Peculiar velocity effects and CMB anomalies

Alessio Notari ${ }^{1}$

Universitat de Barcelona

June 2018, Ferrara

[^0]
CMB as a test of Global Isotropy

CMB \& Proper motion

Anomalies
Frequency
dependence

- Is the CMB statistically Isotropic?
- What is the impact of our peculiar velocity?

$$
\left(\beta=\frac{v}{c}=10^{-3}\right)
$$

CMB as a test of Global Isotropy

CMB \& Proper motion

Anomalies
Frequency
dependence

- Is the CMB statistically Isotropic?
- What is the impact of our peculiar velocity?

$$
\left(\beta=\frac{v}{c}=10^{-3}\right)
$$

- Can we disentangle them?

CMB spectrum

CMB \& Proper motion

Anomalies
Frequency
dependence

More precisely

- $T(\hat{n}) \rightarrow a_{\ell m}$

CMB spectrum

CMB \& Proper motion

Anomalies
Frequency
dependence

More precisely

$$
T(\hat{n}) \rightarrow a_{\ell m} \equiv \int d \Omega Y_{\ell m}^{*}(\hat{n}) T(\hat{n})
$$

CMB spectrum

CMB \& Proper motion

Anomalies
Frequency
dependence

More precisely

$$
\text { - } T(\hat{n}) \rightarrow a_{\ell m} \equiv \int d \Omega Y_{\ell m}^{*}(\hat{n}) T(\hat{n})
$$

Hypothesis of Gaussianity and Isotropy:

CMB spectrum

CMB \& Proper motion

Anomalies
Frequency
dependence

More precisely

- $T(\hat{n}) \rightarrow a_{\ell m} \equiv \int d \Omega Y_{\ell m}^{*}(\hat{n}) T(\hat{n})$

Hypothesis of Gaussianity and Isotropy:

- $a_{\ell m}$ random numbers from a Gaussian of width $C_{\ell}^{\text {th }}$.
- Physics fixes $\left.C_{\ell}^{t h}=\left.\langle | a_{\ell m}\right|^{2}\right\rangle$
- Uncorrelated: NO preferred direction

CMB: Peculiar Velocity and Anomalies

CMB \& Proper motion

Anomalies
Frequency
dependence

- Our velocity $\beta \equiv \frac{v}{c}$ breaks Isotropy introducing correlations in the CMB at all scales

[^1]
CMB: Peculiar Velocity and Anomalies

CMB \& Proper motion

Anomalies
Frequency
dependence

- Our velocity $\beta \equiv \frac{v}{c}$ breaks Isotropy introducing correlations in the CMB at all scales
(not only $\ell=1$!)

[^2]
CMB: Peculiar Velocity and Anomalies

CMB \& Proper motion

Anomalies
Frequency
dependence

- Our velocity $\beta \equiv \frac{v}{c}$ breaks Isotropy introducing correlations in the CMB at all scales (not only $\ell=1$!)
(1) We can measure β with $\ell=1$

[^3]
CMB: Peculiar Velocity and Anomalies

CMB \& Proper motion

Anomalies
Frequency
dependence

- Our velocity $\beta \equiv \frac{v}{c}$ breaks Isotropy introducing correlations in the CMB at all scales (not only $\ell=1$!)
(1) We can measure β with $\ell=1$, and $\ell>1!^{2}$

[^4]
CMB: Peculiar Velocity and Anomalies

CMB \& Proper motion

Anomalies
Frequency dependence

- Our velocity $\beta \equiv \frac{v}{c}$ breaks Isotropy introducing correlations in the CMB at all scales
(not only $\ell=1$!)
(1) We can measure β with $\ell=1$, and $\ell>1!^{2}$
(2) Anomalies? (dipolar modulation, alignments?)

[^5]
CMB: Peculiar Velocity and Anomalies

- Our velocity $\beta \equiv \frac{v}{c}$ breaks Isotropy introducing correlations in the CMB at all scales
(not only $\ell=1$!)
(1) We can measure β with $\ell=1$, and $\ell>1!^{2}$
(2) Anomalies? (dipolar modulation, alignments?)
(3) Is it frequency dependent?
(Calibration? Blackbody distortion, tSZ contamination?)

[^6]
CMB: Peculiar Velocity and Anomalies

- Our velocity $\beta \equiv \frac{v}{c}$ breaks Isotropy introducing correlations in the CMB at all scales
(not only $\ell=1$!)
(1) We can measure β with $\ell=1$, and $\ell>1!^{2}$
(2) Anomalies? (dipolar modulation, alignments?)
(3) Is it frequency dependent?
(Calibration? Blackbody distortion, tSZ contamination?)

