

CINIS

CMB Lensing with the South Pole Telescope

Alessandro Manzotti Lagrange fellow Institute D'Astrophysique de Paris

COSMOS Ferrara

SPT: A LOW NOISE, HIGH RESOLUTION, CMB POLARIZATION EXPERIMENTS AT THE POLE

High-resolution of 1 arcmin

Polarization detector with great systematic controls (90-150 -220 Ghz)

Strategy: dig down! small-ish area very low noise

Large and small scale 50<ell<8000

Low/stable atmospheric noise and great depth

SPT: A LOW NOISE, HIGH RESOLUTION, CMB POLARIZATION EXPERIMENTS AT THE POLE

High-resolution of 1 arcmin

Polarization detector with great systematic controls (90-150 -220 Ghz)

Strategy: dig down! small-ish area very low noise

Low/stable atmospheric noise and great depth

SPT-POL: OPENED A NEW CMB POLARIZATION WINDOW, MATCHED AND IMPROVED **PREVIOUS RESULTS.**

Polarization contains more information than temperature. It is affected by different systematics and foreground. It is very clean at small scales.

High resolutions allow seeing astrophysical objects: clusters, GRBs etc.

Measuring very high S/N of gravitational lensing, also from CMB polarization maps.

Measure CMB E-modes B-modes both at large and small scales and improve constraints on inflation and early universe physics.

Find more clusters, reducing mass detection threshold (higher-z). With less contamination (Polarization)

- Area (deg
 - Status

THE SPT SPECS YOU NEED TO KNOW

5000 deg² surveyed in total by SPT-SZ and SPTpol 150 GHz depths between 4-30 uK-arcmin (from ~Planck depth, to ~7 times deeper)

Noise in temperature

ultra deep					
	SPT-SZ	SPTpol deep	SPTpol	SPTpol Summer	SPT 3G
	40	10	12,5	50	2.8
	17	5/3.5	5,3	30	2.6
	80	40	40/80	_	6.6
g²)	2500	100	500	2500	1500
	Complete	Complete	Complete	Complete	Ongoing

CMB LENSING FROM SPT-SZ AND POL

DELENSING AND CLUSTER LENSING

2 HIGHLIGHTS FROM PAST:

FUTURE:

SPT-3G LENSING

ASK FOR MORE !

CMB Lensing with SPT-SZ and SPT-Pol

THE FINAL SPT-SZ (2500 DEG²), LENSING RESULTS

We fill the missing filtered modes with Planck maps.

Inverse variance weighted.

Biggest CMB lensing maps from ground.

7% constraint on the amplitude.

Planck has little effect, but it improves small scale lensing: important for cross correlation

Maps (both of temperature and lensing) available!

gets better Planck full sky

THE FINAL SPT-SZ (2500 DEG²), LENSING RESULTS

We fill the missing filtered modes with Planck maps.

Inverse variance weighted.

Biggest CMB lensing maps from ground.

7% constraint on the amplitude.

Planck has little effect, but it improves small scale lensing: important for cross correlation

Maps (both of temperature and lensing) available!

gets better Planck full sky

7% AMPLITUDE CONSTRAINT. CONSISTENT WITH OTHER PROBES.

LCDM

Bandpowers ,likelihood and maps available on LAMBDA!

CIB bias already a limit for crosscorrelation, polarisation?

<u>Simard, Omori et al.</u>

SPT POL 500^2 LENSING: ~7% ALENS POLARIZATION ALMOST AS GOOD AS TEMPERATURE!

Polarization-only competitive with Planck polarization-only!

Spectra constraints not everything: these maps have L \sim < 250 modes imaged with S/N > 1. Cross correlation with DES, Delensing, cluster lensing etc..

Constraints ~ SPT-SZ+Planck, even on 1/5 area.

AMAZING SIGNAL TO NOISE MAPS

DELENSING: A NEEDED STEP TO INFLATIONARY B-MODES

Delensing of the CMB B-mode power spectrum using data from **SPTpol and** Herschel CIB as a tracer of the lensing potential. Lensing B-mode power spectrum reduced by 28% on sub-degree scales • 6.9 sigmas, the highest delensing efficiency so far. • Work is ongoing to delens Bicep-keck data with SPT-Pol maps.

