Forward heavy quark production (and the structure of the proton)

Rhorry Gauld Phenomenology Seminar, Wednesday 18th April

1

MC(Q)NNLD

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Setting the scene

 $pp \to D/B + X$ Heavy flavour c/b-quark hadrons

Summary of most relevant LHC measurements:

* pp > D+X, at 5 TeV LHCb Collaboration, JHEP06(2017) 147 * pp > D+X, at 7 TeV LHCb Collaboration, Nucl. Phys. B871 (2013) * pp > D+X, at 13 TeV LHCb Collaboration, JHEP05(2017) 074 JHEP09(2016) 013, JHEP03(2016) 159

(* pp > B+X, at 7, 13 TeV LHCb Collaboration, PRL 119(2017) 169901) PRL 118(2017) 052002

This seminar: discuss these data and their implications

Overview

Introduction

- * heavy quark-pair production
- * motivation to study forward D/B production

Studying the LHCb data

- * Defining suitable observables
- * Impact on our knowledge of proton structure

Applications beyond the LHC

Concluding remarks

Introduction

Introduction

$$y = \frac{1}{2} \ln \left[\frac{E + p_z}{E - p_z} \right]$$

 $pp \rightarrow D^0 + X$
 $\swarrow K^- \pi^+$

Exclusively reconstruct D-hadrons within experimental acceptance

5

For example, LHCb fiducial region:

$$p_T^D < 8 \text{ GeV}$$
$$2.0 < y^D < 4.5$$

More formally, follows from factorisation theorems

$$\sigma^{p_A p_B \to c\bar{c}X} = \sum_{a,b} \int dx_{a,b} f_{a/A}(x_a, \mu_F^2) f_{b/B}(x_b, \mu_F^2) \hat{\sigma}^{ab \to c\bar{c}X} \left(\hat{s}, m, \mu_F, \mu_R, \alpha_s(\mu_R)\right) \\ + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{\hat{s}}\right) \quad \dots \text{ neglected non-factoriseable corrections}$$

PDFs: n.p. component extracted from data (evolved perturbatively)
Partonic cross section: computed perturbatively (Feynman diagrams)

$$\frac{d\sigma^{ab \to DX}}{dz}(z, Q, m) = \int_{z}^{1} \frac{d\beta}{\beta} \frac{d\sigma^{ab \to cX}}{d\beta} (\beta, Q, m) F_{n.p.}^{D}\left(\frac{z}{\beta}\right)$$

Fragmentation function: n.p. component extracted from data

$$F_i^D(z,\mu,m_h) = F_i^c(z,\mu,m_c) \otimes F_{\mathrm{n.p.}}^D(z)$$

z : normalised energy fraction

The first term = perturbative fragmentation function (PFF) Has the job of resumming quasi-collinear logs: $\alpha_s^n \ln [m/Q]^k$, $k \le n$ NLO B. Mele, P. Nason, Nucl. Phys. B **361** (1991) 626 NNLO K. Melnikov, A. Mitov PRD **70** (2004) 034027 In either case, n.p. piece extracted from precise D/B spectrum at LEP

* differential

Parton Distribution Functions (PDFs)

$$f_{i/A}(x,Q^2)$$
$$i = g, d, \overline{d}, u, \cdots$$

 $x\,$: momentum fraction Q^2 : parton virtuality

Global fits performed to a range of data (collisions involving a hadron) The main examples being fixed-target, HERA, TeVatron, and LHC

Modern proton PDF fits: ABMP PRD 96 (2017) 014011 CT PRD 93 (2015) 033006 HERA EPJC 75 (2015) 580 MMHT EPJC 75 (2015) 204 NNPDF JHEP 04 (2015) 040 More specialised: LUXQED, CJ Nuclear: EPPS, nCTEQ, DSSZ...