[^7]
Effects of β

CMB \& Proper motion

Anomalies
Frequency
dependence
$T(\hat{n})($ CMB Rest frame $) \Rightarrow T^{\prime}\left(\hat{n}^{\prime}\right)$ (Our frame)

Effects of β

$T(\hat{n})(C M B R e s t ~ f r a m e) \Rightarrow T^{\prime}\left(\hat{n}^{\prime}\right)$ (Our frame)

Preferred direction $\hat{\beta}$

Effects of β

$T(\hat{n})\left(C M B\right.$ Rest frame) $\Rightarrow T^{\prime}\left(\hat{n}^{\prime}\right)$ (Our frame)

Preferred direction $\widehat{\beta}$

- Doppler:

$$
T^{\prime}(\hat{n})=T(\hat{n}) \gamma(1+\beta \cos \theta) \quad(\cos (\theta)=\hat{n} \cdot \hat{\beta})
$$

Effects of β

CMB \& Proper motion

Anomalies
Frequency dependence

$T(\hat{n})($ CMB Rest frame $) \Rightarrow T^{\prime}\left(\hat{n}^{\prime}\right)$ (Our frame)

Preferred direction $\hat{\beta}$

- Doppler:

$$
T^{\prime}(\hat{n})=T(\hat{n}) \gamma(1+\beta \cos \theta) \quad(\cos (\theta)=\hat{n} \cdot \hat{\beta})
$$

- Aberration:

$$
\begin{gathered}
T^{\prime}\left(\hat{n^{\prime}}\right)=T(\hat{n}) \\
\theta-\theta^{\prime} \approx \beta \sin \theta
\end{gathered}
$$

Peebles \& Wilkinson '68, Challinor \& van Leeuwen 2002, Burles \& Rappaport 2006

Aberration \& Doppler

In multipole space

Mixing of neighbors:
CMB \& Proper motion

Anomalies
Frequency
dependence

In multipole space

Mixing of neighbors:

CMB \& Proper motion

Anomalies
Frequency
dependence

$$
a_{\ell m}^{\prime} \simeq a_{\ell m}+\beta\left(c_{\ell m}^{-} a_{\ell-1 m}+c_{\ell m}^{+} a_{\ell+1 m}\right)+\mathcal{O}\left((\beta \ell)^{2}\right)
$$

In multipole space

Mixing of neighbors:
CMB \& Proper motion

Anomalies
Frequency
dependence

$$
a_{\ell m}^{\prime} \simeq a_{\ell m}+\beta\left(c_{\ell m}^{-} a_{\ell-1 m}+c_{\ell m}^{+} a_{\ell+1 m}\right)+\mathcal{O}\left((\beta \ell)^{2}\right)
$$

- $c_{\ell m}^{+}=(\ell+2-1) \sqrt{\frac{(\ell+1)^{2}-m^{2}}{4(\ell+1)^{2}-1}}$

$$
c_{\ell m}^{-}=-(\ell-1+1) \sqrt{\frac{\ell^{2}-m^{2}}{4 \ell^{2}-1}}
$$

- Doppler (constant), aberration grows with ℓ !

In multipole space

Mixing of neighbors:

CMB \& Proper motion

Anomalies
Frequency dependence

$$
a_{\ell m}^{\prime} \simeq a_{\ell m}+\beta\left(c_{\ell m}^{-} a_{\ell-1 m}+c_{\ell m}^{+} a_{\ell+1 m}\right)+\mathcal{O}\left((\beta \ell)^{2}\right)
$$

- $c_{\ell m}^{+}=(\ell+2-1) \sqrt{\frac{(\ell+1)^{2}-m^{2}}{4(\ell+1)^{2}-1}}$

$$
c_{\ell m}^{-}=-(\ell-1+1) \sqrt{\frac{\ell^{2}-m^{2}}{4 \ell^{2}-1}}
$$

- Doppler (constant), aberration grows with ℓ !
- We can measure β (Kosowsky Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011, Planck XXVII, 2013.)

Expected sensitivity

CMB \& Proper motion

Anomalies
Frequency
dependence

L.Amendola, R.Catena, I.Masina, A.N., M.Quartin, C.Quercellini 2011

Planck Measurement

$$
\beta=384 \mathrm{~km} / \mathrm{s} \pm 78 \mathrm{~km} / \mathrm{s} \text { (stat) } \pm 115 \mathrm{~km} / \mathrm{s} \text { (syst.) }
$$

CMB \& Proper motion

Anomalies
Frequency
dependence

Planck Collaboration 2013, XXVII. Doppler boosting of the CMB: Eppur si muove

Planck Measurement

$$
\beta=384 \mathrm{~km} / \mathrm{s} \pm 78 \mathrm{~km} / \mathrm{s} \text { (stat) } \pm 115 \mathrm{~km} / \mathrm{s} \text { (syst.) }
$$

