for the cross sections of particles produced with fully transverse or fully longitudinal polarization, as a complement to the unpolarized assumption used for the default measured values.

Also considered in the fit are nuisance parameters from two sources:
1) The ATLAS and CMS integrated-luminosity uncertainties
2) The uncertainties of the branching ratios (B) used by the experiments to derive the cross sections (σ) from the measured values ($B \times \sigma$)
Fit results

The fit has 100 constraints (data points) and 20 parameters:
- 5 shape parameters,
- 4 normalizations,
- the fraction f_p
- and 10 nuisance parameters

The χ_{c1} and χ_{c2} p_T/M distributions are very similar to the unpolarized term dominating ψ production

$$\beta_u = 3.42 \pm 0.05$$

$$\beta(\chi_1) = 3.46 \pm 0.08$$

$$\beta(\chi_2) = 3.49 \pm 0.10$$

This very clear observation reflects the fact that the full chain of feed-down decays is taken into account, so that the high precision ψ data points contribute to the χ_c results

The polarized term has a weak contribution and the charmonium states are nearly unpolarized
Quarkonium production in the NRQCD approach

In NRQCD several production mechanisms are foreseen for each quarkonium state.

What is produced in the hard scattering (and determines kinematics and polarization) is a *pre-resonance* $Q\bar{Q}$ state with specific quantum properties.

1) short-distance partonic process produces *neutral* or *coloured* $Q\bar{Q}$ of any $^{2S+1}L_J$ quantum numbers.

$$\sigma(A + B \rightarrow Q + X) = \sum_{S, L, C} S\{A + B \rightarrow (Q\bar{Q})_C^{^{2S+1}L_J} + X\} \cdot \mathcal{A}\{(Q\bar{Q})_C^{^{2S+1}L_J} \rightarrow Q\}$$

2) The quantum numbers change in the long-distance evolution to the observed (neutral) bound state.

$\eta_c, \eta_b \left[^1S_0 \right], \Psi, \Upsilon \left[^3S_1 \right], \chi_{c0}, \chi_{b0} \left[^3P_0 \right], \chi_{c1}, \chi_{b1} \left[^3P_1 \right], \chi_{c2}, \chi_{b2} \left[^3P_2 \right]$
NRQCD hierarchies

Approximations (heavy-quark limit) and calculations induce hierarchies and links between pre-resonance contributions

1) Small quark velocities v in the bound state \rightarrow “v-scaling” rules for LDMEs

2) Perturbative calculations \rightarrow some SDCs are negligible:

3) Heavy-quark spin symmetry \rightarrow relations between LDMEs of different states

\[
\begin{align*}
\frac{^3S_1 \to \chi_{c2}}{^3S_1 \to \chi_{c1}} &= \frac{^3S_1 \to \chi_{b2}}{^3S_1 \to \chi_{b1}} = \frac{5}{3}, \quad ^3S_1 \to \eta_c = ^1S_0 \to J/\psi, \\
& \quad ^3S_1 \to \eta_b = ^1S_0 \to \Upsilon, \text{ etc.}
\end{align*}
\]
The variety of kinematic behaviours predicted in NRQCD seems **redundant** with respect to the measured universal p_T/M scaling and lack of polarization.
The polarization dimension

Quarkonium polarization is characterized by λ_θ:

- measured as the polar anisotropy of the decay dilepton angular distribution
- calculated from the transverse and longitudinal cross sections: $(\sigma_T - \sigma_L) / (\sigma_T + \sigma_L)$

Each colour singlet and octet term has a specific polarization associated:

- $^1S_0 \rightarrow \lambda_\theta = 0$ at LO, NLO, etc; isotropic wave function
- $^3S_1 \rightarrow \lambda_\theta = +1$ at LO, NLO, etc, at high p_T, where the fragmenting gluon is “real”
- $^3P_J \rightarrow \lambda_\theta >> +1$ at NLO and high p_T (“hyper-transverse”); it is 0 at LO...
- $^3S_1 \rightarrow \lambda_\theta \sim -0.9$ at NLO and high p_T; it is $\approx +1$ at LO (has a small impact)
Data fit vs. NRQCD: a surprising agreement

A comparison of the shape functions from the global fit (data bands) with their NRQCD counterparts, over 8 (!) orders of magnitude, shows a surprising result: within uncertainties, NRQCD can reproduce the similarity of the p_T/M distributions

The data bands and the NLO SDCs were obtained in completely independent ways

$^1S_0 \quad \Rightarrow \quad J/\psi, \psi(2S)$

The width of the data bands only reflects *shape* uncertainties
Data fit vs. NRQCD: a surprising agreement

A comparison of the shape functions from the global fit (data bands) with their NRQCD counterparts, over 8 (!) orders of magnitude, shows a surprising result: within uncertainties, NRQCD can reproduce the similarity of the p_T/M distributions.

The data bands and the NLO SDCs were obtained in completely independent ways.

$^{1}\!S_0 \quad \Rightarrow \quad J/\psi, \psi(2S)$

$^{3}\!S_1 \quad \Rightarrow \quad J/\psi, \psi(2S)$

The width of the data bands only reflects shape uncertainties.

P. Faccioli et al. EPJC 78 (2018) 268
Data fit vs. NRQCD: a surprising agreement

A comparison of the shape functions from the global fit (data bands) with their NRQCD counterparts, over 8 (!) orders of magnitude, shows a surprising result: within uncertainties, NRQCD can reproduce the similarity of the p_T/M distributions.

