A REVIEW OF NEUTRINO COSMOLOGY

COSMOS meeting on astroparticle and fundamental physics

Martina Gerbino OKC, Stockholm University see also Gerbino&Lattanzi2017

A REVIEW OF NEUTRINO COSMOLOGY

COSMOS meeting on astroparticle and fundamental physics

Martina Gerbino OKC, Stockholm University see also Gerbino&Lattanzi2017

A REVIEW OF NEUTRINO COSMOLOGY

COSMOS meeting on astroparticle and **fundamental physics**

Martina Gerbino OKC, Stockholm University Char Klein see also Gerbino&Lattanzi2017

What we know, from the lab From Z-boson decay —> 3 active neutrino families From flavour oscillations —> Neutrinos are massive

 $0.06 \,\mathrm{eV} < \Sigma m_{\nu} < 6 \,\mathrm{eV}$

Basics of neutrino cosmology

- Standard cosmological model predicts the existence of a background of relic neutrinos (CvB)
- $\Gamma_w > H$ (T>1MeV) -> Thermal equilibrium with primordial plasma (T_v=T)
- T < 1 MeV -> neutrino free stream keeping an equilibrium spectrum ($T_v \neq T$, $T_v \propto 1/a$):

• Today $T_v = 1.9$ K and $n_v = 113$ part/cm³ per species

Neutrino phenomenology

Neutrinos were relativistic in the early Universe

$$\rho_{\nu} = g_{\nu} \int p f(p) d^3 p \propto g_{\nu} T_{\nu}^4$$

Contribution to the radiation density

$$\rho_{rad} = \rho_{\gamma} + \rho_{\nu} = \left[1 + \frac{7}{8} \left(\frac{4}{11} \right)^{4/3} N_{\text{eff}} \right] \rho_{\gamma}$$
with $\rho_x \propto g_x T_x^4, T_{\nu}/T_{\gamma} = (4/11)^{1/3}$

Distorsions due to non-inst decoupling radiative corrections, flavour oscillations Dolgov, 1997, Mangano+,2005 deSalas&Pastor,2016

Neff could account for any 'extra' radiation component

 $\frac{\rho_{\rm rad} - \rho_{\gamma}}{\rho^{\rm st}} = 3.045$

Neutrino phenomenology

Neutrinos are non-relativistic today

$$\rho_{\nu} = m_{\nu}n_{\nu} = m_{\nu}g_{\nu}\int f(p)d^{3}p \propto m_{\nu}g_{\nu}T_{\nu}^{3}$$

Contribution to the matter content at late times

$$\Omega_{\nu} = \sum_{\nu} \frac{\rho_{\nu}}{\rho_{c}} = \frac{\sum_{\nu} m_{\nu}}{\mathbf{93.14h^{2} eV}} \qquad \rho_{c} = \frac{3H^{2}}{8\pi G}$$

Transition to non-relativistic regime

$$\simeq m_{\nu} \rightarrow 1 + z_{\rm nr} \simeq 1900 \left(\frac{m_{\nu}}{\rm eV}\right)$$

What we observe

What we observe

SDSS-BOSS collaboration

Martina Gerbino

COSMOS meeting, 27June2018

Effects on background quantities

$$1 + z_{\rm eq} = \frac{\Omega_c + \Omega_b}{\Omega_\gamma \left[1 + \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} N_{\rm eff}\right]} \text{Matter-radiation equality}$$

Perturbation effects

$$k_{
m fs} \simeq 0.018 \,\Omega_m^{1/2} \left(\frac{m_
u}{1 \,{
m eV}}
ight) h {
m Mpc}^{-1}$$
 Free streaming scale
 $\delta_m (k \gg k_{
m fs}) \propto a^{1-(3/5)\Omega_
u/\Omega_m}$ Suppressed growth
 $k_p r_s + \phi = p\pi$ Acoustic phase shift

Martina Gerbino

COSMOS meeting, 27June2018

sound horizon at recombination matter-equality

Hou et al, 2014

Effects on the lensing spectrum

Stage-IV Science Book

Effects on the matter spectrum

Future - Massive neutrinos

Adapted from CMB Stage-IV white paper

Current limits on Neff

Future - Relativistic species

CONCLUSIONS

Determine CnB properties from neutrino peculiar effects on cosmological observables

Strong and robust constraints from cosmology

Neutrino masses: getting closer to the non-degenerate region Neff: no preference for an additional thermalised species

Next generation surveys will probe the physics of noninstantaneous decoupling and detect the neutrino mass scale with high statistical significance