CMB \& Proper motion

Anomalies
Frequency
dependence

Planck Collaboration 2013, XXVII. Doppler boosting of the CMB: Eppur si muove Found both Aberration and Doppler

Different frequencies

CMB \& Proper motion

Anomalies
Frequency dependence

- $\beta=384 \mathrm{~km} / \mathrm{s} \pm 78 \mathrm{~km} / \mathrm{s}$ (stat) $\pm 115 \mathrm{~km} / \mathrm{s}$ (syst.)
- Systematics are present (discrepancy between different frequency maps for Aberration)

Figure: Total: β. Aberration: ϕ. Doppler: τ.

Forecasts

"Exploring cosmic origins with CORE: effects of observer peculiar motion", CORE Collaboration, JCAP 2018

Forecasts: Other Sources

Ideal

CIB and tSZ maps
"Exploring cosmic origins with CORE: effects of observer peculiar motion", CORE Collaboration, JCAP 2018

Forecasts

CMB

CMB \& Proper

 motion
Anomalies

Frequency dependence

Experiment	Channel $[\mathrm{GHz}]$	$\theta_{\text {FWHM }}$ $[$ arcmin $]$	σ^{T} $[\mu \mathrm{~K} . \operatorname{arcmin}]$	S / N $T T$	S / N $T E+E T$	S / N $E E$	S / N Total
	$($ all $)$	$\simeq 5.5$	$\simeq 13$	3.8	1.7	1.0	4.3
LiteBIRD	$($ all $)$	$\simeq 19$	$\simeq 1.7$	2.0	1.8	1.8	3.3
	60	17.87	7.5	2.1	1.9	1.8	3.4
	70	15.39	7.1	2.5	2.4	2.2	4.1
	80	13.52	6.8	2.8	2.8	2.6	4.8
	90	12.08	5.1	3.5	3.4	3.3	5.9
	100	10.92	5	3.9	3.7	3.7	6.5
	115	9.56	5	4.3	4.2	4.2	7.3
	130	8.51	3.9	5.1	4.9	5.	8.6
	145	7.68	3.6	5.7	5.3	5.5	9.5
	160	7.01	3.7	6.1	5.6	5.8	10.1
CORE	175	6.45	3.6	6.5	5.8	6.1	10.7
	195	5.84	3.5	7.1	6.1	6.5	11.4
	220	5.23	3.8	7.5	6.3	6.7	11.9
	255	4.57	5.6	7.5	5.9	6.2	11.4
	295	3.99	7.4	7.5	5.7	5.8	11.
	340	3.49	11.1	7.	5.1	4.9	9.9
	390	3.06	22	5.8	3.8	3.1	7.6
	450	2.65	45.9	4.5	2.3	1.4	5.3
	520	2.29	116.6	2.9	1.	0.3	3.1
	600	1.98	358.3	1.4	0.3	0.	1.4
Ideal $\left(\ell_{\max }=2000\right)$	$($ all $)$	0	0	5.3	7.1	8.7	12.7
Ideal $\left(\ell_{\max }=3000\right)$	$($ all $)$	0	0	10	9.8	14	21
Ideal $\left(\ell_{\max }=4000\right)$	$($ all $)$	0	0	16	11.4	19	29
Ideal $\left(\ell_{\max }=5000\right)$	$($ all $)$	0	0	22	12.6	26	38

Is β degenerate with an Intrinsic Dipole?

Is β degenerate with an Intrinsic Dipole?

CMB \& Proper motion

Anomalies
Frequency
dependence

- A dipolar large scale potential: $\Phi_{L}=\cos (\theta) f(r)$
- Produces ${ }^{3}$ a CMB dipole $T_{L} \propto \cos (\theta)$.

[^8]
Is β degenerate with an Intrinsic Dipole?

CMB \& Proper motion

Anomalies
Frequency dependence

- A dipolar large scale potential: $\Phi_{L}=\cos (\theta) f(r)$
- Produces ${ }^{3}$ a CMB dipole $T_{L} \propto \cos (\theta)$.
- It also produces couplings at 2 nd order : $c_{N L} T(\hat{n}) T_{L}(\hat{n})$
${ }^{3}$ O.Roldan, A.N., M. Quartin 2016

Is β degenerate with an Intrinsic Dipole?

- A dipolar large scale potential: $\Phi_{L}=\cos (\theta) f(r)$
- Produces ${ }^{3}$ a CMB dipole $T_{L} \propto \cos (\theta)$.
- It also produces couplings at 2nd order : $c_{N L} T(\hat{n}) T_{L}(\hat{n})$
- $c_{N L}$ Degenerate with Doppler (if zero primordial non-Gaussianity!)