Forward heavy quark production

$$p_1 = \sqrt{S}/2(x_1, 0, 0, x_1)$$

- x_i : momentum fraction
- y_j : rapidity
- \sqrt{S} : hadronic COM
- m_T : transverse mass

dominant subprocess at LHC

LO PDF sampling occurs at $x_{1,(2)} = \frac{m_T}{\sqrt{S}} \left(e^{(-)y_3} + e^{(-)y_4} \right)$

LHCb detector provides unique information

- 1. Can reconstruct D/B hadrons from $p_T > 0 \ (m_T \sim m_Q)$
- 2. Forward LHCb acceptance extends kinematic sensitivity

Forward heavy quark production

Vertex detector

Tracking

Calo

16

Require a D hadron within LHCb acceptance at 7 TeV

Require a D hadron within LHCb acceptance at 7 TeV

Require a B hadron within LHCb acceptance at 7 TeV

Require a B hadron within LHCb acceptance at 7 TeV

Require a top within LHCb acceptance at 14 TeV

MMHT14 gluon parameterisation (polynomial function in x):

$$xg(x,Q_0^2) = A_g(1-x)^{\eta_g} x^{\delta_g} \left(1 + \sum_{i=1}^2 a_{g,i} T_i^{\mathrm{Ch}}(y(x)) \right) + A_{g'}(1-x)^{\eta_{g'}} x^{\delta_{g'}}$$

 $x \ge 3 \cdot 10^{-5}$ PDF cor

PDF constraints from HERA charm data

 $x \le 3 \cdot 10^{-5}$

Shape/uncertainty determined by parameterisation of non-pert. gluon PDF

Strategy

As a Baseline, use the NNPDF3.0 NLO Global PDF fit JHEP 04 (2015) 040

Extend the data set to include the LHCb D hadron data

See http://nnpdf.mi.infn.it/research/reweighting/

NNPDF3.0 NLO dataset

Kinematic coverage of Global Fit

Studying the LHCb data

Data:

- * pp > D+X, at 5 TeV LHCb Collaboration, JHEP**06**(2017) 147
- * pp > D+X, at 7 TeV LHCb Collaboration, Nucl. Phys. **B871** (2013)
- * pp > D+X, at 13 TeV LHCb Collaboration, JHEP**05**(2017) 074

Theory baseline:

* NLO+Pythia8, achieved with POWHEG nf=3 scheme

What exactly is measured?
$$pp \rightarrow D + X$$
$$\searrow D^0, D^+, D_s, D^{*+}(+c.c.)$$

- Measurements performed at 3 CoM Energies (5, 7, 13 TeV)
- 8 bins within $p_T^D < 8.0 \text{ GeV}$, 5 bins within $2.0 < y^D < 4.5$ (40 total)

In total approximately 480 data points

Scale uncertainties at low energy scales overwhelming

$$\mu \sim \sqrt{m_Q^2 + p_{T,Q}^2} \sim 2.2 \,\text{GeV} \qquad \qquad \alpha_s (2.2 \,\text{GeV}) \sim 0.3$$

Measurements performed double differentially in p_T^D and y_D $N_X^{ij} = \frac{d^2\sigma(\text{X TeV})}{dy_i^D d(p_T^D)_i} / \frac{d^2\sigma(\text{X TeV})}{dy_{rof}^D d(p_T^D)_j}$

Measurements performed at multiple hadronic CoM values

$$R_{13/X}^{ij} = \frac{d^2\sigma(13 \text{ TeV})}{dy_i^D d(p_T^D)_j} \left/ \frac{d^2\sigma(\text{X TeV})}{dy_i^D d(p_T^D)_j} \right|$$

$$x_{1,(2)} = \frac{m_T}{\sqrt{S}} \left(e^{(-)y_3} + e^{(-)y_4} \right)$$

CoM Energy 31

Measurements performed double differentially in p_T^D and y_D $N_X^{ij} = \frac{d^2\sigma(\text{X TeV})}{dy_i^D d(p_T^D)_j} / \frac{d^2\sigma(\text{X TeV})}{dy_{\text{ref}}^D d(p_T^D)_j}$

Measurements performed at multiple hadronic CoM values

$$R_{13/X}^{ij} = \frac{d^2\sigma(13 \text{ TeV})}{dy_i^D d(p_T^D)_j} / \frac{d^2\sigma(X \text{ TeV})}{dy_i^D d(p_T^D)_j}$$

pros: theoretical (and experimental) uncertainties highly correlated

cons: PDF uncertainties <u>also</u> correlated (lose sensitivity to PDFs)

