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Motivation

• Old idea: EWSB from a new strong confining interaction at the TeV scale. Flagship:
Technicolor. [Weinberg’76; Susskind’79]

• Originally, technicolor was a higgsless theory, in analogy with QCD. Nowadays ruled out.

• However , a light scalar can be present, typically as a pseudo-NG boson. Explicit breaking
at the EW scale will give it a mass, but protected by the Goldstone symmetry from effects
at the dynamical scale and above. The mechanism is viable but not many realizations of it.

1. Composite Higgs models: [e.g., Agashe et al’04]

(i) hard to make them realistic (fermions);

(ii) typical v/f deviations from the SM are rather constrained.

2. Walking TC with dilatonic extensions: [e.g., Appelquist et al’10]

(i) large number of technipions;

(ii) hard to prove whether a light scalar actually exists.

• Can one circumvent some of these objections?



Scale invariance and its breaking

• A scale transformation on coordinates, xµ → eλxµ, induces the scale transformation on
fields:

ϕ(x) → eλdϕ(eλx)

d (canonical dimension) depends on the field. Infinitesimally,

δϕ(x) = (d+ xµ∂µ)ϕ(x)

• The associated Noether current is the dilatation current:

Dµ(x) = xνθµν(x)

where θµν is symmetric, gauge invariant and improved.

• For a general operator O in a Lagrangian, one finds

δO = ∂µ(x
µO) + (dO − 4)O

and

∂µD
µ(x) = θµµ(x) = δL =

∑

j

(dj − 4)Oj

The current is conserved as long as operators have overall d = 4, i.e., if no scales are
present.



Scale invariance and its breaking

Example:

LQCD = −
1

4
Ga
µνG

µνa +
∑

j

ψ̄j(iγ
µDµ −mj)ψj

• Classically, one finds that

θµµ(x) =
∑

j

mjψ̄jψj

signalling explicit breaking by (mass) scales.

• At the quantum level, we know that gs is scale-dependent. Even in the absence of masses,
the Lagrangian has a separate source of breaking:

θµµ = β(g)
δL

δg
=
β(αs)

4αs
Ga
µνG

µνa

referred to as the trace anomaly.

• Anomalous breaking can be avoided at fixed points, i.e., points where β(α∗
s) = 0. At those

points scale symmetry is exact.



Dilatons in the QCD spectrum?

• The existence of nontrivial (infrared) fixed points in QCD is speculative, but they are not
excluded and actually very interesting, theoretically and phenomenologically.

• Conventional view: no IR fixed point, since hadronic masses should arise from

MN ∼ 〈N |θµµ|N〉

and therefore β(αs) has to be sizeable:

θµµ =

{
β(αs)

4αs
GA
µνG

Aµν +
(
1 + γm(αs)

)∑

q

mq q̄q

}

• Alternative: an IR fixed point exists, at which scale symmetry gets spontaneously broken.
If scale invariance is hidden, a dilaton appears in the spectrum and scales can be generated.
PCDC then implies

〈0|θµν|σ(q)〉 =
fσ
3
(qµqν − gµνq

2)

σ is the dilaton, a true dilaton if fσ 6= 0 at the fixed point.



Dilatons in the QCD spectrum?

θµµ

P P

σ

gσPP

• The hadronic mass is given by a Goldberger-Treiman-like relation:

MN ∼ 〈N |H|Nσ〉
1

p2
〈σ|θµµ|0〉 ∼ fσgσNN

• Old but somehow forgotten wisdom: arbitrary scales can be generated close to an IRFP if
scale symmetry is hidden. [Salam; Zumino; ...]

• What do we do with the dilaton? Even before QCD, speculation that a light scalar could
play its role. [Carruthers’70]

• Recently, the idea has been revived, assuming that the σ(500) is a dilaton. [Crewther et al’12]

Chiral-scale perturbation theory has better convergence properties, gives an alternative
explanation for the ∆I = 1

2
rule, but depends crucially on whether QCD has a nontrivial

IRFP.