[^9]
Is β degenerate with an Intrinsic Dipole?

- A dipolar large scale potential: $\Phi_{L}=\cos (\theta) f(r)$
- Produces ${ }^{3}$ a CMB dipole $T_{L} \propto \cos (\theta)$.
- It also produces couplings at 2 nd order : $c_{N L} T(\hat{n}) T_{L}(\hat{n})$
- $c_{N L}$ Degenerate with Doppler (if zero primordial non-Gaussianity!)
- Φ_{L} produces dipolar Lensing

[^10]
Is β degenerate with an Intrinsic Dipole?

- A dipolar large scale potential: $\Phi_{L}=\cos (\theta) f(r)$
- Produces ${ }^{3}$ a CMB dipole $T_{L} \propto \cos (\theta)$.
- It also produces couplings at 2 nd order : $c_{N L} T(\hat{n}) T_{L}(\hat{n})$
- $c_{N L}$ Degenerate with Doppler (if zero primordial non-Gaussianity!)
- Φ_{L} produces dipolar Lensing = Aberration ?

[^11]
Is β degenerate with an Intrinsic Dipole?

- A dipolar large scale potential: $\Phi_{L}=\cos (\theta) f(r)$
- Produces ${ }^{3}$ a CMB dipole $T_{L} \propto \cos (\theta)$.
- It also produces couplings at 2 nd order : $c_{N L} T(\hat{n}) T_{L}(\hat{n})$
- $c_{N L}$ Degenerate with Doppler (if zero primordial non-Gaussianity!)
- Φ_{L} produces dipolar Lensing = Aberration ?
- Yes, but coefficient: generically depends on $f(r)$:

[^12]
Is β degenerate with an Intrinsic Dipole?

- A dipolar large scale potential: $\Phi_{L}=\cos (\theta) f(r)$
- Produces ${ }^{3}$ a CMB dipole $T_{L} \propto \cos (\theta)$.
- It also produces couplings at 2 nd order : $c_{N L} T(\hat{n}) T_{L}(\hat{n})$
- $c_{N L}$ Degenerate with Doppler (if zero primordial non-Gaussianity!)
- Φ_{L} produces dipolar Lensing = Aberration ?
- Yes, but coefficient: generically depends on $f(r)$:
- \Longrightarrow non-degenerate with Aberration $\left(f(r) \propto r^{2}\right)$

[^13]
Testing Isotropy

- Given a map $T(\hat{n})$: mask half of the sky: $\tilde{T}(\hat{n})=M(\hat{n}) T(\hat{n})$
- We compute $\tilde{a}_{\ell m} \rightarrow \tilde{C}_{\ell}^{M}$

Testing Isotropy

- Given a map $T(\hat{n})$: mask half of the sky: $\tilde{T}(\hat{n})=M(\hat{n}) T(\hat{n})$
- We compute $\tilde{a}_{\ell m} \rightarrow \tilde{C}_{\ell}^{M}$
- And compare two opposite halves \tilde{C}_{ℓ}^{N} and \tilde{C}_{ℓ}^{S}

Testing Isotropy

- Given a map $T(\hat{n})$: mask half of the sky: $\tilde{T}(\hat{n})=M(\hat{n}) T(\hat{n})$
- We compute $\tilde{a}_{\ell m} \rightarrow \tilde{C}_{\ell}^{M}$
- And compare two opposite halves \tilde{C}_{ℓ}^{N} and \tilde{C}_{ℓ}^{S}

Hemispherical asymmetry?

- In several papers: significant (about 3σ) hemispherical asymmetry at $\ell<\mathcal{O}(60)$
Eriksen et al. '04, '07, Hansen et al. '04, '09, Hoftuft et al. '09, Bernui ' 08 , Paci et al. ' 13
- The claim extends also to $\ell \leq 600$ (WMAP) Hansen et al. '09
- And also to the Planck data (Up to which ℓ ?) Planck Collaboration, XIII. Isotropy and Statistics.

Planck asymmetry

- 7\% asymmetry

Planck asymmetry

- 7\% asymmetry
- at scales $\gtrsim 4^{\circ}$

Planck asymmetry

- 7\% asymmetry
- at scales $\gtrsim 4^{\circ}$
- Same as in WMAP

Hemispherical Asymmetry at high ℓ ?

- A correct analysis has to include Doppler and Aberration (important at $\ell \gtrsim 1000$)
A.N., M.Quartin \& R.Catena, JCAP Apr. '13

Hemispherical Asymmetry at high ℓ ?

