Dark Energy with Galaxy Clustering

Euclid flagship simulation

Matteo Viel - SISSA (Trieste) 26/06/2018 Cosmos Meeting FERRARA

Dark Energy after Planck - I

Planck Paper XIV "Dark Energy and Modified Gravity" (2016)

Planck+BSH combination has a $\Delta \chi^2 = -0.8$ w.r.t. base LCDM

WL is CFHTLens: prefers w_0-w_a at 2σ w.r.t. LCDM, wants higher σ_8 and (not shown) high value of H_0

Implications for the small scale crisis of LCDM

Dark Energy after Planck - II

Dark Energy after Planck - III

Note further that Planck is providing a measurement of the sound horizon at the drag epoch with an error of 0.2% ...

Remarkable results from Planck experiment in constraining DE properties

1) In (w_0-w_a) , Planck TT+lowP+BSH is compatible with LCDM, as well as BAO/RSD. When adding WL to Planck TT+lowP, both WL and CMB prefer the (w_0-w_a) model with respect to LCDM at ~2 σ (with preference for high values of H₀, excluded when including BSH). CMB lensing does not change the numbers.

2) Tests on time varying w(z) are compatible with LCDM for all data sets tested.

3) EDE model with constant fraction till recent. Constraints are incredibly tight: previous constraints improved by a factor 3-4, $\Omega_{\rm e}$ <0.0036 for PlanckTT,TE,EE+lowP+BSH. Polarization improves limits by a factor 2.

4) $\Omega_{\rm e}(z)$ as a function of $z_{\rm e}$, the redshift starting from which a fraction is present. $\Omega_{\rm e} < 2\%$ (95% C.L.) even for $z_{\rm e}$ as late as 50 (important results in the era of **structure formation** with implications for EDGES and other science). CMB lensing is important. The information in galaxy clustering

What is galaxy clustering adding (if anything) to what we already know from the CMB results?

<u>Galaxy Clustering - I: Theoretical Framework</u>

 $\xi_{l,t}(r) = i^l \int \frac{k^3 d \log(k)}{2\pi^2} P_{l,t} j_l(kr),$

Analysis of anisotropic correlation function focussed on the BAO signal

Two sources of anisotropies: Redshift Space Distortion (RSD) Geometrical induced anisotropy (AP)

Non-linear modelling of correlation function

$$A_{\ell}(r) = \frac{a_{\ell,1}}{r^2} + \frac{a_{\ell,2}}{r} + a_{\ell,3}; \ \ell = 0, 2, \bot, \parallel$$

Galaxy Clustering - II: Theoretical Framework

$$\begin{split} \alpha &= \alpha_{\perp}^{2/3} \alpha_{\parallel}^{1/3} , \qquad \qquad \alpha_{\perp} = \frac{D_{\rm A}(z) r_{\rm s}^{\rm fid}}{D_{\rm A}^{\rm fid} r_{\rm s}} \\ 1 + \epsilon &= \left(\frac{\alpha_{\parallel}}{\alpha_{\perp}}\right)^{1/3} \qquad \qquad \alpha_{\parallel} = \frac{H^{\rm fid}(z) r_{\rm s}^{\rm fid}}{H(z) r_{\rm s}} \end{split}$$

 $\alpha,~\epsilon$ usually appear when referring to systematics/mocks while distances and F_{AP} when quoting final cosmologically relevant numbers

$$D_V(z) = \left(D_M^2(z)\frac{cz}{H(z)}\right)^{1/3}$$
$$F_{\rm AP}(z) = D_M(z)H(z)/c.$$

Galaxy clustering challenges - ca 2020

Measurement of galaxy clustering hampered by **systematics** and **statistical** errors.

Estimating the window function and selection function is not trivial.