The data bands and the NLO SDCs were obtained in completely independent ways.

$^{3}p_{J} \overset{3S_{1}}{\longrightarrow} \chi_{cJ}$

$^{3}S_{1} \overset{J/\psi, \psi(2S)}{\longrightarrow}$

The width of the data bands only reflects shape uncertainties.
Striking coincidence or trigger to improve NRQCD?

The seeming success of NRQCD uncovers a strong prediction: the unmeasured χ_{c1} and χ_{c2} polarizations must be very different from one another.

Cross section ratio χ_{c2} / χ_{c1}: ATLAS and CMS data agree better with each other and with theory fit if their polarizations are different (acceptance correction depends on λ_0).

Potentially striking exception to the uniform picture of mid-rapidity quarkonium production!

$\chi_{c1} + \chi_{c2} \rightarrow J/\psi$: weak polarization \approx as observed in prompt J/ψ data!

$| \Delta \lambda_0 | \approx 1$

at the barycentre of current CMS χ_c data
Comparison to a previous prediction

In NRQCD, one single parameter determines both the χ_{c2}/χ_{c1} ratio and the two polarizations

$$r \equiv m_c^2 \left(\mathcal{O}_{\chi_{c0}}(3 S_1^{[8]}) \right) \left(\mathcal{O}_{\chi_{c0}}(3 P_0^{[1]}) \right)$$

Shao et al. derive $r = 0.27 \pm 0.06$ from CDF or CMS data with the following polarization assumptions:

CDF:
- central values using $\lambda_\theta = 0.13 \pm 0.15$ for χ_{c1} and χ_{c2}
- no correlated variations considered
- uncertainty added in quadrature with all others

CMS:
- central values using $\lambda_\theta = 0$ for χ_{c1} and χ_{c2}
- polarization uncertainty from maximum range of correlated variations of $\lambda_\theta(\chi_{c1})$ and $\lambda_\theta(\chi_{c2})$
Comparison to a previous prediction

In NRQCD, one single parameter determines both the χ_{c2}/χ_{c1} ratio and the two polarizations

$$r \equiv m_c^2 \left< \mathcal{O}_{\chi_{c0}} \left(^3S_1^{[8]} \right) \right> \left< \mathcal{O}_{\chi_{c0}} \left(^3P_0^{[1]} \right) \right>$$

Faccioli et al. derive $r = 0.217 \pm 0.003$ from CMS + ATLAS data (averaged) with acceptance corrections corresponding to the final polarization prediction (iterative procedure) and, therefore, no added “polarization uncertainty”
Comparison to a previous prediction

In NRQCD, one single parameter determines both the χ_{c2}/χ_{c1} ratio and the two polarizations

$$ r \equiv m_{c}^{2} \left\langle O_{\chi_{c0}}(^{3}S_{1}^{[8]}) \right\rangle - \left\langle O_{\chi_{c0}}(^{3}P_{0}^{[1]}) \right\rangle $$

Same theory inputs but different analyses of the experimental data lead to very different determinations of r

Shao et al.,
PRL 112 (2014) 182003
$$ r = 0.27 \pm 0.06 $$

Faccioli et al.,
EPJC 78 (2018) 268
$$ r = 0.217 \pm 0.003 $$
Summary: LHC vs. NRQCD

1) The mid-rapidity data show a simple universal unpolarized pattern

2) In particular, it is found that the p_T/M distributions of S- and P-wave states are almost identical

3) Despite its intrinsic complexity, NRQCD can reproduce this simple scenario

4) The surprisingly good success of NRQCD uncovers a strong prediction: the unmeasured χ_{c1} and χ_{c2} polarizations must be very different from one another
Further reading

• P. Faccioli, C. Lourenço and J. Seixas,
 "Rotation-invariant relations in vector meson decays into fermion pairs",

• P. Faccioli, C. Lourenço and J. Seixas,
 "New approach to quarkonium polarization studies",

• P. Faccioli, C. Lourenço, J. Seixas and H.K. Wöhri,
 "Towards the experimental clarification of quarkonium polarization",

• P. Faccioli,
 "Questions and prospects in quarkonium polarization measurements from proton-proton to nucleus-nucleus collisions",

• P. Faccioli, V. Knünz, C. Lourenço, J. Seixas and H.K. Wöhri,
 "Quarkonium production in the LHC era: a polarized perspective",

• P. Faccioli, C. Lourenço, M. Araújo, J. Seixas, I. Krätschmer and V. Knünz,
 "Quarkonium production at the LHC: a data-driven analysis of NRQCD’s predictions",

• P. Faccioli, C. Lourenço, M. Araújo, J. Seixas, I. Krätschmer and V. Knünz,
 "From identical S- and P-wave p_T spectra to maximally distinct polarizations: probing NRQCD with χ states",

• P. Faccioli, C. Lourenço, M. Araújo and J. Seixas,
 "Universal kinematic scaling as a probe of factorized long-distance effects in high-energy quarkonium production",
Higher energy, broader distribution
Distribution of pulls (7 TeV fit)

- $p_T/M > 2$
- $\chi^2/\text{ndf} = 215/193$
- J/ψ
- $\psi(2S)$
- χ_{c1}
- χ_{c2}
- Y(1S)
- Y(2S)
- Y(3S)

$J_z(\chi_{c1}) = \pm 1$

$J_z(\chi_{c2}) = \pm 2$

$J_z(\chi_{c1}) = J_z(\chi_{c2}) = 0$

- CMS
- ATLAS
- LHCb, ECAL
- LHCb, conversions