- A correct analysis has to include Doppler and Aberration (important at $\ell \gtrsim 1000$)
A.N., M.Quartin \& R.Catena, JCAP Apr. '13

Hemispherical Asymmetry at high ℓ ?

- A correct analysis has to include Doppler and Aberration (important at $\ell \gtrsim 1000$)
A.N., M.Quartin \& R.Catena, JCAP Apr. '13
- We find between $2.5-3 \sigma$ anomaly only at $\ell \lesssim 600$ (A.N., M.Quartin \& JCAP '14, Planck Collaboration 2013, XIII. Isotropy and Statistics)

Hemispherical Asymmetry due to Velocity

Figure: Discs along the Dipole direction

Hemispherical Asymmetry due to Velocity

Figure: Discs along the Dipole direction

- For a small disc (along Dipole direction):

$$
\frac{\delta C_{\ell}}{C_{\ell}} \simeq 4 \beta+2 \beta \ell C_{\ell}^{\prime}
$$

Hemispherical Asymmetry due to Velocity

Figure: Discs along the Dipole direction

- For a small disc (along Dipole direction):

$$
\frac{\delta C_{\ell}}{C_{\ell}} \simeq 4 \beta+2 \beta \ell C_{\ell}^{\prime}
$$

- Small area experiments bias (i.e. CMB peaks position shifts of 0.5% in ACT) A.N., M.Quartin, R.Catena 2013

"Dipolar modulation"?

- Several authors have studied the ansatz

$$
T=T_{\text {isotropic }}\left(1+\boldsymbol{A}_{\bmod } \cdot n\right),
$$

"Dipolar modulation"?

- Several authors have studied the ansatz

$$
T=T_{\text {isotropic }}\left(1+\boldsymbol{A}_{\bmod } \cdot n\right),
$$

- 3- σ detection of $A_{\text {mod }}$ along max. asymm. direction (For $\ell<60$ or $\ell<600$)

"Dipolar modulation"?

- Several authors have studied the ansatz

$$
T=T_{\text {isotropic }}\left(1+\boldsymbol{A}_{\bmod } \cdot n\right),
$$

- 3- σ detection of $A_{\text {mod }}$ along max. asymm. direction (For $\ell<60$ or $\ell<600$)
- $A_{\text {mod }} 60$ times bigger than β ! (at $\left.\ell<60\right)$

Our Results on A

Figure: All simulations include Planck noise asymmetry.

Frequency dependence??

- A boost does NOT change the blackbody

CMB \& Proper

 motionAnomalies
Frequency
dependence

Frequency dependence??

- A boost does NOT change the blackbody
- But, consider Intensity:

$$
I(\nu)=\frac{2 \nu^{3}}{e^{\frac{\nu}{T(n)}}-1}
$$

- Linearize Intensity: (WMAP, PLANCK...):

Frequency dependence??

- A boost does NOT change the blackbody
- But, consider Intensity:

$$
I(\nu)=\frac{2 \nu^{3}}{e^{\frac{\nu}{T(n)}}-1}
$$

- Linearize Intensity: (WMAP, PLANCK...):
- Using $T \equiv T_{0}+\Delta T(\hat{n}), I \equiv I_{0}+\Delta I(\hat{n})$, we get

$$
\Delta I(\nu, \hat{\boldsymbol{n}}) \approx \frac{2 \nu^{4} e^{\frac{\nu}{\nu_{0}}}}{T_{0}^{2}\left(e^{\frac{\nu}{\nu_{0}}}-1\right)^{2}} \Delta T(\hat{\boldsymbol{n}}) \equiv K \frac{\Delta T(\hat{\boldsymbol{n}})}{T_{0}},
$$

Frequency dependence??

- At second order:

$$
\frac{\Delta I}{K}=\frac{\Delta T(\hat{\boldsymbol{n}})}{T_{0}}+\left(\frac{\Delta T(\hat{\boldsymbol{n}})}{T_{0}}\right)^{2} Q(\nu)
$$

where $Q(\nu) \equiv \nu /\left(2 \nu_{0}\right) \operatorname{coth}\left[\nu /\left(2 \nu_{0}\right)\right]$.

Frequency dependence??

- At second order:

CMB \& Proper motion

Anomalies
Frequency
dependence

$$
\frac{\Delta I}{K}=\frac{\Delta T(\hat{\boldsymbol{n}})}{T_{0}}+\left(\frac{\Delta T(\hat{\boldsymbol{n}})}{T_{0}}\right)^{2} Q(\nu)
$$

where $Q(\nu) \equiv \nu /\left(2 \nu_{0}\right) \operatorname{coth}\left[\nu /\left(2 \nu_{0}\right)\right]$.

- Spurious y-distortion
- Degenerate with tSZ and primordial y-distortion
- Any T fluctuation produces this

Frequency dependence??

