CHALLENGES IN SEMILEPTONIC B DECAYS

Paolo Gambino
Università di Torino \& INFN, Torino

Torino, 22 May 2018

The importance of $\left|V_{c b}\right|$

The most important CKM unitarity test is the Unitarity Triangle (UT) V_{cb} plays an important role in UT $\varepsilon_{K} \approx x\left|V_{c b}\right|^{4}+\ldots$, $\propto\left|V_{t b} V_{t s}\right|^{2} \simeq\left|V_{c b}\right|^{2}\left[1+O\left(\lambda^{2}\right)\right]$
where it often dominates the theoretical uncertainty.
$\mathrm{V}_{\mathrm{ub}} / \mathrm{V}_{\mathrm{cb}}$ constrains directly the UT

Since several years, exclusive decays prefer smaller $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$

STATUS of $V_{c b}$ and $V_{u b}$

New $V_{\text {ub }}$ incl by Babar in agreement with exclusive PRD 95 (2017) 7, 072001

New HPQCD $B \rightarrow D^{*}$ result at zero recoil arXiv:1711.11013

New Belle $B \rightarrow D^{*}$ result: with FNAL $V_{c b}=37.4(1.3) 10^{-3}$ arXiv:1702.01521

UNLIKELY PLACE FOR NEW PHYSICS?

The difference in V_{cb} incl vs excl D^{*} with FNAL/MILC form factor is large: 3σ or about 8%. The perturbative corrections to inclusive V_{cb} total $5 \% \ldots$

Right Handed currents now excluded since

$$
\begin{aligned}
& \left|V_{c b}\right|_{i n c l} \simeq\left|V_{c b}\right|\left(1+\frac{1}{2}|\delta|^{2}\right) \\
& \left|V_{c b}\right|_{B \rightarrow D^{*}} \simeq\left|V_{c b}\right|(1-\delta) \\
& \left|V_{c b}\right|_{B \rightarrow D} \simeq\left|V_{c b}\right|(1+\delta)
\end{aligned}
$$

Chen,Nam,Crivellin,Buras,Gemmler, Isidori,Mannel,...
$\delta=\epsilon_{R} \frac{\tilde{V}_{c b}}{V_{c b}} \approx 0.08$

Most general SU(2) invariant dim 6 NP (without RH light neutrino) can explain results, but it is incompatible with $\mathrm{Z} \rightarrow \mathrm{b} \overline{\mathrm{b}}$ data

Crivellin, Pokorski 1407.1320
(though this may not apply to the tensor operator Colangelo, De Fazio)

RH CURRENTS DON'T HELP Vub EITHER

- Can ease $\left|\mathrm{V}_{\mathrm{ub}}\right|$ tension by allowing small righthanded contribution to Standard-Model weak current [Crivellin, PRD81 (2010) 031301]
- RH currents disfavored by \wedge_{b} decays (taking $\left|\mathrm{V}_{\mathrm{cb}}\right|$ from $B \rightarrow D^{*} l v+$ HFAG to obtain $\left|\mathrm{V}_{\mathrm{ub}}\right|$)
 [based on Bernlochner et al., PRD 90, 094003 (2014)]
R. van de Water

Also here $\mathrm{SU}(2) \mathrm{xU}(1)$ invariant NP cannot explain discrepancies 1407.1320

LEPTON FLAVOUR UNIVERSALITY VIOLATION?

SEMILEPTONIC B DECAYS

Allow for the determination of $V_{c b}$, which drops out of $R\left(D, D^{*}\right)$. There are $1(2)$ and $3(4)$ FFs for D and D^{*} for light (heavy) leptons, for instance

$$
\left\langle D\left(p^{\prime}\right)\right| \bar{c} \gamma^{\mu} b|\bar{B}(p)\rangle \Leftrightarrow f_{+, 0}\left(q^{2}\right)
$$

INCLUSIVE vs EXCLUSIVE B DECAYS

Even when a lattice QCD calculation is available, it is generally limited to the high q^{2} region: need parametrization

