#### ECL Status, Upgrade and First Data Belle II Italia - May 23<sup>rd</sup> 2018

#### C. Cecchi Università di Perugia & INFN-PG



### Outline

- Few words on the upgrade status
- ECL: status of the detector
- First data
- Summary and conclusions

## **R&D on Wavelength Shifters**

 Novel wavelength (WLS) plates containing nanostructured organosilicon luminophores provides essential increase in light output





Select mainly the short time emission and cut the long tail



INFN

• Results:



Enhancement on signal of a factor of about 3 (n.b. test <sup>23/05/2018</sup>performed with G=50 LAAPD)



Radiation hardness tests on NOL9 WLS: no irradiation effects on excitation/emission peaks up to Belle II Italia 105 Gy

#### Attaching APD's on edge side 💓 🏹



In this measurement, the APD's are attached on one side of the edge due to the limited space of our shield box.

A factor of 1.3 is earned by this configuration.

In total, in comparison with the coupling of APD's to the crystal, we <sup>23/05/2</sup>earned a factor of 4.



#### MC campaign 2017 and performance





#### FWD CsI(Tl) vs pure Cs(l) phase3 BKG x1, x2, x3



Reconstruction used for pure CsI has not been optimised

Pure CsI@100MeV (BKGx2) =  $8\% \rightarrow$  which is the best reachable resolution?

Phase2 data very important for the understanding of the background 23/05/2018 Belle II Italia

#### Status of ECL



- All channels works correctly
- Some of them have higher noise
- Pile-up noise induced by LER quite high
- Beam background study is ongoing



#### Small time shift of about 30ns needs to be recalibrated → done



7



#### ECL Luminosity monitor measurement

- Online luminosity is measured and consistent with offline analysis



The integral online luminosity is kept on KEKCC up to run 2141, after that runs have to be recovered



#### ECL reconstructed energy



# **Energy calibration**

- Calibration of individual crystals looks reasonable close.
- Calibration uses the ratio of observed to MC predicted energy in single crystals.
- Summing over all crystals, the average calibration appears to be ~1% low.



- $\gamma\gamma$  skim is useful for this calibration.
- 1–2 fb-1 sample will give ~1% calibration for >95% of crystals. Requires loosening timing cut by 5× given the current poor timing calibration.
- Effective luminosity of muon pair sample, which we also use for calibration, is half that of the yw sample. Not clear that we have a two-track trigger, which we need for this sample.



### Selezione

- almeno 2 clusters
- almeno 3 GoodTracks (abs(dz)<5.0 cm and abs(dr)<2.0 cm and pt>0.15 MeV/c)
- > 1.5 Hit nel calorimetro
- E\_cluster>300 MeV
- E9/E21 > 0.9

| Table 8     |            |    |     |
|-------------|------------|----|-----|
| Geometrical | parameters | of | ECL |

| Item             | $\theta$ coverage | $\theta$ seg. | $\phi$ seg. | No. of crystals |
|------------------|-------------------|---------------|-------------|-----------------|
| Forward end-cap  | 12.4–31.4°        | 13            | 48-144      | 1152            |
| Barrel           | 32.2-128.7°       | 46            | 144         | 6624            |
| Backward end-cap | 130.7–155.1°      | 10            | 64–144      | 960             |

- theta\_gamma in CDC acceptance [17°,150°]
- barrel (fwd) pi0: 2 clusters con theta in [32.2°,128.7°] ([18,31.4])

#### $\gamma\gamma$ -invariant mass dopo i tagli (II)



# Confronto tra selezioni (I)

- Selezione lista standard pi0:eff20
  - E\_cluster>75 MeV (vs 300 MeV nella sel precedente)
- E9/E21 > 0.7 || E\_cluster>100 MeV
- theta\_gamma in CDC acceptance [17°,150°]
- timing\_cluster<0.1\*timing\_error\_cluster || E\_cluster>100 MeV

# Confronto tra selezioni (II)

#### γ-γ invariant mass



### Conclusions



- R&D on pure CsI is quite in the finishing line and requirements on equivalent noise energy and signal to noise have been fulfilled
- Best option for APD readout is 4-small APD's on the edge of the WLS
- Test beam at Novosibirsk end 2018 of a matrix of pure Csl
- Study of background level in phase2 is crucial
- ECL is working: all channels are good and functional
- Timing needs calibration
- Calibration with physics events needs to be implemented with more statistics
- First data  $\rightarrow$  pi zero peak observed with a "special" selection.
- pi zero official list cannot be used yet because of the timing calibration problem
- Peak is not calibrated a small shift of about 2-3% is observed



#### **BACKUP SLIDES**

#### Effect of pile-up increasing

 $M(\gamma\gamma)$  [GeV/c<sup>2</sup>]

- Optimization of the reconstruction for phase2 and phase3 needed once BKG better known
- Efficiency → has to be as highest as possible including low energy photons in presence of high beam background





23/05/2018



 $B \rightarrow K^* vv$ 

 Significance and shape variables not change observed from no BKG to BKG1

