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@ Can we disentangle them?
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CMB spectrum

s  More precisely
® T(n) — amm = [ dQYy,(M)T(M)

Hypothesis of Gaussianity and Isotropy:
@ a,, random numbers from a Gaussian of width leh.

@ Physics fixes C!!' = (|aym/[?)
@ Uncorrelated: NO preferred direction
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Effects of g

CMB & Proper T(n) (CMB Rest frame) = T'(#) (Our frame)

motion

Preferred direction 3

@ Doppler:
T'(A) = T(A)y(1 + Bcosh)  (cos(h) = - )

@ Aberration:
T'(n) = T()
0— 0 ~psing

Peebles & Wilkinson '68, Challinor & van Leeuwen 2002, Burles & Rappaport 2006
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In multipole space

Mixing of neighbors:

CMB & Proper
motion

8y ~ Am + B(Com@r—1m + Chrpde1m) + O((BL)?)

4+1)2—m?
®cl = ({+2-1) —(4(E+1 —
Com = —(( =1+ 1)/ 5
@ Doppler (constant), aberration grows with ¢!

*] We can measure [)) (Kosowsky Kahniashvili, 2011, L. Amendola, Catena, Masina, A.

N., Quartin'2011, Planck XXVII, 2013.)



Expected sensitivity
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L.Amendola, R.Catena, |.Masina, A.N., M.Quartin, C.Quercellini 2011
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Planck Measurement

B = 384km/s + 78km/s (stat) £115km/s (syst.)

CMB & Proper
motion

Planck Collaboration 2013, XXVII. Doppler boosting of the CMB: Eppur si muove

Found both Aberration and Doppler



Different frequencies

voar @ (3 =384km/s + 78km/s (stat) +115km/s (syst.)
roper

[oticy @ Systematics are present (discrepancy between different
frequency maps for Aberration)
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Forecasts: Other Sources

CMB & Proper
motion
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“Exploring cosmic origins with CORE: effects of observer peculiar
motion", CORE Collaboration, JCAP 2018



Forecasts

Experiment Channel  Opwnm ol S/N S/N S/N S/N
[GHz]  [arcmin] [uK.aremin] | TT TE+ET EE Total
Planck (all) ~55 ~13 3.8 L7 10 43
LiteBIRD (all) ~19 ~17 2.0 1.8 18 33
G & [Pz 60 17.87 75 21 19 18 34
motion
70 15.39 7.1 2.5 2.4 22 4l
80 13.52 6.8 2.8 2.8 26 48
90 12.08 5.1 35 3.4 33 59
100 10.92 5 3.9 3.7 37 65
115 9.56 5 43 4.2 42 73
130 8.51 3.9 5.1 4.9 5. 86
145 7.68 3.6 5.7 5.3 55 9.5
160 7.01 3.7 6.1 5.6 58  10.1
175 6.45 3.6 6.5 5.8 6.1 10.7
CORE 195 5.84 3.5 7.1 6.1 65 114
220 5.23 3.8 7.5 6.3 6.7 119
255 457 5.6 7.5 5.9 62 114
295 3.99 7.4 75 5.7 58 1L
340 3.49 111 7. 5.1 49 99
390 3.06 22 5.8 3.8 31 76
450 2.65 45.9 4.5 2.3 14 53
520 2.29 116.6 2.9 1. 03 31
600 1.98 358.3 14 0.3 0. 14
(all) ~45 ~14 8.2 6.6 73 12.8
Tdeal (fnax — 2000) | (all) 0 0 5.3 7.1 87 127
Tdeal (fnax — 3000) | (all) 0 0 10 9.8 4 21
Ideal (fnax — 4000) | (all) 0 0 16 114 19 29
Tdeal (fnax — 5000) | (all) 0 0 22 12.6 26 38
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Is 5 degenerate with an Intrinsic Dipole?

A dipolar large scale potential: ¢; = cos(8)f(r)
CMB & Proper
motion

Produces® a CMB dipole T; o cos(f).

It also produces couplings at 2nd order : ¢y, T(n) T ()

cne Degenerate with Doppler (if zero primordial
non-Gaussianity!)

&, produces dipolar Lensing = Aberration ?

Yes, but coefficient: generically depends on f(r):

@ — non-degenerate with Aberration (f(r) o r?)

30.Roldan, A.N., M.Quartin 2016
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@ Given a map T(hn): mask half of the sky:
T(n) = M(A)T(n)

@ We compute &, — CV
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Hemispherical asymmetry?

@ In several papers: significant (about 3¢) hemispherical
asymmetry at ¢ < O(60)

Eriksen et al. ‘04, '07, Hansen et al. ‘04, '09, Hoftuft et al. ‘09, Bernui ‘08, Paci et al. '13

Anomalies

@ The claim extends also to ¢ < 600 (WMAP)

Hansen et al. ‘09

@ And also to the Planck data (Up to which ¢7?)

Planck Collaboration, XIII. Isotropy and Statistics.
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Planck asymmetry

CMB

@ 7% asymmetry
@ at scales > 4°
@ Same as in WMAP

Anomalies




Hemispherical Asymmetry at high ¢7?