MODEL INDEPENDENT FF PARAMETRIZATION

CROSSING + ANALITYCITY

UNITARITY CONSTRAINTS

$$
\begin{gathered}
\left(-g^{\mu \nu}+\frac{q^{\mu} q^{\nu}}{q^{2}}\right) \Pi^{T}\left(q^{2}\right)+\frac{q^{\mu} q^{\nu}}{q^{2}} \Pi^{L}\left(q^{2}\right) \equiv i \int d^{4} x e^{i q x}\langle 0| T J^{\mu}(x) J^{\dagger \nu}(0)|0\rangle \\
\chi^{L}\left(q^{2}\right)=\frac{\partial \Pi^{L}}{\partial q^{2}}, \quad \chi^{T}\left(q^{2}\right)=\frac{1}{2} \frac{\partial^{2} \Pi^{T}}{\partial\left(q^{2}\right)^{2}}
\end{gathered}
$$

SATISFY UNSUBTRACTED DISP REL, PERT CALCULATION FOR $q^{2}=0$ Boyd, Grinstein, Lebed 1995

$$
\begin{aligned}
& \chi_{V}^{T}(0)=\left[5.883+0.552_{\alpha_{s}}+0.050_{\alpha_{s}^{2}}\right] 10^{-4} \mathrm{GeV}^{-2}=6.486(48) 10^{-4} \mathrm{GeV}^{-2} \\
& \chi_{V}^{L}(0)=\left[5.456+0.782_{\alpha_{s}}-0.034_{\alpha_{s}^{2}}\right] 10^{-3}=6.204(81) 10^{-3} \& \text { analogous for axial etc }
\end{aligned}
$$

USING UP-TO-DATE QUARK MASSES AND 3LOOP CALCULATION Grigo et al 2012

$$
\tilde{\chi}^{T}(0)=\chi^{T}(0)-\sum_{n=1,2} \frac{f_{n}^{2}\left(B_{c}^{*}\right)}{M_{n}^{4}\left(B_{c}^{*}\right)} \quad \begin{gathered}
\text { SUBTRACT } \\
\text { BOUND STATE } \\
\text { CONTRIBUTIONS }
\end{gathered}
$$

Type	Mass (GeV)	Decay constants (GeV)
1^{-}	$6.329(3)$	$0.422(13)$
1^{-}	$6.920(20)$	$0.300(30)$
1^{-}	7.020	
1^{-}	7.280	
0^{+}	6.716	
0^{+}	7.121	

UNITARITY CONSTRAINTS

$$
z=\frac{\sqrt{1+w}-\sqrt{2}}{\sqrt{1+w}+\sqrt{2}} \quad w=\frac{m_{B}^{2}+m_{D^{*}}^{2}-q^{2}}{2 m_{B} m_{D^{*}}} \quad 0<z<0.056
$$

TRUNCATED AT ORDER N

$$
\sum_{n=0}^{N}\left(a_{n}^{i}\right)^{2}<1
$$

WEAK UNITARITY CONSTRAINTS assuming saturation by single hadron channel

LATTICE + EXP FIT for B \rightarrow DIv

Bigi, PG 1606.08030

LATTICE + EXP FIT for B \rightarrow DIv

Bigi, PG 1606.08030

Experiment [HFLAV update]
0.407(39)(24)

2016/17 theory results, using new lattice and exp. data:

[Bigi Gambino 1606.08030]	$0.299(3)$	2.4σ
[Bernlochner Ligeti Papucci Robinson 1703.05330]	$0.299(3)$	2.4σ
[Jaiswal Nandi Patra 1707.09977]	$0.302(3)$	2.3σ

[Fajfer Kamenik Nisandzic 1203.2654]
[Celis Jung Li Pich 1210.8443]
[Tanaka Watanabe 1212.1878]

$0.296(16)$	2.3σ
$0.296\binom{8}{6}(15)$	2.3σ
$0.305(12)$	2.2σ

LATTICE ONLY RESULTS
HPQCD 2015: 0.300(8), FNAL/MILC 2015: 0.299(11)

