

Status of π^0 reconstruction

Mario Merola, Elisa Manoni, Claudia Cecchi, Guglielmo de Nardo

9th Belle II Italian meeting

23/05/18

Outline

- Official π^0 lists in software release-01
- π^0 and η in data

 π^0 lists in release-01-00

- 2
- Definition of photons and π^0 lists with fixed efficiency (max purity) based on energy, dt99 (time containing 99% of the signal), E1/E9 and invariant mass cuts

https://stash.desy.de/projects/B2/repos/software/browse/analysis/scripts/stdPhotons.py

• Lists optimized for Phase II backgrounds (BG16 campaign): "pi0eff20", 30, 40, 50, 60. Details in the Torben's talk:

https://kds.kek.jp/indico/event/25459/session/10/contribution/137/material/slides/0.pdf

• Define efficiency and purity as

$$\mathcal{E} = \frac{n(\gamma\gamma)_{matched \& sel}}{n(\pi^{0})_{truth}} \qquad \frac{\text{matched}: > 50\% \text{ of the generated photon energy is matched}}{\text{to the ECLCluster digits}}$$

$$\mathcal{P} = \frac{n(\gamma\gamma)_{matched \& sel}}{n(\gamma\gamma)_{sel}} \qquad \frac{\text{matched}: > 50\% \text{ of the generated photon energy is matched}}{\text{to the ECLCluster digits}}$$

$$\frac{\text{sel: selected by the pi0 list (in CDC acceptance)}}{\text{truth: MC pi0s}}$$

$$\frac{23/05/18}{23/05/18}$$

π^0 efficiency and purity in MC

3

Purity vs efficiency

- E_{FWD}: (20, 30, 50, 75) MeV
- EBRL: (20, 30, 50, 75) MeV=
- E_{BWD}: (20, 30, 50, 75) MeV
- abs(t/dt99): (0.5, 1.0) for E < (0, 100) MeV</p>
- ▶ E1oE9: 0.5 for E < (0, 75) MeV

Each curve is obtained increasing the pi0 mass window

π^0 resolution in MC

4

σ (MeV)	eff20	eff40	eff60
phase II – bg1	5.0	5.5	5.4
phase III – bg0	4.2	4.0	4.0
phase III – bg1	6.8	7.2	8.0 (eff50)

- Reasonable resolution, sensitive to bkg level
- Expected small shift in the central mass value towards lower π⁰ mass due to photon low energy tails

π^0 and η in the first data and comparison with phase 2 MC

Data

- Experiment 3, runs 112-1355 (25 April 12 May), corresponding to an integrated luminosity of about 5.6 / 5.9 pb⁻¹ (measured with Bhabha / $\gamma\gamma$ events)
- Skimmed with 'hlt_hadron' flag, i.e. at least 3 tracks from the IP region and veto on Bhabha events.

Selection: π^0 and η candidates are reconstructed pairing photons passing the following cuts:

- $E_{\gamma} > 150 \text{ MeV}$ (>300 MeV for η)
- #crystals per ecl cluster > 1.5
- E9/E21 > 0.9
- $17^{\circ} < \theta < 150^{\circ}$ (CDC acceptance)

Good tracks: pt>0.15GeV, |d0|< 2 cm, |dz|< 5 cm

π^0 and η in the first data and comparison with phase 2 MC

Data / MC samples skimmed with 'hadron_hlt':

Data: /ghi/fs01/belle2/bdata/users/karim/skims/release-01-02-03/DB00000382/prod0000002/e0003/

MC: /ghi/fs01/belle2/bdata/users/jbennett/release-01-00-02/DB00000294/MC10/

The skimmed MC samples (qqbar, tau pairs and generic BB) are Phase 2 MC10 with beam background.

