SVD Hit Time Calibration 9° BelleII Italian Meeting

 Torino, 23-24 May

Istituto Nazionale di Fisica Nucleare

Luigi Corona

23-05-2018

Introduction

- Hints on SVD Phase2 Configuration and signal readout
- Brief introduction on the Center of Gravity (CoG)
- How we did the CoG calibration using the timing informations of the CDC
- Final results on the resolution of the cluster time estimated by CoG
- Conclusions and future plans

Hints on SVD Phase2 Configuration

- SVD current configuration:
- 4 layers: L3, L4, L5, L6 (1 ladder each), positioned at $\varphi=0$
- Each layer has a different number of sensors: the L4, L5 and L6 have respectively 3 , 4 and 5 sensors of different types: BW + Origami and FW (slanted); the L3 has 2 smaller equal sensors

- Each sensor has 2 sides, U and V, with a different strips configuration:
- U-side strips are of type p and measure the φ direction
- V-side strips are of type n and measure the z direction

BW

Hints on signal readout

- The signal of the strips is read by an APV25 chip
- Each APV25 read 128 strips and sample the waveform of each strip with a clock that has a period of 31.45 ns
- APV25 \rightarrow provides 6 samples of the waveform
- from the 6 samples we reconstruct:
 the strip charge: the biggest charge of the 6 samples the strip hit time: it is the time at which the APV25 signal start rising

Waveform relative to a signal in a strip which is sampled by the APV25

Center of Gravity (CoG)

- How we estimate the hit time? Using the CoG!
- The CoG is a weighted mean of the time of the 6 samples with the charge

$$
\mathrm{traw}_{\mathrm{COG}}=\underline{\Sigma}_{n} \underline{\mathrm{~A}}_{n} \cdot \underline{\mathrm{~T}}_{n-}
$$

- $n: 6$ samples, $n=[0,1,2,3,4,5]$
- A_{n} : Charge of each sample
- T_{n} : Time of each sample

Center of Gravity (CoG)

- traw $_{\text {COG }}$ estimates the peak time

$$
\mathrm{traw}_{\mathrm{COG}}=\underline{\underline{\Sigma}}_{n} \underline{\mathrm{~A}}_{n} \cdot \mathrm{~T}_{n_{-}}
$$

$$
\Sigma_{n} \mathrm{~A}_{n}
$$

- We want the hit time
- traw $_{\text {COG }}$ has to be corrected
- The correction that we applied is the peaking time correction (strip-dependent)

Center of Gravity (CoG)

- p.t.
\rightarrow peaking time $=$ constants + rising time of the signal (stripdependent) (written on DB)
- $\mathrm{t}_{\mathrm{COG}}$ estimates the hit time

Clusters time

- SVDShaperDigits

Selection of strips

- SNR threshold > 5: filter for noisy strips
- Strips near the tracks extrapolated on the sensors

SimpleClusterizer

- Clusters (cluster dimension, cluster position, cluster time, ...)
- Cluster time $=$ weighted mean of the strip times with charge

CoG Calibration

- SVD + CDC Cosmics Run 2804 reconstruction
- Cluster time estimated by CoG (applying only the peaking time correction): $\mathrm{t}_{\mathrm{COG}}$
- Event time-zero estimated by CDC: t_{0}
- Scatter plot of t_{0} versus $t_{\text {COG }}$ distinguishing the different Trigger Bins

Trigger Bins

- The APV25 clock has a period of about 31.45 ns . The "check trigger clock" has a period of about 8 ns : it is more precise than APV25 clock.
- Each Trigger Bin (TB) is the 8 ns wide window and it contains the informations about:
- in which window the signal has arrived
- the shift in time between the SVD origin of time (first sample) and the CDC origin of time

CoG Calibration

- Cosmics run 2804
- $\mathrm{t}_{0}[\mathrm{~ns}]$ versus $\mathrm{t}_{\mathrm{COG}}[\mathrm{ns}]$
- $\mathrm{TB}=0, \mathrm{~TB}=1, \mathrm{~TB}=2, \mathrm{~TB}=3$

- Linear correlation between t_{0} and $\mathbf{t}_{\text {COG }}$!
- The TB are quite well separated for the V-side

CoG Calibration

- Cosmics run 2804
- t_{0} [ns] versus $\mathrm{t}_{\mathrm{COG}}[\mathrm{ns}]$
- left: Scatter plot, right: linear fit of the ProfileX of the scatter plot
- $\mathrm{f}(\mathrm{x})=m \cdot \mathrm{x}+q$

CoG Calibration

- Cosmics run 2804
- t_{0} [ns] versus $\mathrm{t}_{\mathrm{COG}}[\mathrm{ns}]$
- left: Scatter plot, right: linear fit of the ProfileX of the scatter plot
- $\mathrm{f}(\mathrm{x})=m \cdot \mathrm{x}+q$

CoG Calibration

Intercept q versus TB

Slope m versus TB

- The slope m and the intercept q are different for each TB
- General trend that we expect if the linear fit is good

CoG Calibration

- Time resolution defined as: $\Delta(\mathrm{T})=\mathrm{t}_{\mathrm{COG}}-\mathrm{t}_{0}$

Before the correction

CoG Calibration

- Time resolution defined as: $\Delta(\mathrm{T})=\mathrm{t}_{\mathrm{COG}}-\mathrm{t}_{0}$