- Dominated by dipole $\Delta_{1}{ }^{4}$

CMB \& Proper

 motionAnomalies

[^14]Quartin '16

Frequency dependence??

- Dominated by dipole $\Delta_{1}{ }^{4}$

$$
\begin{aligned}
& L(\nu, \hat{\boldsymbol{n}})=\mu \Delta_{1}+\frac{\delta T}{T_{0}}-\tilde{\beta} \mu \frac{\delta T}{T_{0}}+\tilde{\beta}\left(\frac{\delta T_{a b}}{T_{0}}\right)+ \\
& \quad+\left[\left(\mu^{2}-\frac{1}{3}\right) \Delta_{1}^{2}+\frac{1}{3} \Delta_{1}^{2}+2 \Delta_{1} \mu \frac{\delta T}{T_{0}}\right] Q(\nu)
\end{aligned}
$$

- Quadrupole (10^{-7})
- Monopole (10^{-7})
- Couplings $\left(10^{-8}\right)$

[^15] Quartin '16

Frequency dependence??

- Dominated by dipole $\Delta_{1}{ }^{4}$

$$
\begin{aligned}
& L(\nu, \hat{\boldsymbol{n}})=\mu \Delta_{1}+\frac{\delta T}{T_{0}}-\tilde{\beta} \mu \frac{\delta T}{T_{0}}+\tilde{\beta}\left(\frac{\delta T_{a b}}{T_{0}}\right)+ \\
& \quad+\left[\left(\mu^{2}-\frac{1}{3}\right) \Delta_{1}^{2}+\frac{1}{3} \Delta_{1}^{2}+2 \Delta_{1} \mu \frac{\delta T}{T_{0}}\right] Q(\nu)
\end{aligned}
$$

- Quadrupole (10^{-7})
- Monopole (10^{-7})
- Couplings $\left(10^{-8}\right)$
- Caveat : $\Delta_{1}=\beta+$ intrinsic dipole

[^16] Quartin '16

WMAP/Planck Quadrupole-Octupole alignments

Another anomaly:

- From $a_{2 m}$ and $a_{3 m} \rightarrow$ Multipole vectors $\rightarrow \hat{n}_{2}, \hat{n}_{3}$.

WMAP/Planck Quadrupole-Octupole alignments

Another anomaly:

- From $a_{2 m}$ and $a_{3 m} \rightarrow$ Multipole vectors $\rightarrow \hat{n}_{2}, \hat{n}_{3}$.
- $\hat{n}_{2} \cdot \hat{n}_{3} \approx 0.99$

WMAP/Planck Quadrupole-Octupole alignments

Another anomaly:

- From $a_{2 m}$ and $a_{3 m} \rightarrow$ Multipole vectors $\rightarrow \hat{n}_{2}, \hat{n}_{3}$.
- $\hat{n}_{2} \cdot \hat{n}_{3} \approx 0.99$
- And also Dipole-Quadrupole-Octupole $\left(\hat{n}_{1}, \hat{n}_{2}, \hat{n}_{3}\right)$ aligned (e.g.Copietal. 13)

Removing Doppler quadrupole

- Planck data initially showed less alignment than WMAP: 2.3σ for $\hat{n}_{1} \cdot \hat{n}_{2}$ (SMICA 2013)

Removing Doppler quadrupole

- Planck data initially showed less alignment than WMAP: 2.3σ for $\hat{n}_{1} \cdot \hat{n}_{2}$ (SMICA 2013)
- After removing Doppler $\rightarrow 2.9 \sigma$ (copi et al. '13), (agreement with WMAP)

Removing Doppler quadrupole

- Planck data initially showed less alignment than WMAP: 2.3σ for $\hat{n}_{1} \cdot \hat{n}_{2}$ (SMICA 2013)
- After removing Doppler $\rightarrow 2.9 \sigma$ (copietal. '13), (agreement with WMAP)
- Using $Q_{\text {eff }} \approx 1.7$ on SMICA 2013, (A.N. \& M.Quartin, JCAP 2015)
$\Longrightarrow 3.3 \sigma$ for $\hat{n}_{1} \cdot \hat{n}_{2}$
- ...and agreement among different maps!

Planck Calibration?

- Doppler effect is used to calibrate the detectors!

Planck Calibration?

- Doppler effect is used to calibrate the detectors!
- WMAP calibrated using $\beta_{\text {ORBITAL }}\left(\approx 10^{-4}\right)$
- Planck 2013 on $\beta_{\text {SUN }}$ (using WMAP!)
- Planck 2015 calibrated on β ORBITAL

Planck Calibration?