Crawling vs Walking TC

• Technicolor introduced as a scaled-up version of QCD to account for electroweak symmetry
breaking.

• (Big) pro: nature has chosen dynamical symmetry breaking already;

• (Big) con: it is hard to account for every single aspect (flavor, etc.) of the SM.

• Technicolor v1.0 was put in serious trouble by EWPO. Subsequent sophistications of the
theory, mostly to address flavor issues:

TC → ETC → Walking (E)TC

• The discovery of the Higgs ruled out Higgsless TC, but Walking TC models might contain
light scalars.

O

β

α
αir

〈ψ̄ψ〉vac 6= 0

O

β

α

〈ψ̄ψ〉vac = 0

︸ ︷︷ ︸

walking

αWW

〈ψ̄ψ〉vac 6= 0

︸
︷
︷
︸

crawling



Crawling vs Walking TC

Walking TC:

• Walking TC has a fixed point, but if phenomenologically viable, dynamics have to turn the
RG flow. Otherwise, no scales get generated. Very hard to find models with such RG flow.

• Phase transition: confinement, a light scalon and a large chiral condensate in WTC appear
in the subcritical region Nf < N c

f but disappear inside the conformal window.

• In order to generate a conformal window, a large Nf is needed. This results in a large
number of technipions.

• Unsure about the presence of light scalars.

Crawling TC:

• Scales can exist at αIR. A dilaton is present (guaranteed by symmetry).

• No conformal window is needed: small Nf is perfectly valid. Technipions are not a
problem. No phase transition needed.

• Genuine nonperturbative effect. The chiral condensate that breaks EW symmetry is also a
scale condensate.

However, dilatons are subtler than pions...



WW vs NG modes of scale invariance

• Take the Callan-Symanzik (CS) equation for an operator O in a theory with massless
matter:

{

µ
∂

∂µ
+ β(α)

∂

∂α
+ γO(α)

}
〈
0
∣
∣O(0)

∣
∣0
〉
= 0

• β(α) ∂
∂α

is equivalent to a G2 insertion, which is related to θµµ. Therefore,
{

µ
∂

∂µ
+ γO(α)

}
〈
0
∣
∣O(0)

∣
∣0
〉
= −i lim

q→0

∫

d4x eiq·xT
〈
0
∣
∣θµµ(x)O(0)

∣
∣0
〉

• WW mode: {

µ
∂

∂µ
+ γO(αWW )

}
〈
0
∣
∣O(0)

∣
∣0
〉

ww
= 0

• NG mode:
{

µ
∂

∂µ
+ γO(αNG)

}
〈
0
∣
∣O(0)

∣
∣0
〉

ng
= fσ

〈
σ(0)

∣
∣O(0)

∣
∣0
〉

ng
= dO〈0|O(0)|0〉ng

• Hyperscaling vs soft-dilaton theorems.



Scalons vs dilatons

• Manifest vs hidden symmetry.

• No scales vs scales at the fixed point.

• Perturbative phenomena (explicit breaking through deformations, pert. th.) vs
nonperturbative physics (scale condensates).

• In both cases, scale symmetry broken by the trace anomaly:

∂µDµ = θµµ =
β(α)

4α

{

ĜA
µνĜ

Aµν −
〈
ĜA
µνĜ

Aµν
〉

vac

}

• Key distinction: decoupling vs nondecoupling. Light scalars in WW mode might exist but
not protected by symmetry (no genuine dilaton):

m2
σfσ = −〈0|θµµ|σ〉 = O(α− α∗)

Compare:

fσ ∼ 0 for α ∼ αWW mσ arbitrary

fσ → constant 6= 0 as α → αIR mσ small

• Examples of scalons: scalars with Coleman-Weinberg potentials, dilatonic WTC, etc.



Crawling TC

Alternative to WTC with the following ingredients:

• New interactions (e.g. SU(3)) strong at the TeV scale.

• An infrared fixed point (IRFP) exists, αIR. Scale-invariant limit exists, but hidden.