Strong Unitarity Bounds

Information on other channels makes the constraints tighter. HQS implies that all $B^{(*)} \rightarrow D^{(*)}$ ff either vanish or are prop to the Isgur-Wise function: any ff F_{j} can be expressed as

$$
F_{j}(z)=\left(\frac{F_{j}}{F_{i}}\right)_{\mathrm{HQET}} F_{i}(z)
$$

which leads to (hyper)ellipsoids in the ai space for S, P,V, A currents

Caprini Lellouch Neubert (CLN, 1998) exploit NLO HQET relations between form factors + QCD sum rules to reduce parameters for ff... up to $<2 \%$ uncertainty, never included in exp analysis.

$$
h_{A 1}(z)=h_{A 1}(1)\left[1-8 \rho^{2} z+\left(53 \rho^{2}-15\right) z^{2}-\left(231 \rho^{2}-91\right) z^{3}\right]
$$

nice: only 2 parameters! but theoretical uncertainty?

$\left|V_{c b}\right|$ from $B \rightarrow D^{*} / v$ (usual way)

So far LQCD gives only light lepton FF at zero recoil, $w=I$, where rate vanishes. Experimental results must therefore be extrapolated to zerorecoil

Exp error only ~ I.3\%: $\quad \mathcal{F}(I) \eta_{\text {ew }}\left|V_{c b}\right|=35.6 \mid(45) \times 10^{-3}$
(extrapolation with CLN parameterization)
Two unquenched lattice calculations

$$
\mathcal{F}(I)=0.906(I 3)
$$

Bailey et al I403.0635 (FNAL/MILC)
Using their average 0.904(I2):

$$
\mathcal{F}(\mathrm{I})=0.895(26)
$$

Harrison et al I7II.IIOI3 (HPQCD)
$\left|V_{c b}\right|=39.13(75) 10^{-3}$
$\sim 2.9 \sigma$ or $\sim 7 \%$ from inclusive determination 42.00 (65) 10^{-3}
PG,Healey,Turczyk 2016

2017 preliminary Belle analysis

w and angular deconvoluted distributions (independent of parameterization). All previous analyses are CLN based.

Bands show two parametrizations both fitting data well, with 6% different V_{cb}

HQS breaking in FF relations

HQET: $F_{i}(w)=\xi(w)\left[1+c_{\alpha_{s}}^{i} \frac{\alpha_{s}}{\pi}+c_{b}^{i} \epsilon_{b}+c_{c}^{i} \epsilon_{c}+\ldots\right] \quad \epsilon_{b, c}=\bar{\Lambda} / 2 m_{b, c}$
$\mathrm{Cb}_{\mathrm{b}, \mathrm{c}}$ can be computed using subleading IW functions from QCD sumrules
Neubert, Ligeti, Nir I992-93, Bernlochner et al I703.05330
RATIOS $\quad \frac{F_{j}(w)}{V_{1}(w)}=A_{j}\left[1+B_{j} w_{1}+C_{j} w_{1}^{2}+D_{j} w_{1}^{3}+\ldots\right] \quad w_{1}=w-1$
Roughly $\quad \epsilon_{c} \sim 0.25, \quad \epsilon_{c}^{2} \sim 0.06 \quad$ but coefficients??
In a few cases we can compare these ratios with recent lattice results: there are $5-13 \%$ differences, always > NLO correction. For ex.:

$$
\left.\frac{A_{1}(1)}{V_{1}(1)}\right|_{\mathrm{LQCD}}=0.857(15),\left.\quad \frac{A_{1}(1)}{V_{1}(1)}\right|_{\mathrm{HQET}}=0.966(28)
$$

The size of NLO corrections varies strongly. Some ff are protected by Luke's theorem (no I/m corrections at zero recoil), others are linked by kinematic relations at max recoil to those protected

NNLO corrections can be sizeable and are naturally $\mathrm{O}(10-20) \%$
$\frac{F_{j}(w)}{V_{1}(w)}=A_{j}\left[1+B_{j} w_{1}+C_{j} w_{1}^{2}+D_{j} w_{1}^{3}+\ldots\right]$

