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Summary/overview

quick review of the Effective Field Theory of Inflation (EFTI)

parity violation and splitting of the two graviton helicities

consequences for CMB power spectra

tensor power spectrum and higher-order correlation functions:
1. bispectra involving tensors
2. effect on CMB angular three-point functions

3. what is the largest effect?
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Effective Field Theory of Inflation Cheung et al. (2007)

e inflation: epoch of accelerated expansion that smoothly connects to the Hot Big Bang

e there is a clock that describes this evolution: we are interested in its perturbations
EFTI: effective theory for these perturbations!

e give an effective action in terms of some free coefficients

e constrain them from observations as in collider experiments!

> fit specific models to these constraints!
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Effective Field Theory of Inflation
Important! Among the EFT coefficients there is the background evolution

v

What we know about H (k) comes from measuring correlation functions
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How do we write the Lagrangian?

e time diffeomorphisms are broken because the clock defines a preferred slicing

e unitary gauge: we can write all terms that break time diff.s but preserve spatial diff.s
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Effective Field Theory of Inflation

FLRW background has a maximally symmetric slicing

v
e we can write perturbations in a way that respects residual gauge symmetries

* the action contains a finite number of tadpoles plus terms quadratic in perturbations
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higher order operators:
different effects on n-point correlators
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Helicity splitting
At leading order in derivatives Py (&) is fixed by H (k) creminelli et al. (2014)

s=L,R L ('2.11')

T — iy T
> the two chiralities 7~ = - \/ify oyt = ! \/ify

have the same power spectrum

Indeed » /XK_E)_-»'X / ’XL ¢
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define: n = P,, + P,:i ) \’; - P%p; » X = QO if parity is a symmetry
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Observational consequences

What happens if parity is broken?

» non-vanishing TR , E B angular correlators
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for X, X, = TB,EBR

(itgoesto O as n. — 0O)

e.g. Cabella et al. (2007), Gubitosi et al. (2009), Gluscevic & Kamionkowski (2010),
Gruppuso et al. (2012), Kaufman et al. (2014), Kahniashvili et al. (2014), Galaverni et
al. (2015), Molinari et al. (2016), Gerbino et al. (2016), Thorne et al. (2018)...

» |et’s see what happens in the EFTI!
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Parity violation in the EFTI

How do we break parity”? Take operators involving the volume form & .., ¢ !

Some examples:

e four-dimensional Chern-Simons term e.g. Lue et al. (1999), Bartolo & Orlando (2017)

,,t > %(k)é“u—iﬂ({épafb Q()GMV ( ervap - . -9 grVre )
1. fourth order in derivatives: naively, effect will be suppressed by H? /A2

2. e P RC upn RP6,, = 2 K" 5 integrate by parts: only H/N !
But! Need rapidly varying f for large signal

e terms involving the Weyl tensor e.g. Maldacena & Pimentel (2011)

;& S g MU Ap \X/&/S’Zgg \X/%gps \X/PGN,
1. sixth order in derivatives: suppressed by H “/NG

2. contribution to three-point function is slow-roll suppressed e.g. soda et al. (2011)
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Parity violation in the EFTI

The contributions at lowest order in derivatives include the foliation: creminel1i et al. (2014)

o Lva e770% w, (W SKpu ) SK™

e three-dimensional Chern-Simons term

v M HP A )y AP mHa " NN

Both are third order in derivatives P suppressedby H /N !

Effect on the power spectrum
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the contribution is not slow-roll suppressed (but only (3 contributes)
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Parity violation in the EFTI
There are other terms that can enter at third order in derivatives:
“ G C A
» Gauss-Bonnet topological current: 3% = €% €, ', [%_ R s + /’\ir\“‘ riwe]
» we can include J° in the Lagrangian! But it preserves parity (contains - €)

e recall that the four-dimensional Chern-Simons is given by b,A K , Where

W 6 v~
l,(’“: 2 e APy (’—‘ir‘iu— o Hfzs + /"g e Py \‘L})

» we can include K’ in the Lagrangian! It violates parity!

Effect on the power spectrum: degenerate with /5

But! It can contribute to higher-order correlation functions!
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Effect on three-point functions and CMB

These operators contain both scalar and tensor perturbations at all orders

they contribute to three-point functions! E.g. <ynn >, <% >, <y €3>

v

There will be imprints on CMB bispectra!

In a parity-preserving universe:
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» this will not hold if parity is violated!
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Looking for the largest possible signal

Which operators give the largest effect?

e focus on those with the lowest number of derivatives

/

* the naive expectation is that the time dependence of the coefficients is small: focus on
operators whose contribution to the correlation functions does not depend on that

Moreover P if interested in correlators involving scalars, focus on operators involving the

foliation directly!

e
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Backup slides



Decoupling limit

In unitary gauge the scalar mode is eaten by the metric. We make it explicit via the

Stueckelberg trick: do a broken time diffeomorphism £t — & + 7 (E, ¥)

Relation between T and £: £ = - HT + O (280w - aclR )

Operators that break time diff.s will generate T , others won’t

G°° — GV (85 + 2um) (80 +3,T) vs. R — R

For diff.-invariant operators, scalar interactions are generated only by the solution of the non-

dynamical Einstein equations (the “constraints”), i.e. c6°° = oJ""’ () ) °3°‘ = c2{°’c (1)

» this solution is slow-roll suppressed, and the final contribution will be subleading!

Cheung et al. (2007a, 2007b)
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