Absolute cross-section

34

Normalised cross-section

Summary of LHCb data

Prompt charm production at 13 TeV (and 13/7 ratio), arXiv:1510.01707 Erratum: September 2016 Erratum: May 2017 Prompt charm production at 5 TeV (and 13/5 ratio), arXiv:1610.02230 Erratum: May 2017 Prompt charm production at 7 TeV, arXiv:1302.2864

Prompt B production at 13 TeV (and 13/7 ratio), arXiv:1612.05150 Erratum: September 2017 Prompt B production at 7 TeV, arXiv:1306.3663

Summary of PDF analyses (reweighting or fits) NLO analysis, HERA + LHCb B/D 7 TeV data, arXiv:1503.04581 Prosa Collaboration NNPDF3.0 NLO Global fit + LHCb D 7 TeV data, arXiv:1506.08025 RG, Rojo, Rottoli, Talbert NNPDF3.0 NLO Global fit + LHCb D 13, 7, 5 TeV data, arXiv:1610.09373 RG, Rojo (updated May 2017) The LHCb B and D hadron data is wrong paper, arXiv:1703.03636 RG Analyses of absolute D cross section data, arXiv:1705.08845 37 Martin, Oliviera, Ryskin

Summary of LHCb data

Prompt charm production at 13 TeV (and 13/7 ratio), arXiv:1510.01707 Erratum: September 2016 Erratum: May 2017 Prompt charm production at 5 TeV (and 13/5 ratio), arXiv:1610.02230 Erratum: May 2017 Prompt charm production at 7 TeV, arXiv:1302.2864

Prompt B production at 13 TeV (and 13/7 ratio), arXiv:1612.05150 Erratum: September 2017 Prompt B production at 7 TeV, arXiv:1306.3663

Summary of PDF analyses (reweighting or fits) NLO analysis, HERA + LHCb B/D 7 TeV data, arXiv:1503.04581 Prosa Collaboration NNPDF3.0 NLO Global fit + LHCb D 7 TeV data, arXiv:1506.08025 RG, Roio, Rottoli, Talbert NNPDF3.0 NLO Global fit + LHCb D 13, 7, 5 TeV data, arXiv:1610.09373 RG, Rojo (updated May 2017) The LHCb B and D hadron data is wrong paper, arXiv:1703.03636 RG Analyses of absolute D cross section data, arXiv:1705.08845 38 Martin, Oliviera, Ryskin

Observable

Number of data points

•					
	$N_5(84)$	$N_{7}(79)$	$N_{13}(126)$	$R_{13/5}(107)$	$R_{13/7}(102)$
	1.97	1.21	2.36	1.36	0.80
	0.86	0.72	1.14	1.35	0.81
	1.31	0.91	1.58	1.36	0.82
	0.74	0.66	1.01	1.38	0.80
	1.08	0.81	1.27	1.29	0.80
	1.53	0.99	1.73	1.30	0.81
	1.07	0.81	1.34	1.35	0.81
	0.82	0.70	1.07	1.35	0.81
	0.84	0.71	1.10	1.36	0.81

$$\chi^2 / N_{\text{dat}} = \sum_{i,j} (O_i - T_i) \sigma_{ij}^{-1} (O_j - T_j)$$

Theoretical uncertainties/cross checks

Choice of dynamical reference scale used in calculation

$$\mu_0 = \sqrt{p_{T,Q}^2 + m_Q^2}, \qquad \mu_0 = \sqrt{p_{T,Q}^2 + (2m_Q)^2}$$

- Check impact of placing pT > 1, 2 GeV in analysis
- Change underlying parton shower tune (Monash, T4C, TA14)
- Fragmentation model/parameters (Peterson, Bowler)

Impact of varying charm quark pole mass in calculation*

$$m_c^{\text{pole}} = (1.3, 1.5, 1.7) \text{ GeV}$$

*Baseline is NNPDF3.0 with mc = 1.275 GeV, in a future global PDF better to correlate mc used throughout fit