Focus on:

- 1) optimization of codes to handle large number of objects
- 2) getting reliable mocks
- 3) quantifying systematic effects
- 4) covariance matrix estimation
- 5) improving reconstruction techniques

State-of-the-art provided by BOSS survey (e.g. Alam+18, Vargas-Magana+18)

- 1) Systematics are estimated and appear as weights in the selection function
- 2) Mock generation using several different methods based on Perturbation theory or N-body simulations
- 3) Estimation of the 2D correlation function using Landy-Szalay estimator
- 4) Analysis focused on BAO peak and in second instance on sub-BAO shape info
- 5) Different pipelines tested with estimation of systematic errors introduced in each step
- 6) Main conclusions: unlike naively expected latest BOSS results are dominated by statistical errors

Galaxy clustering: the data set

different methodologies (tested on

mocks)

		Ngals	Veff (Gpc3)	V (Gpc ³)
0.2 < z < 0.5	NGC	429 182	2.7	4.7
	SGC	174 819	1.0	1.7
	Total	604 001	3.7	6.4
0.4 < z < 0.6	NGC	500 872	3.1	5.3
	SGC	185498	1.1	2.0
	Total	686 370	4.2	7.3
0.5 < z < 0.75	NGC	435 741	3.0	9.0
	SGC	158 262	1.1	3.3
	Total	594 003	4.1	12.3

Galaxy clustering: the signal

Analysis performed in configuration and Fourier space and gives consistent results

Galaxy clustering: constraints from BAOs

Galaxy clustering: constraints from full shape

Full-shape measurement with a variety of methods, this allows to measure the $f\sigma_8$ combination with a 10% precision in each bin and overall a 6% measurement

Perfect agreement with Planck

BAO+full shape combined

 $D_M(z)$ and H(z) are more strongly correlated for the BAO-only analysis, so while the $D_v(z)$ constraints from postreconstruction BAO-only are tighter than those from appreciably pre-reconstruction FS, the marginalized constraints on DM(z) and H(z) are not.

The constraints on $F_{AP}(z)$ from sub-BAO scales in the FS analyses help to **break the degeneracy** between D_M and H, leading to rounder confidence contours and smaller errors on FAP.

Combined BAO+FS contours take advantage of both the **sharpening** of the BAO feature by reconstruction and the improved **degeneracy breaking from the sub-BAO Alcock-Paczynski effect.**

Constraints from post-reconstruction BAO measurements and pre-reconstruction full-shape

hift BAC only	Full shape	BAO + FS
.38 $1512 \pm 22 \pm 1$.51 $1975 \pm 27 \pm 1$.61 $2307 \pm 33 \pm 1$.38 $81.2 \pm 2.2 \pm 1$.51 $90.9 \pm 2.1 \pm 1$.61 $99.0 \pm 2.2 \pm 1$.51 $-$.51 $-$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1518 \pm 20 \pm 11 \\ 1977 \pm 23 \pm 14 \\ 2283 \pm 28 \pm 16 \\ 81.5 \pm 1.7 \pm 0.9 \\ 90.5 \pm 1.7 \pm 1.0 \\ 97.3 \pm 1.8 \pm 1.1 \\ 0.497 \pm 0.039 \pm 0.024 \\ 0.458 \pm 0.035 \pm 0.015 \end{array}$
	hift BAC only 0.38 $1512 \pm 22 \pm 1$ 0.51 $1975 \pm 27 \pm 1$ 0.61 $2307 \pm 33 \pm 1$ 0.38 $81.2 \pm 2.2 \pm 1$ 0.51 $90.9 \pm 2.1 \pm 1$ 0.61 $99.0 \pm 2.2 \pm 1$ 0.61 $99.0 \pm 2.2 \pm 1$ 0.61 $ 0.61$ $-$	hiftBAO onlyFull shape 0.38 $1512 \pm 22 \pm 11$ $1529 \pm 24 \pm 11$ 0.51 $1975 \pm 27 \pm 14$ $2007 \pm 29 \pm 15$ 0.61 $2307 \pm 33 \pm 17$ $2274 \pm 36 \pm 17$ 0.38 $81.2 \pm 2.2 \pm 1.0$ $81.2 \pm 2.0 \pm 1.0$ 0.51 $90.9 \pm 2.1 \pm 1.1$ $88.3 \pm 2.1 \pm 1.0$ 0.61 $99.0 \pm 2.2 \pm 1.2$ $95.6 \pm 2.4 \pm 1.1$ 0.38 $ 0.502 \pm 0.041 \pm 0.024$ 0.51 $ 0.459 \pm 0.037 \pm 0.015$ 0.61 $ 0.419 \pm 0.036 \pm 0.009$

