TRACK-FINDING EFFICIENCY USING PARTIALLY RECONSTRUCTED $D^* \rightarrow D0[K\pi\pi\pi]\pi$ DECAYS

Eldar Ganiev, Diego Tonelli University of Trieste & INFN

OUTLINE

- April 2018 first physics data at Υ (4S) with only a slice of SVD.
- We started to explore whether we can assess Belle II trackfinding efficiency using CDC data only.
- Today: initial findings from MC study based on partially reconstructed $D^* \rightarrow D0[K\pi\pi\pi]\pi$ decays. (Byproduct: might get us an early-data assessment of performance for benchmark charm physics channels)

METHOD

- Use D^{*+} → D⁰(→ 4 charged tracks)π⁺_s decay. Sufficient kinematic constraints to reconstruct this decay even if one of the D⁰ tracks is missed: M(D^{*±}) 2010.26 ± 0.07 MeV M(D⁰) = 1864.84 ± 0.07 MeV M(π[±]) = 139.57018 ± 0.00035 MeV Q < 20 MeV.
- BF(D* \rightarrow D0[K $\pi\pi\pi$] π) = 5.4% . Phase 2 signal yield \approx 10⁶ events

$$\epsilon(track) = \frac{N_{full}(D^* \to D^0(\to K\pi\pi\pi)\pi_s)}{N_{part}(D^{*+} \to D^0(K\pi\pi[\pi])\pi_s^+)}$$

Similar to LHCb arXiv:1205.0897v2

STRATEGY

- Simulated signal-only events to get acquainted with the signal mass shapes and estimate the broadening due to partial reconstruction
- Apply a simple cut-based optimization on simulated phase-III events to identify a viable selection
- Explore the possibility to adapt the strategy to phase II data
- Apply the findings on real data

- Signal only. 5000 MC events
 - $e^+e^- \rightarrow ccbar \rightarrow [D^* \rightarrow D^0(\rightarrow K\pi\pi\pi)\pi_s]$ +anything
 - $e^+e^- \rightarrow$ anything generic MC7 samples
 - $e^+e^- \rightarrow BBbar mixed$
 - $e^+e^- \rightarrow uubar$
 - $e^+e^- \rightarrow ddbar$
 - $e^+e^- \rightarrow ssbar$
 - $e^+e^- \rightarrow ccbar$
 - $e^+e^- \rightarrow \tau^+\tau^-$

SIGNAL SHAPES

FULL RECONSTRUCTION SIMPLE INITIAL BASELINE CUTS

Get acquainted with tools and physics of fully reconstructed signal

- Truth-matching
- p(D*)_{CMS} > 2.5 GeV
- $Q = M(K^{-}\pi^{+}\pi^{-}\pi^{+}\pi_{s}^{+}) M(K^{-}\pi^{+}\pi^{-}\pi^{+}) M(\pi_{s}) < 100 \text{ MeV}$
- 1.8 < M(K⁻π⁺π⁻π⁺) < 1.92 GeV

Lack of vertex reconstruction does not spoil the mass resolution

PARTIAL RECONSTRUCTION π^+ IS MISSED APPLIED CUTS

- Truth-matching
- $p(K^{-}\pi^{+}\pi^{-}\pi_{s})_{CMS} > 2.5 \text{ GeV}$
- $Q = M(K^{-}\pi^{+}\pi[\pi]^{-}\pi_{s}^{+}) M(K^{-}\pi^{+}\pi^{-}[\pi]^{-}) M(\pi_{s}) < 100 \text{ MeV}$
- 1.0 < M(K⁻π⁺π⁻) < 1.9 GeV

PARTIAL RECONSTRUCTION D*+-D⁰ MASS DIFFERENCE

Partial reconstruction broadens the signal peak by factors 4-5

GENERIC MC PHASE3 GEOMETRY ONLY $e^+e^- \rightarrow anything$

CUTS OPTIMIZATION PRE-CUTS

Approximate the composition of a e+e- —> anything sample by merging the dominant components according to the cross sections of Table 19 of BTIP draft. Neglect beam-backgrounds

Table 19: Total production cross section from various physics processes from collisions at $\sqrt{s} = 10.58 \text{ GeV}$. $W_{\ell\ell}$ is the minimum invariant secondary fermion pair mass.