F_{j}	A_{j}	B_{j}	C_{j}	D_{j}
S_{1}	1.0208	-0.0436	0.0201	-0.0105
S_{2}	1.0208	-0.0749	-0.0846	0.0418
S_{3}	1.0208	0.0710	-0.1903	0.0947
P_{1}	1.2089	-0.2164	0.0026	-0.0007
P_{2}	0.8938	-0.0949	0.0034	-0.0009
P_{3}	1.0544	-0.2490	0.0030	-0.0008
V_{1}	1	0	0	0
V_{2}	1.0894	-0.2251	0.0000	0.0000
V_{3}	1.1777	-0.2651	0.0000	0.0000
V_{4}	1.2351	-0.1492	-0.0012	0.0003
V_{5}	1.0399	-0.0440	-0.0014	0.0004
V_{6}	1.5808	-0.1835	-0.0009	0.0003
V_{7}	1.3856	-0.1821	-0.0011	0.0003
A_{1}	0.9056	-0.0704	-0.0580	0.0276
A_{2}	0.9656	-0.0280	-0.0074	0.0023
A_{3}	0.9656	-0.0629	-0.0969	0.0470
A_{4}	0.9656	-0.0009	-0.1475	0.0723
A_{5}	0.9656	0.3488	-0.2944	0.1456
A_{6}	0.9656	-0.2548	0.0978	-0.0504
A_{7}	0.9656	-0.0528	-0.0942	0.0455

Updating Strong Unitarity Bounds

Fit to new Belle's data + total branching ratio (world average) in I707.09509 with UPDATED strong unit. bounds (including uncertainties \& LQCD inputs) for reference $C L N$ fit $V_{c b} \mid=0.0392(12)$

BGL Fit:	Data + lattice	Data + lattice + LCSR	Data + lattice	Data + lattice + LCSR
unitarity	weak	weak	strong	strong
$\chi^{2} /$ dof	$28.2 / 33$	$32.0 / 36$	$29.6 / 33$	$331 / 36$
$\left\|V_{c b}\right\|$	$0.0424(18)$	$0.0413(14)$	$0.0415(13)$	$0.0406\left({ }_{-13}^{+12}\right)$

LCSR: Light Cone Sum Rule results from Faller et al, 0809.0222
Using strong unitarity bounds brings BGL closer to CLN and reduce uncertainties but 3.5-5\% difference persists

CONSISTENCY WITH HQET

Comparison of $\mathrm{R}_{1,2}$ from BGL fit vs HQET+QCD sum rule predictions (with parametric $+15 \%$ th uncertainty)
black points from preliminary FNAL-MILC calculation according to Bernlochner et al I 708.07I34 (before continuum and chiral extrapolations...)

- HQET R_{1} HQET R_{2}
- BGL R_{1}
- BGL R_{2}

- HQET R_{1} HQET R_{2}
$-\mathrm{BGL}+\mathrm{LCSR} R_{1}$
$-\mathrm{BGL}+\mathrm{LCSR} R_{2}$

CALCULATION of $R\left(D^{*}\right)$

$$
\begin{aligned}
& \frac{d \Gamma_{\tau}}{d w}=\frac{d \Gamma_{\tau, 1}}{d w}+\frac{d \Gamma_{\tau, 2}}{d w}\left\{\begin{array}{l}
\frac{d \Gamma_{\tau, 1}}{d w}=\left(1-\frac{m_{\tau}^{2}}{q^{2}}\right)^{2}\left(1+\frac{m_{\tau}^{2}}{2 q^{2}}\right) \frac{d \Gamma}{d w}, \\
\frac{d \Gamma_{\tau, 2}}{d w}=k \frac{m_{\tau}^{2}\left(m_{\tau}^{2}-q^{2}\right)^{2} r^{3}(1+r)^{2}\left(w^{2}-1\right)^{\frac{3}{2}}}{\left(q^{2}\right)^{3}} \underbrace{P_{1}(w)^{2}}_{ \pm 30 \%!!}
\end{array}\right. \\
& R\left(D^{*}\right)=R_{\tau, 1}\left(D^{*}\right)+R_{\tau, 2}\left(D^{*}\right) \\
& R_{\tau, 1}\left(D^{*}\right)=\frac{\int_{1}^{w_{\tau, \text { max }}} d w d \Gamma_{\tau, 1} / d w}{\int_{1}^{w_{\max }} d w d \Gamma / d w} . \\
& w_{\max } \approx 1.56, \quad w_{\tau, \max } \approx 1.35 \\
& R_{\tau, 2}\left(D^{*}\right)=\frac{\int_{1}^{w_{\tau, \max }} d w d \Gamma_{\tau, 2} / d w}{\int_{1}^{w_{\max }} d w d \Gamma / d w} .
\end{aligned}
$$