BAO Hubble Diagram

RSD measurements from BOSS

<u>Planck + BOSS galaxy clustering - I</u>

In the LCDM case Ω_m =0.311 ± 0.006 and H₀=67.6 ± 0.5 km/s/Mpc If Ω_k and w are varied Ω_k =0.0003 ± 0.0026 and w=-1.01 ± 0.06

PLANCK+LOWZ+CMASS 80 80 PLANCK+BAO -0.8PLANCK+BAO+FS 76 76 H₀ [km/s/Mpc] 89 21 -1.0[km/s/Mpc] 72 ₿ -1.2 H_0 68 -1.464 64 -1.6-0.010-0.005 0.000 0.005 0.010 0.015 -0.010-0.005 0.000 0.005 0.010 0.015 -1.6-1.4-0.8-1.2-1.0 Ω_K Ω_K w

owCDM model

Main results:

1) impressive agreement with LCDM even after opening a 2 parameter space (w, $\Omega_{\rm k})$

- 2) FOM for wCDM $\sim 20-30$
- 3) Adding z-bins helps

Planck + BOSS galaxy clustering - II

<u>Planck + BOSS galaxy clustering - III</u>

 $f\sigma_8 \rightarrow f\sigma_8 \left[A_{f\sigma_8} + B_{f\sigma_8}(z - z_p) \right]$

BOSS: main conclusions

1) ~1% constraints on H(z) and DA(z) from BAO 2) amplitude of pec. vel. measured at ~10% level 3) No evidence for physics beyond LCDM 4) Agreement with Planck low values for H0, with limits remarkably stable also for owCDM or ow0waCDM models with 1sigma error bar of 1km/s/Mpc 5) Limits on neutrino mass are 0.16 eV, which become 0.25 when removing RSD and ~ 0.3 when opening the w parameter space 6) No support for Neff>3

OVERALL the stage is set and future seems promising for the next experimentslike eBO SS, DESI, WFIRST, Euclid etc. it is expected that statistical errors will improve and a new level of systematics will be hit (sub-percent precision constraints)

DES 1yr results

Abbott+18

No preference for the addition of a free dark energy equation of state parameter.

Similar constraining power from WL and GC+GG lensing in terms of w.

The wCDM likelihoods from DES and Planck each constrain w poorly.

Allowing w as a free parameter makes the two data sets less consistent (in terms of the Bayesian evidence) and does not bring the DES and Planck central values of S_8 closer.

DES is, however, consistent with the bundle of Planck, BAO, and supernova data, and this combination constrains the equation-of-state parameter $w = -1 \pm 0.05$.

		w
wCDM	DES Y1 $\xi_{\pm}(\theta)$	$-0.82\substack{+0.26\\-0.47}$
wCDM	DES Y1 $w(\theta) + \gamma_t$	$-0.76\substack{+0.19\\-0.45}$
wCDM	DES Y1 3x2	$-0.80\substack{+0.20\\-0.22}$
wCDM	Planck (No Lensing)	$-1.50\substack{+0.34\\-0.18}$
wCDM	DES Y1 + Planck (No Lensing)	$-1.34\substack{+0.08\\-0.15}$
wCDM	Planck + JLA + BAO	$-1.03\substack{+0.05\\-0.05}$
wCDM	DES Y1 + Planck + JLA + BAO	$-1.00\substack{+0.04\\-0.05}$

BAO constraints at high and low redshift

Tensions between Lya BAO and CMASS BAO

In general Early DE models can alleviate tensions of LCDM (low clustering amplitude and large H_0 are predicted at low z)

Lyman-alpha BAO: a tuned oscillation?