@ A correct analysis has to include Doppler and
Anomalies Aberration (important at ¢ = 1000)
AN., M.Quartin & R.Catena, JCAP Apr. '13
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Hemispherical Asymmetry at high ¢7?

@ A correct analysis has to include Doppler and
Anomalies Aberration (important at ¢ = 1000)
AN., M.Quartin & R.Catena, JCAP Apr. '13

@ We find between 2.5 — 30 anomaly only at / < 600

(A.N., M.Quartin & JCAP '14, Planck Collaboration 2013, XIII. Isotropy and Statistics)



Hemispherical Asymmetry due to Velocity

DT
o Enes

2>< fsky = 0.146]
0 500 1000 1500 2000 2500
{

Anomalies

-0. 03

Figure: Discs along the Dipole direction



Hemispherical Asymmetry due to Velocity

DT
o Enes

2>< fsky = 0.146]
0 500 1000 1500 2000 2500
{

Anomalies

-0. 03

Figure: Discs along the Dipole direction

@ For a small disc (along Dipole direction):

0Cy

T, = 4B +2B(C;



Hemispherical Asymmetry due to Velocity

= e
o Enes
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Figure: Discs along the Dipole direction

@ For a small disc (along Dipole direction):

0Cy

C

@ Small area experiments bias (i.e. CMB peaks position shifts
of 0.5% in ACT) AN., M.Quartin, R.Catena 2013

~ 48 + 2BLC)
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“Dipolar modulation"?

@ Several authors have studied the ansatz

Anomalies

T = Tisotropic(‘I + Amod - n) )

@ 3-0 detection of Apog along max. asymm. direction
(For £ < 60 or ¢ < 600)

@ Anoa 60 times bigger than g! (at ¢ < 60)



Anomalies

Our Results on A

Planck data
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Figure: All simulations include Planck noise asymmetry.

AN. & M.Quartin, 2014
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Frequency dependence??

@ A boost does NOT change the blackbody

@ But, consider Intensity:

Frequency
dependence /(V) = T

@ Linearize Intensity: (WMAP, PLANCK...):

@ Using T =Ty + AT(h), | = Iy + Al(h), we get

4 i o
Al By ~ — 228" AT(n) = k 2T

T2 (e% —1)2 To




Frequency dependence??

@ At second order:
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where Q(v) = v/(2vg) coth{v/(2vp)].



Frequency dependence??

@ At second order:

Al AT(h AT(A)\?
Zep%nderrce = = ( )+( T(() )> Q(V),

K To
where Q(v) = v/(2vg) coth{v/(2vp)].

@ Spurious y-distortion
@ Degenerate with tSZ and primordial y-distortion
@ Any T fluctuation produces this
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Frequency dependence??

@ Dominated by dipole Ay 4

o ST = 6T = (6Ta
L(v, n) _“A‘+To_ﬂ“?o+ﬁ( 7, >+

Frequency
dependence

1

1 oT
+ (qu = 3) A? 4+ §A$ I 2A1MT0] Q(v).

@ Quadrupole (10~7)
@ Monopole (10~7)
@ Couplings (1078)

*Knox,Kamionkowski '04, Chluba, Sunyaev ‘04, Planck , A.N. &
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Frequency dependence??

@ Dominated by dipole Ay 4

o ST = 6T = (6Ta
L(v,n)—uA1+?o—Bu?o+B( T0>+

Frequency
dependence

1

1 oT
+ (qu = 3)A$ + §A$ +2A1MT0] Q(v).

@ Quadrupole (10~7)
@ Monopole (10~7)
@ Couplings (1078)

@ Caveat: Ay = (3 + intrinsic dipole

*Knox,Kamionkowski '04, Chluba, Sunyaev '04, Planck , A.N. &
Quartin’16
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WMAP/Planck Quadrupole-Octupole
alignments

Another anomaly:

Frequency

dopondonce @ From a,,, and as,, — Multipole vectors — 1o, .
4 flg C ﬁg ~ 0.99

@ And also Dipole-Quadrupole-Octupole (A4, fo, 13)
aligned (e.g.Copi etal. '13 )
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Removing Doppler quadrupole

@ Planck data initially showed less alignment than
WMAP: 2.3¢ for hy - ho (SMICA 2013)

Frequency
dependence

@ After removing Doppler — 2.90 (copietal. 13),
(agreement with WMAP)

@ Using Q. ~ 1.7 on SMICA 20183, (aN. & MQuartin, JcAP 2015)
— for Py - o

@ ...and agreement among different maps!
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Planck Calibration?

@ Doppler effect is used to calibrate the detectors!

Frequency
dependence

@ WMAP calibrated using BorBimaL (=~ 1074)
@ Planck 2013 on gy (using WMAP!)

@ Planck 2015 calibrated on Soggi7aL
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Conclusions

@ Can we reliably and precisely measure 3 via ¢, ¢ + 1
couplings (to confirm local origin):

o Separately in Doppler and Aberration?
o Also in Polarization?

Frequency
dependence

@ Agreement with other measurements? (Radio dipole or
other large scale observations...)

© Anomalies:

o Properly remove boost effects (if local!)
o Are they present in Polarization?

@ Never use linearized temperature Al(h) = HAT(h), to
avoid spurious frequency dependence (calibration,
maps...)
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