P_{1} is a new FF, for which no lattice calculation
is yet available, but its contribution is only $\sim 10 \%$$R_{\tau, 1} \sim 90 \% R_{\tau} \quad R_{\tau, 2} \sim 10 \% R_{\tau}$
Again, normalize P_{1} to one of the FF with proper uncertainties

$$
P_{1}=\left(P_{1} / V_{1}\right)_{\mathrm{HQET}} V_{1}^{\text {exp }} \quad P_{1}=\left(P_{1} / A_{1}\right)_{\mathrm{HQET}} A_{1}^{\text {exp }} \quad P_{1}=\xi(w)(1+\ldots)_{\mathrm{HQET}}
$$

Important endpoint constraint

$$
P_{1}\left(w_{\max }\right)=A_{5}\left(w_{\max }\right)=0.545 \pm 0.025
$$

$$
R\left(D^{*}\right)=0.260(5)(6)=0.260(8)
$$

Consistent with previous estimates but with larger uncertainty

Experiment [HFLAV update]
0.304(13)(7)

2017 theory results, using new lattice and exp. data:

[Bernlochner Ligeti Papucci Robinson 1703.05330]	$0.257(3)$	3.1σ
Our result [Bigi Gambino Schacht 1707.09509]	0.260(8)	2.6σ
[Jaiswal Nandi Patra 1707.09977]	$0.257(5)$	3.0σ

2012 theory results:
[Fajfer Kamenik Nisandzic 1203.2654]
[Celis Jung Li Pich 1210.8443]
[Tanaka Watanabe 1212.1878]
0.252(3)
3.5σ
0.252(2)(3) $\quad 3.4 \sigma$
0.252(4)
3.4σ

SUMMARY

- Is the V_{cb} puzzle resolved? No, but a few pieces fit together. The uncertainty of $\mathrm{B} \rightarrow \mathrm{D}^{*} \mathrm{l} v$ was underestimated and the result was likely biased: old data should be reanalysed.
- We revisited main ideas behind CLN, using LQCD \& exp results and conservative theory uncertainties, and obtained new strong unitarity bounds. We do not give a simplified parametrization. Our results provide a framework for future exp analyses. Lattice will soon settle the matter with calculations at non-zero recoil.
- For $R\left(D^{*}\right)$ we know little about P, and we have to rely on HQET + QCD sum rules. Hence a larger uncertainty, but the anomaly persists. The upcoming LQCD determination of P । at zero recoil could cut the uncertainty by ~ 2.
- Lessons for Belle-Il: avoid CLN, document your results in model-indep way to facilitate reanalyses, update backgrounds...

INCLUSIVE DECAYS: BASICS

- Simple idea: inclusive decays do not depend on final state, long distance dynamics of the B meson factorizes. An OPE allows to express it in terms of B meson matrix elements of local operators
- The Wilson coefficients are perturbative, matrix elements of local ops parameterize non-pert physics: double series in $\alpha_{s}, \Lambda / m_{b}$
- Lowest order: decay of a free b, linear Λ / m_{b} absent. Depends on $m_{b, c}, 2$ parameters at $\mathrm{O}\left(1 / \mathrm{mb}^{2}\right), 2$ more at $\mathrm{O}\left(1 / \mathrm{mb}^{3}\right) \ldots$

CUTS IN $B \rightarrow X_{u} l v$

Experiments often use kinematic cuts to avoid the $\mathrm{b} \rightarrow \mathrm{clv}$ background:

$$
m_{X}<M_{D} \quad E_{\ell}>\left(M_{B}^{2}-M_{D}^{2}\right) / 2 M_{B} \quad q^{2}>\left(M_{B}-M_{D}\right)^{2} \ldots
$$