CMB

- Splitting $\boldsymbol{\beta}_{\boldsymbol{T O T}}=\boldsymbol{\beta}_{\boldsymbol{S}}+\boldsymbol{\beta}_{\boldsymbol{O}}$ (А.N. \& M. Quartin '2015) :

CMB \& Proper motion

Anomalies
Frequency
dependence

$$
\begin{aligned}
\delta I_{\nu} & =\frac{\delta T}{T_{0}}+\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}+\boldsymbol{\beta}_{\mathbf{O}} \cdot \hat{\boldsymbol{n}}+ \\
& +Q(\nu)\left[\left(\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}\right)^{2}+\left(\boldsymbol{\beta}_{\boldsymbol{O}} \cdot \hat{\boldsymbol{n}}\right)^{2}+2\left(\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}\right)\left(\boldsymbol{\beta}_{\boldsymbol{O}} \cdot \hat{\boldsymbol{n}}\right)\right]
\end{aligned}
$$

Planck Calibration?

CMB

- Splitting $\boldsymbol{\beta}_{\text {TOT }}=\boldsymbol{\beta}_{\boldsymbol{S}}+\boldsymbol{\beta}_{\boldsymbol{O}}$ (А... \& M. Quartin' 2015) :

$$
\begin{aligned}
\delta I_{\nu} & =\frac{\delta T}{T_{0}}+\beta_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}+\boldsymbol{\beta}_{\mathbf{O}} \cdot \hat{\boldsymbol{n}}+ \\
& +Q(\nu)\left[\left(\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}\right)^{2}+\left(\boldsymbol{\beta}_{\boldsymbol{O}} \cdot \hat{\boldsymbol{n}}\right)^{2}+2\left(\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}\right)\left(\boldsymbol{\beta}_{\mathbf{O}} \cdot \hat{\boldsymbol{n}}\right)\right]
\end{aligned}
$$

- Leading $\beta_{O} \cdot \hat{\boldsymbol{n}} \approx 10^{-4}$

Planck Calibration?

- Splitting $\boldsymbol{\beta}_{\text {TOT }}=\boldsymbol{\beta}_{\boldsymbol{S}}+\boldsymbol{\beta}_{\boldsymbol{O}}$ (А... \& M. Quartin' 2015) :

$$
\begin{aligned}
\delta I_{\nu} & =\frac{\delta T}{T_{0}}+\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}+\boldsymbol{\beta}_{\mathbf{O}} \cdot \hat{\boldsymbol{n}}+ \\
& +Q(\nu)\left[\left(\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}\right)^{2}+\left(\boldsymbol{\beta}_{\boldsymbol{O}} \cdot \hat{\boldsymbol{n}}\right)^{2}+2\left(\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}\right)\left(\boldsymbol{\beta}_{\mathbf{O}} \cdot \hat{\boldsymbol{n}}\right)\right]
\end{aligned}
$$

- Leading $\beta_{O} \cdot \hat{\boldsymbol{n}} \approx 10^{-4}$
- Subleading $\approx 10^{-6}$

$$
Q(\nu) \approx(1.25,1.5,2.0,3.1) \text { for HFI! }
$$

Planck Calibration?

- Splitting $\boldsymbol{\beta}_{\boldsymbol{T O T}}=\boldsymbol{\beta}_{\boldsymbol{S}}+\boldsymbol{\beta}_{\boldsymbol{O}}$ (А.N. \& M. Quartin '2015) :

$$
\begin{aligned}
\delta I_{\nu} & =\frac{\delta T}{T_{0}}+\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}+\boldsymbol{\beta}_{\mathbf{O}} \cdot \hat{\boldsymbol{n}}+ \\
& +Q(\nu)\left[\left(\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}\right)^{2}+\left(\boldsymbol{\beta}_{\boldsymbol{O}} \cdot \hat{\boldsymbol{n}}\right)^{2}+2\left(\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}\right)\left(\boldsymbol{\beta}_{\mathbf{O}} \cdot \hat{\boldsymbol{n}}\right)\right]
\end{aligned}
$$

- Leading $\beta_{O} \cdot \hat{\boldsymbol{n}} \approx 10^{-4}$
- Subleading $\approx 10^{-6}$
$Q(\nu) \approx(1.25,1.5,2.0,3.1)$ for HFI!
- $Q(\nu)$ corrections to be included in Planck Calibration: might represent up to $\mathcal{O}(1 \%)$ systematics

Planck Calibration?