Before the correction

CoG Calibration

- Correction to the CoG obtained by the linear fit of the ProfileX of the scatter plot t_{0} versus $t_{\text {COG }}$:

$$
\mathrm{t}_{\mathrm{COG}}^{\prime}=m \cdot \mathrm{t}_{\mathrm{COG}}+q
$$

- m and q have been obtained from the Cosmics run 2804 (reference run) and they have been used to correct the CoG in the Cosmics run 2712 (a generic run)
- Correction has been applied to all layers and all sensors (except the FW for Layers 4, 5 and 6) and to both sensors of the Layer 3

Results

- Run 2712, CoG resolution before correction

Results

- Run 2712, CoG resolution after correction using the parameters obtained by run 2804

Results

- Run 2712, CoG resolution before correction

Results

- Run 2712, CoG resolution after correction applied using the parameters obtained by the run 2804

Results

- Run 2712, CoG resolution of L3 V-side (both sensors) before correction

Results

- Run 2712, CoG resolution of L3 V-side (both sensors) after correction using the parameters obtained by run 2804

Results

- Run 2712, CoG resolution of L3 U-side (both sensors) before correction

Results

- Run 2712, CoG resolution of L3 U-side (both sensors) after correction using the parameters obtained by run 2804

Conclusions

- We observe a bigger improvement of resolution in V-side than in U -side as expected
- The improvement in CoG resolution in the V -side is quite good, $\sim 3.5 \mathrm{~ns}$ for the L 5 V -side and $\sim 3.6 \mathrm{~ns}$ for the L6 V-side (comparable with what we obtained from the test beam), indeed the resolution is convolved with the CDC resolution ($\sim 2 \mathrm{~ns}$)

Plan for the future

- Repeat the same studies for the collision runs, considering the clusters associated to the tracks

Backup slides

t_{0} distribution

t_{0} distribution

L5 U-side, BW+ Origami

L5 V-side, BW+ Origami

$\mathrm{t}_{\mathrm{COG}}$ distribution

L5 U-side, BW+ Origami

L5 V-side, BW+ Origami

CoG Calibration

- $\mathrm{t}_{0}[\mathrm{~ns}]$ versus $\mathrm{t}_{\mathrm{COG}}$ [ns],
- left: Scatter plot, right: linear fit of the ProfileX of the scatter plot

CoG Calibration

- $\mathrm{t}_{0}[\mathrm{~ns}]$ versus $\mathrm{t}_{\mathrm{COG}}$ [ns],
- left: Scatter plot, right: linear fit of the ProfileX of the scatter plot

CoG Calibration

- $\mathrm{t}_{0}[\mathrm{~ns}]$ versus $\mathrm{t}_{\mathrm{COG}}$ [ns],
- left: Scatter plot, right: linear fit of the ProfileX of the scatter plot

CoG Calibration

- $\mathrm{t}_{0}[\mathrm{~ns}]$ versus $\mathrm{t}_{\mathrm{COG}}$ [ns],
- left: Scatter plot, right: linear fit of the ProfileX of the scatter plot

CoG Calibration

- t_{0} [ns] versus $\mathrm{t}_{\mathrm{COG}}[\mathrm{ns}]$
- left: Scatter plot, right: linear fit of the ProfileX of the scatter plot

CoG Calibration

- t_{0} [ns] versus $\mathrm{t}_{\mathrm{COG}}[\mathrm{ns}]$
- left: Scatter plot, right: linear fit of the ProfileX of the scatter plot

CoG Calibration

- t_{0} [ns] versus $\mathrm{t}_{\mathrm{COG}}[\mathrm{ns}]$
- left: Scatter plot, right: linear fit of the ProfileX of the scatter plot

CoG Calibration

- t_{0} [ns] versus $\mathrm{t}_{\mathrm{COG}}[\mathrm{ns}]$
- left: Scatter plot, right: linear fit of the ProfileX of the scatter plot

CoG Calibration

L3 U-side, both sensors, run 2804
L3 V-side, both sensors, run 2804

CoG Calibration

L4 U-side, BW+ Origami, run 2804
L4 V-side, BW+Origami, run 2804

CoG Calibration

L6 U-side, BW+ Origami, run 2804

CoG Calibration

- L4 V-side BW + Origami
before correction

after correction

CoG Calibration

- L4 U-side BW + Origami
before correction

after correction

CoG Calibration

- L6 V-side BW + Origami
before correction

after correction

CoG Calibration

- L6 U-side BW + Origami
before correction

after correction

U-side and V-side different waveform

- The V-side and U-side have different waveform, due to the fact that electron are faster than holes: this could contributes to the different estimation of CoG

- The U-side resolution for the L3 U-side is influenced by the fact that we are joining both sensors but we realized that they are different

Splitting of the Clusters

- Different entries between U and V due probably to not physics events or to signals which start in event and propagates in the following event or to splitting of clusters

- This problem maybe will be not a problem with collision tracks because the clusters are smaller

Hints on SVD configuration

- Each sensor has 2 sides, U and V, with a different strips configuration: the strips of the U -side are of type p and measure the φ direction while the strips of V-side are of type n and measure the z direction

- U-sides are those that watch through the I.P.
- y
- V-sides are those that watch through the CDC