• At αIR, Higgs as a (massless) dilaton. In the physical region 0 ≤ α ≤ αIR, the Higgs gets
a (small) mass.

• Both electroweak and scale symmetries spontaneously broken by the same object, e.g. a
chiral condensate:

〈ψ̄ψ〉TC 6= 0

• To avoid technipions, SU(2)× SU(2) global symmetry (not ruled out!).



Two important results from the Callan-Symanzik NG-mode equation

• Consider the CS equation for a RG-invariant amplitude A:
{

µ
∂

∂µ
+ β(α)

∂

∂α

}

A = 0

• Apply α∂/∂α:
{

µ
∂

∂µ
+ β(α)

∂

∂α
+ β′(α)−

β(α)

α

}

α
∂A

∂α
= 0

• But α∂A
/
∂α is a Ĝ2 insertion, so

{

µ
∂

∂µ
+ β(α)

∂

∂α
+ γĜ2(α)

}

AĜ2 = 0

and the anomalous dimension of Ĝ2 can be read off:

γĜ2(α) = β′(α)−
β(α)

α

• The breaking of scale invariance due to the anomaly is driven by

γĜ2(αIR) = β′(αIR)



Two important results from the Callan-Symanzik NG-mode equation

• Take the CS equation for Ĝ2 itself in the NG mode:

β(α)

4α

{

µ
∂

∂µ
+ γ

Ĝ2
(α)

}
〈
Ĝ2

〉

vac
= fσ

〈
σ
∣
∣θµµ

∣
∣vac

〉

• For an IR expansion in the physical region, ǫ = αIR − α & 0,

β(α)

4α

{

µ
∂

∂µ
+ γ

Ĝ2
(αIR)

}
〈
Ĝ2

〉

vac
= −

ǫβ′(4 + β′)

4αIR

〈
Ĝ2

〉

vac
+ O(ǫ2) = −m2

σf
2
σ

• Prediction for the mass:

m2
σ =

ǫβ′(4 + β′)

4αIRf2
σ

〈
Ĝ2

〉

vac
+ O(ǫ2)

• The formula can be easily generalized if technifermion masses are present:

m2
σf

2
σ =

ǫβ′(4 + β′)

4αIR
〈Ĝ2〉vac − (3− γm)(1 + γm)mψ〈ψ̄ψ〉vac +O(ǫ2, ǫmψ, m

2
ψ)



How to build scale-invariant theories of NG mode

• Old wisdom (60s-70s), starting with Salam et al.; Wess et al; Ellis.

• Given a Lagrangian operator O, promote it to

O → Oσ = O ×
{
cOe

(4−dO)σ/fσ + (1− cO)e
(4−dO+β′)σ/fσ

}

= cOOinv + (1− cO)Oβ′

• Oinv has dimension 4 (scale-invariant part), while Oβ′ has dimension 4 + β′ (explicit scale
breaking by the trace anomaly near αIR)

• cO = 1 + O(ǫ), implied by

θµµ
∣
∣
eff

=
∑

j

(
dj − 4

){
Oj
σ −

〈
Oj
σ

〉

vac

}
= β′

∑

j

(1− cOj)
{
Oj
β′ − 〈Oj

β′〉vac
}

which vanishes in the scale-invariant limit.



Effective Field Theory

• General description valid below the TeV scale, which is the natural cutoff of the EFT:

Λ ∼ 4πfσ ∼ 4πv

Agnostic about the explicit UV theory.

• Assume minimal setup: SU(2)L × SU(2)R global symmetry, spontaneously broken to give
3 Goldstones; Higgs as a dilaton; only SM fields.

• Main advantage of the effective Lagrangian formalism: radiative corrections are easily
computed; contact can be made with the SM Lagrangian.