- Splitting $\boldsymbol{\beta}_{\boldsymbol{T O T}}=\boldsymbol{\beta}_{\boldsymbol{S}}+\boldsymbol{\beta}_{\boldsymbol{O}}$ (А.N. \& M. Quartin '2015) :

$$
\begin{aligned}
\delta I_{\nu} & =\frac{\delta T}{T_{0}}+\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}+\boldsymbol{\beta}_{\mathbf{O}} \cdot \hat{\boldsymbol{n}}+ \\
& +Q(\nu)\left[\left(\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}\right)^{2}+\left(\boldsymbol{\beta}_{\boldsymbol{O}} \cdot \hat{\boldsymbol{n}}\right)^{2}+2\left(\boldsymbol{\beta}_{\boldsymbol{S}} \cdot \hat{\boldsymbol{n}}\right)\left(\boldsymbol{\beta}_{\mathbf{O}} \cdot \hat{\boldsymbol{n}}\right)\right]
\end{aligned}
$$

- Leading $\beta_{O} \cdot \hat{\boldsymbol{n}} \approx 10^{-4}$
- Subleading $\approx 10^{-6}$
$Q(\nu) \approx(1.25,1.5,2.0,3.1)$ for HFI!
- $Q(\nu)$ corrections to be included in Planck Calibration: might represent up to $\mathcal{O}(1 \%)$ systematics

Conclusions

(1) Can we reliably and precisely measure β via $\ell, \ell \pm 1$ couplings (to confirm local origin):

- Separately in Doppler and Aberration?
- Also in Polarization?

Conclusions

(1) Can we reliably and precisely measure β via $\ell, \ell \pm 1$ couplings (to confirm local origin):

- Separately in Doppler and Aberration?
- Also in Polarization?
(2) Agreement with other measurements? (Radio dipole or other large scale observations...)

Conclusions

(1) Can we reliably and precisely measure β via $\ell, \ell \pm 1$ couplings (to confirm local origin):

- Separately in Doppler and Aberration?
- Also in Polarization?
(2) Agreement with other measurements? (Radio dipole or other large scale observations...)
(3) Anomalies:
- Properly remove boost effects (if local!)
- Are they present in Polarization?

Conclusions

(1) Can we reliably and precisely measure β via $\ell, \ell \pm 1$ couplings (to confirm local origin):

- Separately in Doppler and Aberration?
- Also in Polarization?
(2) Agreement with other measurements? (Radio dipole or other large scale observations...)
(3) Anomalies:
- Properly remove boost effects (if local!)
- Are they present in Polarization?
(4) Never use linearized temperature $\Delta I(\hat{n})=H \Delta T(\hat{n})$, to avoid spurious frequency dependence (calibration, maps...)

[^0]: ${ }^{1}$ In collaboration with: M.Quartin, O.Roldan, earlier work with R.Catena, M.Liguori, A.Renzi, L.Amendola, I.Masina, C.Quercellini

 JCAP 1606 (2016) no.06, 026, Phys.Rev. D94 (2016) no.4, 043006 ,
 JCAP 1509 (2015) 09, 050, JCAP 1506 (2015) 06, 047
 JCAP 1501 (2015) 01, 008, JCAP 1403 (2014) 019
 JCAP 1309 (2013) 036, JCAP 1202 (2012) 026; JCAP 1107 (2011) 027 and "Exploring cosmic origins with CORE: effects of observer peculiar motion", CORE Collaboration, JCAP 1804 (2018) no.04, 021

[^1]: ${ }^{2}$ Kosowsky Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011. Measured in Planck XXVII, 2013.

[^2]: ${ }^{2}$ Kosowsky Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011.

[^3]: ${ }^{2}$ Kosowsky Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011.

[^4]: ${ }^{2}$ Kosowsky Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011.

[^5]: ${ }^{2}$ Kosowsky Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011.

[^6]: ${ }^{2}$ Kosowsky Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011.

[^7]: ${ }^{2}$ Kosowsky Kahniashvili, '2011, L. Amendola, Catena, Masina, A. N., Quartin'2011.

[^8]: ${ }^{3}$ O.Roldan, A.N., M. Quartin 2016

[^9]: ${ }^{3}$ O.Roldan, A.N., M. Quartin 2016

[^10]: ${ }^{3}$ O.Roldan, A.N., M. Quartin 2016

[^11]: ${ }^{3}$ O.Roldan, A.N., M. Quartin 2016

[^12]: ${ }^{3}$ O.Roldan, A.N., M. Quartin 2016

[^13]: ${ }^{3}$ O.Roldan, A.N., M.Quartin 2016

[^14]: ${ }^{4}$ Knox,Kamionkowski '04, Chluba, Sunyaev '04, Planck, A.N. \&

[^15]: ${ }^{4}$ Knox,Kamionkowski '04, Chluba, Sunyaev '04, Planck, A.N. \&

[^16]: ${ }^{4}$ Knox,Kamionkowski '04, Chluba, Sunyaev '04, Planck, A.N. \&