The cuts destroy convergence of the OPE that works so well in $b \rightarrow c$. OPE expected to work only away from pert singularities

Rate becomes sensitive to local b-quark wave function properties like Fermi motion. Dominant nonpert contributions can be resummed into a SHAPE FUNCTION $f\left(k_{+}\right)$.
Equivalently the SF is seen to emerge from soft gluon resummation

HOW TO ACCESS THE SF?

$$
\frac{d^{3} \Gamma}{d p_{+} d p_{-} d E_{\ell}}=\frac{G_{F}^{2}\left|V_{u b}\right|^{2}}{192 \pi^{3}} \int d k C\left(E_{\ell}, p_{+}, p_{-}, k\right) F(k)+O\left(\frac{\Lambda}{m_{b}}\right)
$$

$\underset{\text { e.g. at } \mathrm{q}^{2}=\mathrm{o}}{\text { OPE constaints }} \int_{-\infty}^{\bar{\Lambda}} k^{2} F(k) d k=\frac{\mu_{\pi}^{2}}{3}+O\left(\frac{\Lambda^{3}}{m_{b}}\right)$ etc.

Predictions based on resummed pQCD

Dress Gluon
Exponentiation, ADFR

Subleading SFs

Predictions based on resummed pQCD Dress Gluon Exponentiation, ADFR	OPE constraints + parameterization without/with resummation GGOU, BLNP

Fit semileptonic (and radiative) data SIMBA, NNVub

$V_{u b} \mid$ DETERMINATIONS

Inclusive: 5\% total error

HFAG 2014	Average IV
DGE	$4.52(16)(16)$
BLNP	$4.45(16)(22)$
GGOU	$4.51(16)(15)$

UT fit (without direct $\mathrm{V}_{\text {ub }}$):

$$
V_{u b}=3.66(12) 10^{-3}
$$

Recent experimental results are theoretically cleanest (2%) but based on background modelling.
 Signal simulation also relies on theoretical models...

NEW Babar endpoint analysis 1611.05624

High sensitivity of the BR on the shape of the signal in the endpoint region. Single most precise measurement to date, not yet in HFAG

$$
\text { GGOU: }\left|V_{u b}\right|=\left(3.96 \pm 0.10_{e x p} \pm 0.17_{t h}\right) \times 10^{-3}
$$

What happens if same is done in other BaBar analyses? What's going on with BLNP? NB Belle multivariate analysis uses GGOU+DN for the inclusive part

SHAPE FUNCTIONS IN GGOU

$$
W_{i}\left(q_{0}, q^{2}\right) \sim \int d k_{+} F_{i}\left(k_{+}, q^{2}, \mu\right) W_{i}^{\text {pert }}\left[q_{0}-\frac{k_{+}}{2}\left(1-\frac{q^{2}}{m_{b} M_{B}}\right), q^{2}, \mu\right]
$$

3 SFs, one for each form factor No subleading SFs, but SF depend on q^{2} through moments

In the past each SF parametrized by simple 2-parameter functional forms

THE NNVub PROJECT

- Use Artificial Neural Networks to parametrise SFs without bias and extract V_{ub} from theoretical constraints and data, together with HQE parameters in a model independent way (without assumptions on functional form). Similar to NNPDF. Applies to $\mathrm{b} \rightarrow \mathrm{ulv}, \mathrm{b} \rightarrow \mathrm{s} \gamma, \mathrm{b} \rightarrow \mathrm{sl}+\mathrm{l}-$
- Belle-ll will measure some kinematic distributions, thus constraining directly the shape functions. NNVub will provide a flexible tool to analyse data.
- NN provide unbiased parameterization of a continuous function: in the limit of infinite nodes they are universal approximators, highly non-linear functions
- Weights are trained to reproduce desired response: random weights undergo random modifications, retaining only those that improve response (e.g. better χ^{2}): genetic algorithm \rightarrow replicas
- Used in pattern recognition, computationally intensive, data-driven