• Final result can be constructed from higgsless EFT with conformal weights, with
Goldstones of electroweak and scale symmetry breaking parametrized by

U = eiϕ
aτa/v; χc = fσe

σ/fσ



Effective Field Theory

• LO EFT:

Llo =
1

2
e2σ/fσ∂µσ∂

µσ − V (σ)−
1

4
GA
µνG

Aµν −
1

4
W a
µνW

aµν −
1

4
BµνB

µν

+ q̄Li /DqL + ūRi /DuR + d̄Ri /DdR + ℓ̄Li /DℓL + ēRi /DeR

+
v2

4
tr(DµUD

µU †)e2σ/fσ − v
{

q̄LŶuUUR + q̄LŶdUDR + ℓ̄LŶeUER + h.c.
}

eσ/fσ

• Power counting: LO Lagrangian dictated by homogeneity in chiral dimensions [Llo] = 2:

[Gµ,Wµ, Bµ, σ, φ
a] = 0 , [ψ] = 1

2
, [gs, gw, g

′
w, Ŷu,d,e, ∂µ] = 1 , [M2

σ ∼ ǫ] = 2

• Subleading terms given by

Left =
∑

ℓ>0

Lnℓlo with
[
Lnℓlo

]
= 2ℓ+ 2



Effective Field Theory

• Dilaton potential: a scale-invariant term ∼ e4σ/Fσ is not allowed (no minimum).

• V (σ) has to be of first order in ǫ:

V (σ) = c1V e
4σ/Fσ + c2V e

(4+β′)σ/Fσ ; c1V , c2V = O(ǫ)

• Assume c1V < 0 and c2V > 0 (minimum exists) and 〈σ〉vac = 0 (convenient). c1V , c2V
determined by first and second derivatives (no tadpole condition and m2

σ).

• Dilaton potential in closed form:

V (σ) =
m2
σf

2
σ

β′

[

−
1

4
e4σ/fσ +

1

4 + β′
e(4+β

′)σ/fσ

]

• The Higgs potential is entirely fixed by the existence of an IRFP with scale symmetry
broken by the (gluonic) trace anomaly.

• As expected for Goldstones, interactions with any power of σ.



Effective Field Theory

• Simplification: perform the field redefinition

h =

∫ σ

0

eσ
′/fσdσ′ = fσ(e

σ/fσ − 1) , h ≥ −fσ

which brings the dilaton kinetic term into canonical form.

• The LO Lagrangian takes the form:

Llo =
1

2
(∂h)2 − V (h)−

1

4
GA
µνG

Aµν −
1

4
W a
µνW

aµν −
1

4
BµνB

µν

+ q̄Li /DqL + ūRi /DuR + d̄Ri /DdR + ℓ̄Li /DℓL + ēRi /DeR +
v2

4
tr(DµUD

µU †)

(

1 +
h

fσ

)2

− v
{

q̄LŶuUUR + q̄LŶdUDR + ℓ̄LŶeUER + h.c.
}(

1 +
h

fσ

)

with

V (h) =
m2
σf

2
σ

β′

[

−
1

4

(

1 +
h

fσ

)4

+
1

4 + β′

(

1 +
h

fσ

)4+β′
]



Phenomenological highlights

• Higgs couplings of the LO Lagrangian behave like the SM with v → fσ.

• In Crawling TC no significant deviations expected: electroweak and scale invariance get
spontaneously broken by the same condensate, so v ∼ fσ. (Compare with Goldstone Higgs
of internal symmetries)

• Higgs self-interactions differ. They are affected by β′:

V (h)− V (0) = m2
σf

2
σ

{
1

2

(
h

fσ

)2

+
5 + β′

3!

(
h

fσ

)3

+
11 + β′(β′ + 6)

4!

(
h

fσ

)4

+O(h5)

}

• Even with small β′, triple vertex at least twice as big. However, β′ nonperturbative, so not
necessarily small.

• At the LHC: constraints on β′ from Higgs double production. Challenging but feasible.