Additional theory checks

Additional theory checks

pT cut dependence

Baseline = NNPDF3.0 NLO Global fit, $\alpha_s(m_7) = 0.118$

The results in context

Interim summary

- Dust settling on the LHCb data now....
- Normalised cross section/ratio data lead to consistent results
- Low-x gluon PDF previously unknown

Disclaimer: Didn't discuss exclusive J/Psi - Jones et al. arXiv: 1610.02272

Our LHgrids (100 member replica set) are available here: 5 flavour PDFs

http://pcteserver.mi.infn.it/~nnpdf/NNPDF30LHCb/NNPDF30_nlo_as_0118_L13L7L5.tar.gz

3 flavour PDFs

http://pcteserver.mi.infn.it/~nnpdf/NNPDF30LHCb/NNPDF30_nlo_as_0118_L13L7L5_nf3.tar.gz

Applications beyond the LHC

Applications I

Ultra High Energy (UHE) neutrino-nucleon cross section

Applications I

Ultra High Energy (UHE) neutrino-nucleon cross section

Applications I

Ultra High Energy (UHE) neutrino-nucleon cross section

RG, V. Bertone, J. Rojo, In preparation

Applications II

Atmospheric production of heavy quarks

Applications II

Atmospheric production of heavy quarks

(wgt)

(unw)

From KM3NeT Letter of intent - arXiv:1601.07459 all-x gluon, evaluated at Q = 2 GeV, comparing the baseline

Applications III

LHeC, High energy pp collider, forward photons at the LHC, ...

Summary

- Precise measurements at LHC(b) providing unique information
- Many implications of the LHCb D-hadron measurements

Back-up slides

Partonic cross-section

$$d\sigma_{ij\to Q\bar{Q}X} = \frac{1}{2s_{ij}}\overline{\sum} |\mathcal{M}_{ij\to Q\bar{Q}X}|^2 d\phi_n$$

- Process dependent
- Organisation of IR divergences

NLO QCD

P. Nason, S. Dawson, R. K. Ellis, 1988 P. Nason, S. Dawson, R. K. Ellis, 1989 * W. Beenakker, H. Kuijf, W.L. van Neerven, J. Smith 1989 *

NLO QED/WEAK

Kuhn, Scharf, Uwer , 2005, 2006 * W. Bernreuther, M. Fucker, Z. G. Si 2005 * W. Hollik, M. Kollar, 2006 *

NLO QCD interfaced to PS

S. Frixione, P. Nason, B. R. Webber 2003 also with G. Ridolfi 2007

NNLO QCD

M. Czakon, P. Fiedler, A. Mitov, 2013 M. Czakon, P. Fiedler, A. Mitov, 2014 *

... + exhaustive list of resummation calcs.

* Denotes differential calculation

Fragmentation Functions (FFs)

$$F_i^D(z,\mu,m_h) = F_i^c(z,\mu,m_c) \otimes F_{\mathrm{n.p.}}^D(z)$$

 \boldsymbol{z} : normalised energy fraction

The first term = perturbative fragmentation function (PFF) Has the job of resumming quasi-collinear logs: $\alpha_s^n \ln [m/Q]^k$, $k \le n$ NLO B. Mele, P. Nason, Nucl. Phys. B 361 (1991) 626 NNLO K. Melnikov, A. Mitov PRD 70 (2004) 034027

In Parton Shower (PS), time-like evo. also resums collinear logs Underlying hadronisation details depend on methodology:

- String (Pythia) or Cluster model (Herwig, Sherpa, ..)

e.g.
$$F_{\text{n.p.}}^{Q,\text{peterson}}(z) = \frac{N_H}{z} \left[1 - \frac{1}{z} - \frac{\epsilon_q}{1-z} \right]$$

In either case, n.p. piece extracted from precise D/B spectrum at LEP

B cross-section (absolute)

LHCb data from Erratum: Phys. Rev. Lett. 118, 052002 (2017)

Differential and fiducial rate measurements
 * Test of pQCD predictions, and baseline for other analyses

