Constraints on isotropic and anisotropic cosmic birefringence with Polarbear and future experiments

Grant Teply UC San Diego 2018 June 26

Outline

- General introduction to cosmic polarization rotation
- Isotropic rotation
- Anisotropic rotation
- Calibration methods and proposals
- Preliminary forecasts and final remarks

Cosmic polarization rotation (CPR)

- Photon's original polarization angle at the surface of last scattering gets rotated along a line of sight by some angle α
- CPR can occur in the Standard Model Extension (SME) with Lorentz-violating terms
- CPR can also occur due to Faraday rotation through magnetic fields (Galactic or primordial)

$$
\binom{Q^{\prime}}{U^{\prime}}=\left(\begin{array}{cc}
\cos (2 \alpha) & -\sin (2 \alpha) \\
\sin (2 \alpha) & \cos (2 \alpha)
\end{array}\right)\binom{Q}{U}
$$

General reference on SME and cosmic birefringence:
Kostelecky and Mewes, PRD - 0905.0031

Isotropic rotation

- Every line of sight rotates by the

$$
\alpha=\frac{k_{(V) 00}^{(3)}}{\sqrt{4 \pi}} \int_{0}^{z} \frac{d z^{\prime}}{\left(1+z^{\prime}\right) H_{z^{\prime}}}
$$ same angle, related to one of the SME free parameters.

- Very easy to write down effect on the angular power spectrum
- Unfortunately, it is completely degenerate with a miscalibration of the receiver's polarization axes.

$$
\begin{aligned}
\left\langle C_{\ell}^{T T, o b s}\right\rangle & =C_{\ell}^{T T}+N_{\ell}^{T T} \\
\left\langle C_{\ell}^{T E, o b s}\right\rangle & =C_{\ell}^{T E} \cos (2 \alpha) \\
\left\langle C_{\ell}^{T B, o b s}\right\rangle & =-C_{\ell}^{T E} \sin (2 \alpha) \\
\left\langle C_{\ell}^{E E, o b s}\right\rangle & =C_{\ell}^{E E} \cos ^{2}(2 \alpha)+C_{\ell}^{B B} \sin ^{2}(2 \alpha)+N_{\ell}^{P P} \\
\left\langle C_{\ell}^{B B, o b s}\right\rangle & =C_{\ell}^{B B} \cos ^{2}(2 \alpha)+C_{\ell}^{E E} \sin ^{2}(2 \alpha)+N_{\ell}^{P P} \\
\left\langle C_{\ell}^{E B, o b s}\right\rangle & =-\frac{1}{2}\left(C_{\ell}^{E E}-C_{\ell}^{B B}\right) \sin (4 \alpha)
\end{aligned}
$$

Effect of -2.5° (darkest blue) to $+2.5^{\circ}$ polarization rotation in 0.5° steps

Plots by M. Navaroli

Assume a generic, idealized, future experiment with FWHM 2 arcmin beams and a noise level scaled to match the delensed BB spectrum of $r=0.001$ at $\mid \sim 80$.

Plot by D. Leon

A rotation of $\alpha=0.01$ radians (34 arcmin) would be detected in $T B$ and $E B$, but this is the limit of calibration systematics of current experiments.

D-estimators

- It is possible to define a pair of estimators which should be zero (up to noise) for ANY input cosmology.

- Unbiased even with lensing
- Since the D-estimators are linear in the C_{1}, their covariance can also be expressed in terms of covariances of $C_{\text {, }}$, i.e. no need to run additional simulations.

References:
Zhao et al., JCAP - 1504.04507
Gruppuso et al., JCAP -1604.05202
Molinari et al., Physics of the Dark Universe - 1605.01667

Polarbear self-calibration

- Polarbear rotates the apparent rotation until the χ^{2} is minimized.
- This means that the experiment is insensitive to isotropic rotation, but there is no risk of mis-calibration.

$$
\chi^{2}=\left(\begin{array}{ll}
D_{\ell}^{T B} & D_{\ell}^{E B}
\end{array}\right)\left(\begin{array}{ll}
\operatorname{cov}\left(D_{\ell}^{T B}, D_{\ell^{\prime}}^{T B}\right) & \operatorname{cov}\left(D_{\ell}^{T B}, D_{\ell^{\prime}}^{E B}\right) \\
\operatorname{cov}\left(D_{\ell}^{E B}, D_{\ell^{\prime}}^{T B}\right) & \operatorname{cov}\left(D_{\ell}^{E B}, D_{\ell^{\prime}}^{E B}\right)
\end{array}\right)^{-1}\binom{D_{\ell^{\prime}}^{T B}}{D_{\ell^{\prime}}^{E} B}
$$