With CIB as tracer. **Adding CMB lensing** right now

Delensing Removed power and variance. Improve inflationary constraints

Manzotti et al. 2017

SPT 3G

THE FUTURE (ALREADY PRESENT) SPT 3G

One more frequency than Pol (220

Ghz), already taking science data

SPT 3G CMB LENSING IMPROVING PLANCK WITH GREAT S/N MAPS

An LSST noise level We will improve Again a very different approac

- An LSST noise level lensing screen at z =1100!
 - We will improve on Planck spectrum
- Again a very different approach: very accurate map on a small area

CLUSTER LENSING WITH SET 3G: ALTERNATIVE NEUTRINO CONSTRAINT

SPT-3G.

Another exciting way to constrain neutrino properties !! Similar constraints of CMB lensing expected

 $\sigma(\sum m_{\nu}) \simeq 0.06 eV$

We predict the cluster mass uncertainties will be 3 - 6% for

A LOT OF SPT SCIENCE I HAVE NOT TALKED ABOUT

- Baryons: KSZ with DES cross-correlation
- Detailed systematics tests against Planck: polarisation, lensing
 - A lot of cluster physics.
- Ultra Deep 100: amazing 5 muK in pol at 1 arc min resolution.
 - We have 1 summer observation of the KIDS field.
 - Clusters (for example lensing polarization, you will hear from us soon)
 - Transients searches. GRB afterglows.
 - DES cross-correlations (again:you will hear from us soon).

Alessandro Manzotti

Lagrange fellow Institute D'Astrophysique de Paris for the SPT collaboration

Available spectra/likelihood <u>lambda.gsfc.nasa.gov/product/spt/</u>: SPT Pol EE,TE: <u>goo.gl/Tp8VMT</u> SPT SZ -Planck lensing like: <u>goo.gl/KXtH6D</u>

SPT SZ -Planck T, lensing Maps: goo.gl/LEVT6k SPT BB-modes: BP and like by the end of summer 100 deg^2 <u>available</u>

AND WE WILL DELENS OUR OWN 500D DATA TOO

r < ~0.3-0.4 at 95% from SPTPol B-modes alone.

First step towards inflationary constraints. We will helens with CIB+ internal CMB lensing

10-15% constrain on the amplitude (Alens), 7.5 sigma.

Backup Slides

SPT 3G

ONE MORE FREQUENCY

- UP AND RUNNING
- DELENSING AND CLUSTER LENSING
 - CLUSTER PHYSICS
 - FINAL NOISE (PESSIMISTIC)
- we will be the first to test new techniques

THE SPT COLLABORATION (~EARLY 2016) ~70 SCIENTISTS (~HALF POSTDOCS AND STUDENTS) ACROSS ~20+ INSTITUTIONS

NATIONAL ACCELERATOR LABORATORY

SPT-POL: AN AMAZING HIGH Resolution polarization CMB experiment .

7% AMPLITUDE CONSTRAINT. CONSISTENT WITH OTHER DATA.

LCDM

<u>Simard, Omori et al.</u>

DES correlations show SZ bias at ~20% Correct with sims / use polarization?

Bandpowers ,likelihood and maps available on LAMBDA!

Power Spectrum uncertainty

We measure the lensing potential power spectrum. We expect a statistical uncertainty on the amplitude of ~5-6%.

Work lead by Monica Mocanu

SPTpol survey field analysis $\bar{\phi}_{\mathbf{L}}^{XY} = \frac{1}{\mathcal{R}_{\mathbf{L}}^{XY}} \int d^2 \boldsymbol{\ell} W_{\boldsymbol{\ell},\boldsymbol{\ell}-\mathbf{L}}^{XY} \bar{X}_{\boldsymbol{\ell}} \bar{Y}_{\boldsymbol{\ell}-\mathbf{L}}^*$

SPTpol TT

 $\sigma A_{Lens} = +-0.08$

 $\sigma A_{Lens} = +-0.06$ (Stat)

SPTpol EB

 $\sigma A_{Lens} = +-0.13$

SPTpol MV

Work lead by Monica Mocanu

SPT SZ AND POL IN BRIEF

768 pixels with two transition-edge sensor (TES) bolometers, orthogonal polarizations, and a total of 1536 bolometers.

500d Catalog Construction well underway!

