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* |sotropic rotation
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* Calibration methods and proposals
* Preliminary forecasts and final remarks



Cosmic polarization rotation (CPR)

* Photon’s original polarization
angle at the surface of last

scattering gets rotated along a

line of sight by some angle a

* CPR can occur in the Standard
Model Extension (SME) with
Lorentz-violating terms

e CPR can also occur due to
Faraday rotation through

magnetic fields (Galactic or
primordial)
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General reference on SME and cosmic birefringence:
Kostelecky and Mewes, PRD - 0905.0031
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https://arxiv.org/abs/0905.0031

|sotropic rotation

* Every line of sight rotates by the

same angle, related to one of
the SME free parameters.

* \ery easy to write down effect
on the angular power spectrum

e Unfortunately, it is completely
degenerate with a mis-
calibration of the receiver’s
polarization axes.
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. . . . o Plots by M. Navaroli
polarization rotation in 0.5° steps



Assume a generic, idealized, future
experiment with FWHM 2 arcmin beams
and a noise level scaled to match the
delensed BB spectrum of r=0.001 at 1~80.
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Plot by D. Leon
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A rotation of a=0.01 radians (34 arcmin) would be detected in TB and EB, but this is
the limit of calibration systematics of current experiments.
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Note: The unusual sinh(x) scale of the y-axis in these plots Plots by D. Leon

provide a kind of signed logarithm that crosses zero linearly.



D-estimators

* [t is possible to define a pair of

estimators which should be zero p72 = ¢75°% cos (2a) + CTE"* sin (20)
(up to noise) for ANY input
cosmology.

* Unbiased even with lensing

B ob: I WEFE,0bs B B,obs .
L)!I B3 (" 008 ng (,1”) 4 5 ((’ obs _ r [ ob )Slll(-lli)

 Since the D-estimators are linear References:
. . . Zhao et al., JCAP - 1504.04507
in the C, their covariance can Gruppuso et al., JCAP - 160405202
also be EXpressed in terms of Molinari et al., Physics of the Dark Universe -.1605,01667

covariances of C, i.e. no need to
run additional simulations.


https://arxiv.org/abs/1504.04507
https://arxiv.org/abs/1604.05202
https://arxiv.org/abs/1605.01667

POLARBEAR self-calibration

a=0.00" £0.15°

* POLARBEAR rotates the apparent |

rotation until the ¥? is

minimized. y
* This means that the experiment 2

is insensitive to isotropic

rotation, but there is no risk of

mis-calibration.

-0.4 -0.2 . [deocﬁees] 0.2 0.4

- - - : - - Plot by D. Leon
2 _ (pre pesy) (Y (DTB, DIB) cov(DTB, DEB)\ ' (DIB Y
X = e £ cov (DyB,D}PB) cov(DFE,DEP) Dg®



Anisotropic rotation

* Rotation angle varies along & _ 1 /.
: : . L=—F,F" a=—[d¢dn
different lines of sight. oM M
* Associated with axion-like A
pseudoscalars or primordial o(h) = 3(-’; V_-z/%B,dl
magnetic fields 167e

e Constraints come from both

. . . - o'EE . ... 2
direct stress-energy contribution (L) = Aup(L) / B0)B() 2 mf’()bnzg)"' d 12
to C, and from reconstructed - CreCy®  (2m)
angle (similar to lensing).
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Constraints from BB

* The best constraints come from
regular, on-diagonal
measurement of BB.

e Tensor contribution from PMF
would look just like .

* Constraint corresponds to PMF
of B<3.9 nG on 1 Mpc scales (or
B<4.5 nG with different prior).

e Effect scales as ~B*#, so this
method is mostly exhausted.
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POLARBEAR Collaboration (corresp. C. Feng) -.1509.02461


https://arxiv.org/abs/1509.02461

Constraints from o reconstruction
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https://arxiv.org/abs/1509.02461

Constraints from a reconstruction
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https://arxiv.org/abs/1705.02523

Angle calibration

* No published constraints better

than ~0.5° because multiple
calibration methods often
disagree

* |deal calibrations would
reference to a controlled, far
field point source.

* Ground-based rotating polarized

source demonstrated in lab to
~0.1° but not field proven.
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Plot by M. Navaroli
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Tau A as a reference calibrator

* Multiple microwave telescopes

with independent, controlled
ground calibrations have
measured Tau A.

* Combining them results in an
overall uncertainty of £0.33°,

* Tau A can help cross-calibrate
Chilean telescopes but is below
the horizon at South Pole.

Aumont et al., submitted to A&A - 1805.10475



https://arxiv.org/abs/1805.10475

Future calibrations

— .
* Proposal for drone or balloon-

based calibrator referenced by a

star camera instead of gravity:

Nati et al., J. Astron. Instrum. -

1704.02704 500

B ——~, Mean: 91.34° .
* Polarbear with a half-wave plate 00| RMS: 2.68°

Total: 12521

detects nearly horizontally
polarized clouds (in prep, led by
S. Takakura).
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https://arxiv.org/abs/1704.02704

Final remarks, forecasts

* Simons Observatory noise

studies are ongoing, but ~10x
improvement to o(a) plausible.

e Calibration uncertainties must
improve below <0.1° to continue
probing az0.

* Errors on anisotropic rotation
also likely to improve by ~10x.

* We need more study in relation
to lensing and foregrounds.

Preliminary plot by C. J. Williams
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Table 1. Calculated and estimated statistical and systematic errors.

Total

Statistical uncertainties Angle
Wire-grid wire wrapping 0.02°

Wire-grid misalignment 0.006°
Rotation stage backlash 0.006°
Pre-pointing gravity vector leveling | 0.006°
Post-pointing 0.006°
Total 0.025°
Systematic uncertainties Angle
Electrical crosstalk 0.05°

Ground reflections 0.015°
Calibrator beam deformities <0.01°
Gunn diode temperature stability <0.01°
Birefringent MF-110 attenuators <0.01°

0.055°
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camera lenses
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Latitude [deg]

S25W070 GGMplus East-West DoV [arc-sec] S25W070 GGMplus North-South DoV [arc-sec]
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Model of the deviation of gravity vector around the Chilean observing site
Hirt et al. - doi:10.1002/grl.50838
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