Plot by D. Leon

Anisotropic rotation

- Rotation angle varies along different lines of sight.
- Associated with axion-like pseudoscalars or primordial magnetic fields

$$
\mathcal{L}=\frac{\phi}{2 M} F_{\mu \nu} \tilde{F}^{\mu \nu} \quad \alpha=\frac{1}{M} \int \dot{\phi} d \eta
$$

$$
\alpha(\hat{\mathbf{n}})=\frac{3 c^{2}}{16 \pi^{2} e} \nu^{-2} \int \dot{\tau} \mathbf{B} \cdot d \mathbf{l}
$$

- Constraints come from both direct stress-energy contribution to C_{1} and from reconstructed

$$
\alpha_{E B}(\mathbf{L})=A_{E B}(L) \int E(\mathbf{l}) B\left(\mathbf{l}^{\prime}\right) \frac{2 \tilde{C}_{l}^{E E} \cos 2 \phi_{\mathbf{I l}^{\prime}}}{C_{l}^{E E} C_{l^{\prime}}^{B B}} \frac{d^{2} \mathbf{l}}{(2 \pi)^{2}}
$$ angle (similar to lensing).

Constraints from BB

- The best constraints come from regular, on-diagonal measurement of BB.
- Tensor contribution from PMF would look just like r.
- Constraint corresponds to PMF of $\mathbf{B}<3.9$ nG on 1 Mpc scales (or $\mathrm{B}<4.5 \mathrm{nG}$ with different prior).
- Effect scales as $\sim B^{4}$, so this method is mostly exhausted.

POLARBEAR Collaboration (corresp. C. Feng) - 1509.02461

Constraints from α reconstruction

PMF B<93 nG on 1 Mpc scales

POLARBEAR Collaboration (corresp. C. Feng) - 1509.02461

Scales as $\sim B^{2}$, so room to improve

Constraints from α reconstruction

PMF $\mathbf{B}<\mathbf{3 0} \mathbf{n G}$ on 1 Mpc scales

BICEP2 / Keck Array (corresp. T. Namikawa) - 1705.02523

Scales as $\sim B^{2}$, so room to improve

Angle calibration

- No published constraints better than $\sim 0.5^{\circ}$ because multiple calibration methods often disagree
- Ideal calibrations would reference to a controlled, far field point source.
- Ground-based rotating polarized source demonstrated in lab to $\sim 0.1^{\circ}$ but not field proven.

Plot by M. Navaroli

Tau A as a reference calibrator

- Multiple microwave telescopes with independent, controlled ground calibrations have measured Tau A.
- Combining them results in an overall uncertainty of $\pm 0.33^{\circ}$.
- Tau A can help cross-calibrate Chilean telescopes but is below the horizon at South Pole.

Aumont et al., submitted to A\&A -1805.10475

Future calibrations

- Proposal for drone or balloonbased calibrator referenced by a star camera instead of gravity: Nati et al., J. Astron. Instrum. 1704.02704
- Polarbear with a half-wave plate detects nearly horizontally polarized clouds (in prep, led by S. Takakura).

Final remarks, forecasts

- Simons Observatory noise studies are ongoing, but ~10x improvement to $\sigma(\alpha)$ plausible.
- Calibration uncertainties must improve below $<0.1^{\circ}$ to continue probing $\alpha \neq 0$.
- Errors on anisotropic rotation also likely to improve by ${ }^{\sim} 10 x$.
- We need more study in relation to lensing and foregrounds.

Preliminary plot by C. J. Williams

Backup

Table 1. Calculated and estimated statistical and systematic errors.

Statistical uncertainties	Angle
Wire-grid wire wrapping	0.02°
Wire-grid misalignment	0.006°
Rotation stage backlash	0.006°
Pre-pointing gravity vector leveling	0.006°
Post-pointing	0.006°
Total	$\mathbf{0 . 0 2 5}^{\circ}$
Systematic uncertainties	Angle
Electrical crosstalk	0.05°
Ground reflections	0.015°
Calibrator beam deformities	$<0.01^{\circ}$
Gunn diode temperature stability	$<0.01^{\circ}$
Birefringent MF-110 attenuators	$<0.01^{\circ}$
Total	$\mathbf{0 . 0 5 5}{ }^{\circ}$

Model of the deviation of gravity vector around the Chilean observing site Hirt et al. - doi:10.1002/grl. 50838