π^0 and η in the first data and comparison with phase 2 MC

7

- 8
 - Pi0 resolution determination depending on Crystal Ball + Chebyshev pol. fit stability. Consider instead fitting the pi0 peak and then taking the 68% range on the right and left: sigma_68 = (left_68+right_68)/2
 - First look at data, clear pi0 and eta peaks. Comparison with MC10 shows a reasonable agreement with the following caveat:
 - 1 cm shift of the IP point for some runs \rightarrow impact on photon kinematics
 - Energy scale correction of about 2% → precise (crystal-by-crystal) calibration needed
 - ECL timing shift by -45 ns (to be fixed in FPGAs) → overestimation of background and energy corrections
 - Next steps:
 - Beam bkg overlay using real bkg events ?
 - MC normalization to data using official luminosity measurements

From Torben's talk at Software Workshop

Assuming $L = 4.5 \text{ pb}^{-1}$

9_

23/05/18

- Default K₁ particle lists for analysis have been defined
- Currently they are based on KLM clusters only:
 - all: for study and debugging
 - veryloose: 0.5 < E < 10 GeV, -10 < t < 100 ns</p>
 - Ioose (default): requires in addition KIId* (from MVA) > 0.04
 - tight: Klld > 0.2
- Cuts (as well as KIId) are tuned on K_L from generic BB
- Available in master (b1cdef50b9638f220467c6a588b1be16dd363586)
- Definitions will be refined as we gain experience in K₁ analyses

KL lists efficiencies

For generic BB:

Bkg 0x Bkg 1x

	all	veryloose	loose	tight
Eff. (%)	23.5 <mark>(24.6</mark>)	20.6 (21.8)	18.9 (20.2)	10.1 (10.9)
S/S+N (%)	7.7 (5.2)	7.7 (7.2)	18.0 (13.8)	34.5 <mark>(33.6</mark>)
Multip./evt	2.6 (3.4)	2.3 (2.7)	1.5 (1.8)	1.2 (1.2)

- In general single K_L cluster multiplicity > 1
- Efficiency = (# K_L with al least 1 matched cluster) / (# MCTruth-K_Ls)
- Purity = (# Truth-matched clusters) / (all clusters)

Note about MC matching

- 13
- Difference between nominal and "measured" efficiency due to the different definitions of mc matching at analysis level and at ecl clusters level
 - <u>at analysis level</u> I simply require that the reconstructed photon has at least 50% of the energy of the true photon ***
 - <u>at ecl cluster level</u> we require that at least 50% of true photon energy is deposited in the crystals belonging to that cluster (crystals can be shared among different clusters)

*** Caveat: the modular analysis MC matching **by default** requires that the fraction of the energy deposited by the MC particle in the crystals belonging to the cluster is at least 20% of the total cluster energy and at least 30% of the true photon energy \rightarrow need to be studied and optimized

https://confluence.desy.de/display/BI/Photon+and+ECL+variables

π⁰ lists for Phase 2 (Torben Ferber)

Purity vs efficiency: example ε=0.4

	eff	pur	massmin	massmax	eminfwd	eminbrl	eminbwd	emindt99	dt99	emineloe9	eloe9
275	0.4	0.2781	0.1227	0.1413	0.075	0.03	0.075	0.1	0.5	0.1	0.5
284	0.4	0.2769	0.1195	0.1435	0.075	0.03	0.050	0.1	0.5	0.1	0.5
270	0.4	0.2739	0.1240	0.1405	0.075	0.03	0.075	0.1	1.0	0.1	0.5
205	0.4	0.2734	0.1064	0.1571	0.075	0.05	0.075	0.1	1.0	0.1	0.5
207	0.4	0.2734	0.1064	0.1571	0.075	0.05	0.075	0.1	0.5	0.0	0.5

Photons in data

Systematics / real data

- We can use control samples to compare shower shape variables and timing distributions in MC and data.
- Muon pairs / random triggers to study background clusters.
- Hadronic split offs are not so easy.
- But how to put this all together? If cutting on the likelihood in MC gives an efficiency ε, what is the systematic error on ε? Requires much thought.

Chris Hearty