B cross-section (normalised)

LHCb data from Erratum: Phys. Rev. Lett. 118, 052002 (2017)

- Differential and fiducial rate measurements
 * Test of pQCD predictions, and baseline for other analyses
- 2) Normalised cross-section measurement
 * Test of shape of pQCD predictions (generally more precise)

Tests the rate of growth of gluon PDF at both small and large-x
 * See for example: RG et al.: [HEP (2015) 2015: 9

RG et al.: JHEP (2015) 2015: 9 Cacciari et al.: EPJC 75 (2015) no.12, 610 RG: JHEP (2017) 2017: 84

B cross-section: $B \rightarrow J/\psi K$ data

Absolute cross-section

B cross-section: $B \to D \mu \nu$ data Absolute cross-section

B cross-section: $B \to D \mu \nu$ data Normalised cross-section

1) Shape of normalised distributions not well described by pQCD

- 2) Large `dip' observed in the region of $\eta_B \in [2.0, 2.5], P_{T,B} > 0 \text{ GeV}$
- 3) Such behaviour not observed in B (->J/PsiK) or D-hadron rapidity distributions

2) Is it possible to clarify the consistency of these two B-hadron measurements?

Future studies

- With large data samples, measurement of B hadron production at large-pT
 * Probes region of quasi-collinear gluon emission + sensitivity to large-x gluon
- Are (can) the bin-by-bin cross correlations between different CoM be provided?
 * Would allow construction of `shifted CoM ratios', see RG JHEP (2017) 2017:84

$$\overline{R}_{13/7}\left[d\sigma(pp \to BX)/dy_B\right] = \frac{d\sigma_{13}(pp \to BX)}{dy'_B} \Big/ \frac{d\sigma_7(pp \to BX)}{dy_B} \qquad y'_B = y_B + \ln\left[\frac{13 \text{ TeV}}{7 \text{ TeV}}\right]$$

PDF sampling in B production at LHCb

$$x_{1,(2)} = \frac{m_T}{\sqrt{S}} \left(e^{(-)y_3} + e^{(-)y_4} \right)$$

PDF sampling region:

- B hadron production at 7 TeV
- LHCb pseudorapidity bins

PDF sampling region:

- effect of aligning x-regions
- can align either low or high-x regions

$$y'_B = y_B + \ln\left[\frac{13 \text{ TeV}}{7 \text{ TeV}}\right]$$

Bunch of `useful' plots below

$$\alpha_{\rm g}^{\rm eff.}(x,Q^2) = \frac{\partial \ln \left[xg(x,Q^2) \right]}{\partial \ln x}$$

What do normalised cross section and ratios probe?

Essentially the rate of change of the gluon PDF within an x-range

Gluon PDF extraction at 7 TeV

PROSA results:

- HERA+LHCb Data PDF fit
- FFS, NF=3
- Normalise to 'middle' rapidity bin for each pT
- HERAfitter framework
- Also LHCb B data

GRRT results:

- NNPDF3.0 Global fit
- input set is VFNS
- Normalise to max pT / min rapidity bin
- Bayesian Reweighting

Gluon PDF correlation with inclusive LHCb 13/7 Charm ratio measurement

PDF correlation matrix

Impact of tune on cross-section

Impact of tune on normalised cross-section

Wish to determine the impact of new data

Use a reweighting technique of PDF replicas see - arXiv:1012.0836, NNPDF collaboration

- 1. NNPDF provide replica ensemble of PDFs (from global fit)
- 2. These replicas are conditional on input data (and th. assumptions)

Wish to determine the impact of new data

Use a reweighting technique of PDF replicas see - arXiv:1012.0836, NNPDF collaboration

- 1. NNPDF provide replica ensemble of PDFs (from global fit)
- 2. These replicas are conditional on input data (and th. assumptions)
- 3. Construct weighted ensemble of PDFs, also conditional on new data

How do the data actually look?

How do the data actually look?

How do the data actually look?

pT dependence (mcen, up)

Baseline = NNPDF3.0 NLO Global fit, $\alpha_s(m_z) = 0.118$