Physics process	Cross section [nb]	Selection Criteria	Reference
$\Upsilon(4S)$	1.110 ± 0.008	-	[16]
$uar{u}(\gamma)$	1.61	-	KKMC
$dar{d}(\gamma)$	0.40	-	KKMC
$sar{s}(\gamma)$	0.38	<u> </u>	ККМС
$car{c}(\gamma)$	1.30	-	KKMC
$e^+e^-(\gamma)$	$300 \pm 3 \text{ (MC stat.)}$	$10^{\circ} < \theta_e^* < 170^{\circ},$	BABAYAGA.NLO
		$E_e^* > 0.15 \mathrm{GeV}$	
$e^+e^-(\gamma)$	74.4	$p_e > 0.5 \text{GeV}/c$ and e in	-
		ECL	
$\gamma\gamma(\gamma)$	$4.99\pm0.05~(\mathrm{MC~stat.})$	$10^{\circ} < \theta_{\gamma}^{*} < 170^{\circ},$	BABAYAGA.NLO
		$E_{\gamma}^* > 0.15 \mathrm{GeV}$	
$\gamma\gamma(\gamma)$	3.30	$E_{\gamma} > 0.5 \mathrm{GeV}$ in ECL	-
$\mu^+\mu^-(\gamma)$	1.148		KKMC
$\mu^+\mu^-(\gamma)$	0.831	$p_{\mu} > 0.5 \text{GeV}/c$ in CDC	-
$\mu^+\mu^-\gamma(\gamma)$	0.242	$p_{\mu} > 0.5 \text{GeV}$ in CDC,	-
		$\geq 1 \gamma (E_{\gamma} > 0.5 \text{GeV})$ in 1	ECL
$\tau^+\tau^-(\gamma)$	0.919	-	KKMC
$ uar u(\gamma)$	0.25×10^{-3}	-	KKMC
$e^{+}e^{-}e^{+}e^{-}$	$39.7 \pm 0.1 \text{ (MC stat.)}$	$W_{\ell\ell} > 0.5 \mathrm{GeV}/c^2$	AAFH
$e^+e^-\mu^+\mu^-$	$18.9\pm0.1~(\mathrm{MC~stat.})$	$W_{\ell\ell} > 0.5 \mathrm{GeV}/c^2$	AAFH

PID(K) > 0.9 for kaons PID(K) < 0.1 for pions

CUTS OPTIMIZATION 'OPTIMIZATION VARIABLES'

- 1. Tracks' p-value
- Scalar sum of the D⁰ three daughter momenta. Skip unreconstructed track.
- 3. Momentum of soft pion
- 4. D* vertex p-value

Optimize $\frac{S}{\sqrt{S+B}}$ on the fully reconstructed D*-D⁰ mass difference.

Tracks' p-value > 0.0001 P(Kpipi) > 2.5 GeV P(soft pion) <0.45 GeV D* vertex p-value > 0.003

D*-D0 MASS DIFFERENCE

Full reconstruction

Mass difference for partially reconstructed candidates.

- Dedicated optimization ongoing -

GENERIC MC PHASE2 GEOMETRY ONLY $e^+e^- \rightarrow anything$

CUTS OPTIMIZATION

• Repeat same procedure using phase II MC. Didn't use any vertex information.

No major difference with respect to phase 3.

Don't get too excited – masses are off. Probably background

SUMMARY

- Exploring data-driven track-finding efficiency using $D^* \rightarrow D^0 (\rightarrow K \pi \pi \pi) \pi_s$ decays
- Currently studying a viable optimization for partially reconstructed D* signal
- If we sort this out might be applicable in phase 2 already