Constraints on isotropic and anisotropic cosmic birefringence with POLARBEAR and future experiments

Grant Teply, UC San Diego 2018 June 26

Outline

- General introduction to cosmic polarization rotation
- Isotropic rotation
- Anisotropic rotation
- Calibration methods and proposals
- Preliminary forecasts and final remarks

Cosmic polarization rotation (CPR)

- Photon's original polarization angle at the surface of last scattering gets rotated along a line of sight by some angle α
- CPR can occur in the Standard Model Extension (SME) with Lorentz-violating terms
- CPR can also occur due to Faraday rotation through magnetic fields (Galactic or primordial)

$$\begin{pmatrix} Q'\\U' \end{pmatrix} = \begin{pmatrix} \cos\left(2\alpha\right) & -\sin\left(2\alpha\right)\\ \sin\left(2\alpha\right) & \cos\left(2\alpha\right) \end{pmatrix} \begin{pmatrix} Q\\U \end{pmatrix}$$

General reference on SME and cosmic birefringence: Kostelecky and Mewes, PRD - <u>0905.0031</u>

Isotropic rotation

- Every line of sight rotates by the same angle, related to one of the SME free parameters.
- Very easy to write down effect on the angular power spectrum
- Unfortunately, it is completely degenerate with a miscalibration of the receiver's polarization axes.

$$\alpha = \frac{k_{(V)00}^{(3)}}{\sqrt{4\pi}} \int_0^z \frac{dz'}{(1+z')H_{z'}}$$

$$\begin{split} \left\langle C_{\ell}^{TT,obs} \right\rangle &= C_{\ell}^{TT} + N_{\ell}^{TT} \\ \left\langle C_{\ell}^{TE,obs} \right\rangle &= C_{\ell}^{TE} \cos\left(2\alpha\right) \\ \left\langle C_{\ell}^{TB,obs} \right\rangle &= -C_{\ell}^{TE} \sin\left(2\alpha\right) \\ \left\langle C_{\ell}^{EE,obs} \right\rangle &= C_{\ell}^{EE} \cos^{2}\left(2\alpha\right) + C_{\ell}^{BB} \sin^{2}\left(2\alpha\right) + N_{\ell}^{PP} \\ \left\langle C_{\ell}^{BB,obs} \right\rangle &= C_{\ell}^{BB} \cos^{2}\left(2\alpha\right) + C_{\ell}^{EE} \sin^{2}\left(2\alpha\right) + N_{\ell}^{PP} \\ \left\langle C_{\ell}^{EB,obs} \right\rangle &= -\frac{1}{2} \left(C_{\ell}^{EE} - C_{\ell}^{BB} \right) \sin\left(4\alpha\right) \end{split}$$

Effect of -2.5° (darkest blue) to +2.5° polarization rotation in 0.5° steps

Plots by M. Navaroli

Assume a generic, idealized, future experiment with FWHM 2 arcmin beams and a noise level scaled to match the delensed BB spectrum of r=0.001 at l~80.

Plot by D. Leon

A rotation of α =0.01 radians (34 arcmin) would be detected in TB and EB, but this is the limit of calibration systematics of current experiments.

Note: The unusual sinh(x) scale of the y-axis in these plots provide a kind of signed logarithm that crosses zero linearly.

7

D-estimators

- It is possible to define a pair of estimators which should be zero (up to noise) for ANY input cosmology.
- Unbiased even with lensing
- Since the D-estimators are linear in the C_I, their covariance can also be expressed in terms of covariances of C_I, i.e. no need to run additional simulations.

$$D_{\ell}^{TB} = C_{\ell}^{TB,obs} \cos(2\alpha) + C_{\ell}^{TE,obs} \sin(2\alpha)$$
$$D_{\ell}^{EB} = C_{\ell}^{EB,obs} \cos(4\alpha) + \frac{1}{2} \left(C_{\ell}^{EE,obs} - C_{\ell}^{BB,obs} \right) \sin(4\alpha)$$

References: Zhao et al., JCAP - <u>1504.04507</u> Gruppuso et al., JCAP - <u>1604.05202</u> Molinari et al., Physics of the Dark Universe - <u>1605.01667</u>

POLARBEAR self-calibration

- POLARBEAR rotates the apparent rotation until the χ^2 is minimized.
- This means that the experiment is insensitive to isotropic rotation, but there is no risk of mis-calibration.