 $\Delta \chi^2 = -6.6$ with 3 d.o.f. for this model

Future seems bright

DESI paper (2016) - stage IV experiment

z

Euclid

Euclid definition study report 2011

DESI constraints

Table 2.9: DETF Figures of Merit and uncertainties σ_{w_p} and σ_{Ω_k} . σ_{w_p} is the error on w at the pivot redshift, which also equal to the error on a constant w holding $w_a = 0$. σ_{Ω_k} is the error on the curvature of the Universe, Ω_k . All DESI lines contain the BGS, and BOSS in the range 0.45 < z < 0.6 that does not substantially overlap with DESI. All cases include *Planck* CMB constraints. The pivot point, where w(a) has minimal uncertainty is indicated by a_p . We note that a FoM of 110 is 10 times the Stage II level of [109], which we take to be the definition of Stage IV. DESI BAO galaxy exceeds this threshold even with a 9,000 square degree survey.

Surveys	FoM	a_p	σ_{w_p}	σ_{Ω_k}
BOSS BAO	37	0.65	0.055	0.0026
DESI 14k galaxy BAO	133	0.69	0.023	0.0013
DESI 14k galaxy and Ly- α forest BAO	169	0.71	0.022	0.0011
DESI 14k BAO + gal. broadband to $k < 0.1 \ h \ Mpc^{-1}$	332	0.74	0.015	0.0009
DESI 14k BAO + gal. broadband to $k < 0.2 \ h \ Mpc^{-1}$	704	0.73	0.011	0.0007
DESI 9k galaxy BAO	95	0.69	0.027	0.0015
DESI 9k galaxy and Ly- α forest BAO	121	0.71	0.026	0.0012
DESI 9k BAO + gal. broadband to $k < 0.1 \ h \ Mpc^{-1}$	229	0.73	0.018	0.0011
DESI 9k BAO + gal. broadband to $k < 0.2 \ h \ Mpc^{-1}$	502	0.73	0.013	0.0009

The WFIRST-2.4 Dark Energy Roadmap

Cosmology with the WFIRST High Latitude Survey Science Investigation Team Annual Report 2017 arXiv: 1804.03628

Dark Energy Experiments: 2013 - 2031

Challenges of GC studies for dark energy

- bias modelling at mildly non-linear scales to exlpoit also other smaller volume surveys
- neutrino mass measurement and modelling of neutrino induced non-linearities in GCs (scale dependence of the bias)
- higher order statistics and the search for non-Gaussianities
- Cross correlations
- Multi purpose experiments with high degree of complementarity
- Machine learning and data science (pixel-by-pixel analysis)
- High redshift regime/huge discovery potential

.75 < z < 1.2510-1 1.75 < z < 2.25DFSI 2.75 < z < 3.25k=0.2h/Mpc $\Delta P/P$ 10-2 Ultimate error achievable on the power spectrum (maximum amount of *information in the sky*) 10⁻³ 10⁶ 10 10^{8} 10 Number of Objects

Cosmic Visions Dark Energy 2016

SDSS/BOSS - II: detection of the BAO peak

Busca et al. 13

around 3σ

SDSS/BOSS-III: cross-correlation with QSOs

$$P_{qF}(\mathbf{k}) = b_q \left[1 + \beta_q \mu_k^2 \right] b_F \left[1 + \beta_F \mu_k^2 \right] P(k)$$

Delubac et al. 14

SDSS/BOSS-IV: final data release

Bautista+ 17, arXiv: 1702.00176

SDSS/BOSS-IV: cosmological implications

Bautista+ 17, arXiv: 1702.00176

- Redshift covered z=2.1-3.5, <z>=2.33.
- 160,000 QSOs (DESI will have ~ 10 times more.
- Statistical improvement over DR9, DR11 (Delubac+14) hinted for a change in the sign of dark energy density to reconcile with Planck.
- Better physical modelling for high column density systems, UV fluctuations, broad band power (marginalized over).
- Complementarity with low redshift BAO, high redshift BAO provide a stronger support for Ω_{Λ} > 0 (independent of CMB).

 $\Omega_M = 0.296 \pm 0.029$ $\Omega_\Lambda = 0.699 \pm 0.100$

 $\Omega_k = -0.002 \pm 0.119$

SKA Whitepaper 2005

wo