Dilaton mass (again)

• An expression of the dilaton mass can be found from the CS equation for Ĝ2:

β(α)

4α

{

µ
∂

∂µ
+ γ

Ĝ2
(α)

}
〈
Ĝ2

〉

vac
= Fσ

〈
σ
∣
∣θµµ

∣
∣vac

〉

with

γĜ2(α) = β′(α)−
β(α)

α

• Alternatively, from the EFT by matching the trace anomaly at the fundamental and EFT
levels:

θµµ
∣
∣
eff

= −
M2

σF
2
σ

4 + β′

{(

1 +
h

Fσ

)4+β′

− 1

}

; θµµ = −
ǫβ′

4αIR

{
Ĝ2 − 〈Ĝ2〉vac

}
+ O(ǫ2)

• End result:

M2
σ =

ǫβ′(4 + β′)

4αIRF 2
σ

〈
Ĝ2

〉

vac
+O(ǫ2)



Testing CTC on the lattice

Different possibilities:

• Freezing of α outside the conformal window in the deep infrared. Hard but a large window
for Nf .

• Light scalar mass, m2
σ ∝ mψ of the form

m̃2
σ =

ǫβ′(4 + β′)

4f̃2
σ

〈Ĝ2〉vac − (3− γm)(1 + γm)mψ
〈ψ̄ψ〉vac

f̃2
σ

+O(ǫ2, ǫmψ, m
2
ψ)

• Promising candidates: Nf = 8 (triplet fermions) [Aoki et al’14]; Nf = 2 (sextet fermions)
[Fodor et al’14]. Search methods have to be adapted: hyperscaling relations do not hold,
soft-dilaton theorems do.

• fσ from matrix element residue with dilatons, and γm from the soft-dilaton theorem:

3− γm = fσ

〈
σ
∣
∣ψ̄ψ

∣
∣0
〉

〈
0
∣
∣ψ̄ψ

∣
∣0
〉 +O(mψ)



Testing CTC on the lattice

• Summary chart for lattice searches on IRFPs relevant for EWSB:

crawling TC

χPTσ

Nf

αIR

0 2 3 4 8 12 16

WW mode:

conformal
window

WW or

NG mode?

NG mode:

〈ψ̄ψ〉vac 6= 0

• Crawling TC opens up a broader range of phenomenologically relevant IRFPs.



Flavor aspects

• In ETC, generically there is a competition between FCNC suppression and fermion mass
generation:

Lqi↔qj = cij
(
gX

/
MX

)2
q̄iLγ

µψtcRψ̄tcLγµqjR + h.c.,

L|∆S|=2 = c∆S=2

(
gX

/
MX

)2
d̄Lγ

µsRs̄LγµdR + h.c.

• Walking TC was proposed to ammeliorate the problem. If β ∼ 0, then the RG evolution is
not logarithmic but power law:

〈
vac

∣
∣ψ̄tcLψtcR

∣
∣vac

〉

etc
=

〈
vac

∣
∣ψ̄tcLψtcR

∣
∣vac

〉

tc
exp

∫ ΛV

Λv

dµ

µ
γm

(
α(µ)

)
≈ Λ3

v

(
ΛV
Λv

)γ∗m

• Crawling TC has a similar mechanism, if one assumes that β′ is sufficiently small (delayed
asymptotic freedom). Then power-law scaling is also possible:

exp

∫ Mmax

mh

dµ

µ
γm

(
α(µ)

)
≈

(
Mmax

mh

)γm(αIR)



Conclusions

• CTC vs WTC: NG-mode vs WW-mode implementation of conformal breaking in dynamical
EWSB. Crawling has no hierarchy problem, no large number of technipions and a similar
mechanism to accommodate FCNCs and fermion masses.

• NG-mode IR fixed points for small Nf are not excluded: power-law scaling of Green’s
functions tests only WW-mode IRFPs.

• Phenomenologically interesting: no expected deviations for Higgs couplings to fermions and
gauge bosons. Deviations in Higgs potential can be written down in closed form in terms
of β′(αIR). Typically, couplings larger than the SM.

• CTC dilaton is a genuine Goldstone mode of hidden scale symmetry:

m2
σ =

ǫβ′(4 + β′)

4αIRf2
σ

〈
Ĝ2

〉

vac
+ O(ǫ2)

• Tests at the LHC (Higgs double production) and with lattice simulations (fσ, γm, β
′, 〈Ĝ2〉).