Selection of NN replicas trained on the first three moments only. They are not sufficient. But we know photon spectrum in bsgamma: single peak dominance, not too steep

Beware: sampling can be biased by implementation, e.g. random initialization, or selection based on training speed

Comparison with 2007 paper, same inputs

NNVub GGOU(HFAG 2014)

Experimental cuts (in GeV or GeV^{2})	$\left\|V_{u b}\right\| \times 10^{3}$	$\left\|V_{u b}\right\| \times 10^{3}[15]$
$M_{X}<1.55, E_{\ell}>1.0$ Babar [44]	$4.30(20)\left({ }_{27}^{26}\right)$	4.29(20) ${ }_{22}^{21}$)
$M_{X}<1.7, E_{\ell}>1.0$ Babar [44]	$4.05(23)\binom{19}{20}$	$4.09(23)\binom{18}{19}$
$M_{X} \leq 1.7, q^{2}>8, E_{\ell}>1.0$ Babar[44]	$4.23(23)\left({ }^{28}\right)$	$4.32(23)(30)$
$E_{\ell}>2.0$ Babar [41]	$4.47(26)\left(\begin{array}{c}27 \\ 27\end{array}\right.$	$4.50(26)\binom{18}{25}$
$E_{\ell}>1.0$ Belle [45]	$4.58(27)\binom{10}{11}$	$4.60(27)\binom{10}{11}$

Inputs for constraints from sl fit by Alberti et al, 2014 with full uncertainties and correlations

The $b \rightarrow s \gamma$ spectrum
 E. Lunghi, M.Misiak, S.Schacht, PG in progress

Belle fully incl.

Babar sum excl.

Up-to-date theoretical description of spectrum to get i) leading $S F$ at $q^{2}=0$ for $V_{u b}$, ii) HQE elements to compare with s.l. fit iii) reliable extrapolation to low cuts.

PROSPECTS

- Learning @ Belle-II from kinematic distributions, e.g. M× spectrum
- OPE parameters checked/ improved in $b \rightarrow$ ulv (moments): global NN+OPE fit
- include all relevant information with correlations
- check signal dependence at endpoint
- full phase space implementation of $\boldsymbol{\alpha}_{s}{ }^{2}$ and $\boldsymbol{\alpha}_{s} / \mathrm{mb}^{2}$ corrections

- model/exclude high q^{2} tail

At Belle-II we can expect to bring inclusive V_{ub} at almost the same level as V_{cb}

BACKUP

Role of HQET relations in $V_{c b}$ extraction (prelim Belle data only)

- "practical" $\mathrm{CLN}:\left|\mathrm{V}_{\mathrm{cb}}\right|=38.2(1.5) \times 10^{-3}[1,5,6,7,8]$
- $\mathrm{CLN}+\mathrm{QCD}$ sumrule errors $+\mathrm{B} \rightarrow \mathrm{D}\left|\mathrm{V}_{\mathrm{cb}}\right|=38.5(1.1) \times 10^{-3}[2]$
- same + lattice at non-zero recoil $\left|\mathrm{V}_{\mathrm{cb}}\right|=39.3(1.0) \times 10^{-3}[2]$
- $\mathrm{BGL}+\mathrm{HQET}+\mathrm{B} \rightarrow \mathrm{D}$ with nuisance $\left|\mathrm{V}_{\mathrm{cb}}\right|=40.9(0.9) \times 10^{-3}[3]$
- BGL+strong unitarity $\left|\mathrm{V}_{\mathrm{cb}}\right| \sim 40.8(1.5) \times 10^{-3}[4]$
- BGL+weak unitarity $\left|\mathrm{V}_{\mathrm{cb}}\right|=41.7(2.0) \times 10^{-3}[5,6,7,8]$
[1] Belle coll. 1702.01521
[2] Bernlochner et al. 1703.05330
[3] Jaiswal, Nandi, Patra, 1707.09977
[4] Bigi, Gambino, Schacht 1707.09509
[5] Bigi, Gambino, Schacht 1703.06124
[6] Harrison et al. 1711.11013 (HPQCD)
[7] Bernlochner et al 1708.07134
[8] Grinstein, Kobach, 1703.08170