BACKUP SLIDES

Model assumptions

The \land CDM model assumes:

- only weak and gravitational interactions;
- perfect lepton symmetry (zero chemical potential);
- no entropy generation after neutrino decoupling beyond e⁺e⁻ annihilation;
- neutrinos are stable;
- •in general, there are no interactions that could lead to neutrino scattering/ annihilation/decay

Towards Planck 2018 results

Parameter	PlanckTT+lowP 95% limits	PlanckTT+SIMlow 95% limits	PlanckTTTEEE+lowP 95% limits	PlanckTTTEEE+SIMlow 95% limits
Ω_K	$-0.052^{+0.049}_{-0.055}$	$-0.053^{+0.044}_{-0.046}$	$-0.040^{+0.038}_{-0.041}$	$-0.039^{+0.032}_{-0.034}$
Σm_{ν} [eV]	<0.715	< 0.585	< 0.492	< 0.340
N _{eff}	$3.13^{+0.64}_{-0.63}$	$2.97^{+0.58}_{-0.53}$	$2.99_{-0.39}^{+0.41}$	$2.91^{+0.39}_{-0.37}$
<i>Y</i> _P	$0.252^{+0.041}_{-0.042}$	$0.242^{+0.039}_{-0.040}$	$0.250^{+0.026}_{-0.027}$	$0.244_{-0.026}^{+0.026}$
$dn_s/d\ln k$	$-0.008\substack{+0.016\\-0.016}$	$-0.004^{+0.015}_{-0.015}$	$-0.006^{+0.014}_{-0.014}$	$-0.003^{+0.014}_{-0.013}$
$r_{0.002}$	< 0.103	< 0.111	< 0.0987	< 0.111
w	$-1.54^{+0.62}_{-0.50}$	$-1.57\substack{+0.61\\-0.49}$	$-1.55\substack{+0.58\\-0.48}$	$-1.59^{+0.58}_{-0.46}$
$A_{\mathcal{L}}$	$1.22\substack{+0.21\\-0.20}$	$1.23^{+0.20}_{-0.18}$	$1.15^{+0.16}_{-0.15}$	$1.15\substack{+0.13 \\ -0.12}$

Improved polarisation data Refined measurements of the reionisation optical depth tau

Complementarity with laboratory searches

Complementarity with laboratory searches

Joint constraints on Mnu - future

~3sigma detection in the minimal mass scenario with S4 surveys

Current limits on sterile neutrinos

Sensitivity to the hierarchy

Physical effects due to different distribution of the sum of the masses for the 2 hierarchies

Are current (and future) data sensitive to these effects? How much?

Sensitivity to the hierarchy

The Hubble constant

Compensate a change in the distance to the last scattering surface by modifying the Hubble constant

The reionisation optical depth

Better determination of tau benefits parameter estimation in general Degeneracy between the optical depth and neutrino mass

Sensitivity to the hierarchy

If Mnu=0.1eV, sigma(mbb)~10meV could guarantee 0n2b measurement

0n2b could in turn helps unravel the hierarchy (wip, extending the results in Gerbino+2015 in the hierarchical bayesian context)

Limits on Neff from Planck 2015

Martina Gerbino

COSMOS meeting, 27June2018

Limits on Mnu from Planck 2015

95%CL	2013	2015	2015 + PlanckTE,EE	
PlanckTT+lowP	<0.93 eV	<0.72 eV (23%)	<0.49 eV (48%)	
PlanckTT+lowP+lensing	<1.1 eV	<0.68 eV (38%)	<0.59 eV (47%)	
PlanckTT+lowP+BAO	<0.25 eV	<0.21 eV (16%)	<0.17 eV (36%)	
PlanckTT+lowP+ext		<0.20 eV	<0.15 eV	r
PlanckTT+lowP+lensing+ex t	(<0.23 eV	<0.19 eV	

>10x better than current kinematic measurements

Planck collaboration,2015

COSMOS meeting, 27June2018

Robustness wrt the underlying cosmology

COSMOS meeting, 27June2018

Neutrino unknown: when neutrinos are nuisance

Better constraints on neutrino properties will improve constraints on inflation Need for taking into account neutrino uncertainties to better assess consistency of inflationary models When accounting for uncertainties in Mnu or Neff, some models are still in agreement with data

• With BAO, more stable contours

Martina Gerbino

COSMOS meeting, 27June2018

Limits on Neff from Planck 2015

and astrophysical (bands) measurements

Gravitational lensing provides new probes for neutrino masses