- Incorporating all SPTpol 500d data; Final 150 GHz map depth ~5 uK-arcmin
- Ongoing DES-SPT projection for cluster confirmation
- 2 Spitzer programs complete
- NIR imaging on Magellan/ FOURSTAR obtained Oct
 17

CMB POLARIZATION E-MODE MEASUREMENT

2000 1000 First 7 acoustic peaks ℓ_y 0 visible BEFORE azimuthal averaging!! -1000

-2000

Cosmological Constraints

 $n_{
m s}$

 H_0

 $\wp^{0.80}$

- Marginalizing over A_L brings
 SPTpol and *Planck* constraints into agreement.
- SPTpol finds A_L 2.9 σ lower
 than value preferred by
 *Planck*TT:

$A_{ m L} = 0.81 \pm 0.14$ (SPTpol) $A_{ m L} = 1.22 \pm 0.10$ (PlanckTT)

CMB Lensing Potential

Lensing convergence map with L ~< 250 modes imaged with S/N > 1.

- Monica Mocanu (U. Chicago)

 $\hat{\kappa}$ MV

CMB Lensing Potential

- Lensing convergence map with L ~< 250 modes imaged with S/N > 1.

- Monica Mocanu (U. Chicago)

 $\hat{\kappa}$ MV

Corrections for Bias: Crosstalk

Detectors exhibit negative crosstalk. ~ Few percent multiplicative bias in the power spectrum (Crites, et al., 2015).

Corrections for Bias: Crosstalk

- Now corrected at timestream-level before binning into maps.

- Measure correlations **X** between detector timestreams, d.

$$\hat{\vec{d}} = \mathbf{X}^{-1}\vec{d}$$

Corrections for Bias: T-> P Leakage

Contaminated Q Map

- "Monopole" leakage - constant fraction of T map in Q and U.

Cleaned Q Map

Corrections for Bias: Beam

- Excellent agreement between "largescale" beam from Planck X SPTpol and "small-scale" beam from Venus measurements.

JWH, Sayre, Reichardt, et al., 2017, (arXiv:1707.09353)

- Beam from Venus and field point sources also in agreement.

- We use Venus beam for all scales.

TOTAL NOISE IN POLARIZATION CMB LENSING MAPS

 ℓ - Angular Scale

SPT POL 500D FILTERING AND TRANSFER FUNCTIONS

(A=1 at 2.5 nG): 0.76 -> 0.36 (+SPT Pol 100 + BK) -> (0.18-0.25) (+SPTPol 500)

SPT 150 GHz

Primary CMB anisotropies

Massive Galaxy Clusters

~70 deg²

Point sources: AGN, lensed SMGs

Polarizations results

ALSO CHALLENGES: SMALL SIGNAL NEEDS EXCELLENT CONTROL OF SYSTEMATICS

The SPTpol control polarization systematics:

single-moded feedhor bolometer pairs well-matche improved g small beam to reduce ten

Accurate beam, polarization efficiency, polarization angle calibration.

Can we do large scales ell<200 with large telescopes from the ground?

- single-moded feedhorns with low cross-polarization
- bolometer pairs well-matched to difference atmospheric signals,
 - improved ground shield design
 - small beam to reduce temperature to polarization leakage

SPTpol 150 GHz 9.4 µK-arcmin between 2000 < ℓ < 4000.

SPTpol 150 GHz Noise: First-half map minus second-half map.

SPT POL FROM LARGE TO SMALL SCALES!

The most sensitive spectra at $\ell > 1050$

JW Henning et al., 2017

THE MOST SENSITIVE SPECTRA ON SMALL SCALES

The most sensitive spectra at ℓ >1475

JW Henning et al., 2017

9 PEAKS (50 < ℓ < 3000) and 4 times tighter upper limits on FOREGROUNDS

Bandpowers and likelihood available on LAMBDA!

2.7-3.0 REDUCTION OF PARAMETER SPACE VOLUME (Compared to planck). All consistent so far

- "Low-l" SPTpol data (l < 1000) in good agreement with *Planck*TT results.
- Adding "high-l" data (l > 1000)
 pushes H₀ higher σ₈ lower
 compared to PlanckTT:
- Similar to trends seen in SPT-SZ TT data (Aylor et al., 2017, arXiv:1706.10286)
 - Consistent with Planck when matching modes.

B-MODES, NOW ON 500 DEG^2 AND IMPROVES ANALYSIS

5 times the area, $\sqrt{5}$ noise improvement.

- Improved from the100d: better detector reading crosstalk cleaning and monopole T—>P leakage removal.
- Also: we demonstrate we can go to larger scale from the ground ($\ell_{min}=50$)!!