Anisotropic rotation

- Rotation angle varies along different lines of sight.
- Associated with axion-like pseudoscalars or primordial magnetic fields
- Constraints come from both direct stress-energy contribution to C_I and from reconstructed angle (similar to lensing).

$$\mathcal{L} = \frac{\phi}{2M} F_{\mu\nu} \tilde{F}^{\mu\nu} \quad \alpha = \frac{1}{M} \int \dot{\phi} \, d\eta$$

$$\alpha(\hat{\mathbf{n}}) = \frac{3c^2}{16\pi^2 e} \nu^{-2} \int \dot{\tau} \, \mathbf{B} \cdot d\mathbf{l}$$

$$\alpha_{EB}(\mathbf{L}) = A_{EB}(L) \int E(\mathbf{l}) B(\mathbf{l}') \frac{2\tilde{C}_l^{EE} \cos 2\phi_{\mathbf{l}\mathbf{l}'}}{C_l^{EE} C_{l'}^{BB}} \frac{d^2\mathbf{l}}{(2\pi)^2}$$

Constraints from BB

- The best constraints come from regular, on-diagonal measurement of BB.
- Tensor contribution from PMF would look just like r.
- Constraint corresponds to PMF of B<3.9 nG on 1 Mpc scales (or B<4.5 nG with different prior).
- Effect scales as ~B⁴, so this method is mostly exhausted.

POLARBEAR Collaboration (corresp. C. Feng) - 1509.02461

Constraints from α reconstruction

PMF B<93 nG on 1 Mpc scales

POLARBEAR Collaboration (corresp. C. Feng) - 1509.02461

Scales as $\sim B^2$, so room to improve

Constraints from α reconstruction

PMF B<30 nG on 1 Mpc scales

BICEP2 / Keck Array (corresp. T. Namikawa) - 1705.02523

Scales as ~B², so room to improve

Angle calibration

- No published constraints better than ~0.5° because multiple calibration methods often disagree
- Ideal calibrations would reference to a controlled, far field point source.
- Ground-based rotating polarized source demonstrated in lab to ~0.1° but not field proven.

Plot by M. Navaroli

Tau A as a reference calibrator

- Multiple microwave telescopes with independent, controlled ground calibrations have measured Tau A.
- Combining them results in an overall uncertainty of ±0.33°.
- Tau A can help cross-calibrate Chilean telescopes but is below the horizon at South Pole.

Aumont et al., submitted to A&A - 1805.10475

Future calibrations

- Proposal for drone or balloonbased calibrator referenced by a star camera instead of gravity: Nati et al., J. Astron. Instrum. -1704.02704
- Polarbear with a half-wave plate detects nearly horizontally polarized clouds (in prep, led by S. Takakura).

Final remarks, forecasts

- Simons Observatory noise studies are ongoing, but ~10x improvement to σ(α) plausible.
- Calibration uncertainties must improve below <0.1° to continue probing α≠0.
- Errors on anisotropic rotation also likely to improve by ~10x.
- We need more study in relation to lensing and foregrounds.

Preliminary plot by C. J. Williams

Thank you, and stay tuned!

Backup

Table 1. Calculated and estimated statistical and systematic errors.

Statistical uncertainties	Angle
Wire-grid wire wrapping	0.02°
Wire-grid misalignment	0.006°
Rotation stage backlash	0.006°
Pre-pointing gravity vector leveling	0.006°
Post-pointing	0.006°
Total	0.025°
Systematic uncertainties	Angle
Systematic uncertainties Electrical crosstalk	Angle 0.05°
v	
Electrical crosstalk	0.05°
Electrical crosstalk Ground reflections	0.05° 0.015°
Electrical crosstalk Ground reflections Calibrator beam deformities	0.05° 0.015° <0.01°

Model of the deviation of gravity vector around the Chilean observing site Hirt et al. - doi:10.1002/grl.50838

