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Who am I?
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● Postgraduate course in “Development and management of data centers for high performance scientific 
computing”, 2014-2015
○ Thesis title: “Dashboard for the ALICE activity in Bari Tier-2 Site”
○ Tutors: Domenico Elia and Antonio Franco

● Scholarship at GARR in “Monitoring system for geographically distributed datacenters based on 
Openstack”, 2016-2017
○ Tutors: Domenico Elia and Giacinto Donvito

● Scholarship at INFN, currently working on “Monitoring of the ALICE O2 Facility”, since Feb 2018
○ Tutor: Domenico Elia



Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

3

Index

INFN Scientific Computing Workshop | Turin | 04-May-2018 | Gioacchino Vino

● Monitoring of geographically distributed datacenter based on OpenStack: MonGARR
○ Motivations
○ Project Overview
○ Future works

● Monitoring of the ALICE O2 Facility @CERN: Modular Stack
○ Architecture
○ Future works
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MonGARR: Motivations
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The increasing of computation resource demand for scientific purposes is leading to: 
● Datacenters increasing in complexity and size.
● Taking advantages of new technologies like virtualization and cloud computing.
● Datacenter cooperation needed in order to accomplish common goals.

Geographically distributed datacenters
● Goal: Increase the computation capability of overall system.
● Side effect: Increasing complexity from the monitoring and control system.

Project: Developing a monitoring system for geographically distributed datacenters.
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MonGARR: Project Overview

INFN Scientific Computing Workshop | Turin | 04-May-2018 | Gioacchino Vino

Advanced features are required:
● Anomaly detector
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MonGARR: Project Overview
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Advanced features are required:
● Anomaly detector
● Root Cause Analysis
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MonGARR: Project Overview
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Advanced features are required:
● Anomaly detector
● Root Cause Analysis

Fully informative monitoring data are collected:
● Service monitoring (HTTP server, DBs, … )
● Openstack and middleware monitoring
● Hardware monitoring (physical servers, disks, disk controllers, network devices, PDU, … )
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MonGARR: Project Overview
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Testbed
ReCaS Bari Datacenter:

● More than 13.000 cores
● 7.1 PB Disk Storage
● 2.5 PB Tape storage
● HPC Cluster composed of 20 servers
● Dedicated network link: 10Gbps x2 to GARR, 

20Gbps to Naples and 20 Gbps to Bologna
● Cloud platform: OpenStack
● Batch system: HTCondor

○ 184 Worker Nodes
○ 350+ network connections

● Local Monitoring System: Zabbix
● Including ALICE and CMS Tier2s
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MonGARR: Project Overview
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Zabbix

HTCondor

OpenStack

Syslog
Data Sources:

● Syslog: System processes and service information.

● Zabbix: Computation resource usage, service and Openstack monitoring.

● HTCondor: Scheduler, completed and running job state

● OpenStack: Information on server, images, flavors, volumes, network devices, …. 
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MonGARR: Project Overview
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Zabbix

HTCondor

OpenStack

Mesos

Flume
SourceSyslog

Sensor

Sensor

Sensor

Metric collectors:

● Apache Flume Syslog Source.

● Python code inserted in Docker-container and executed periodically 

using Apache Mesos.

Apache Flume: a distributed  and highly-reliable  service for collecting, 
aggregating and moving large amounts of data in a very efficient way.
Apache Mesos: an open-source project to manage computer clusters. 
Docker: a computer program that performs operating-system-level virtualization 
also known as containerization. 
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MonGARR: Project Overview
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Transport Layer:

● Apache Kafka.

● Decouple all components.

● Increase the High Availability of system.

Apache Kafka: an open-source stream-processing software platform, provides a 
unified, high-throughput, low-latency platform for handling real-time data feeds.
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MonGARR: Project Overview
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Endpoints:
● Hadoop Distributed File System (HDFS): Long-term storage.
● InfluxDB-Grafana: Timeseries Dashboards.
● ElasticSearch-Kibana: Log Dashboards.
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MonGARR: Project Overview
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InfluxDB: a custom high-performance data store written specifically for time series data.
Grafana: Dashboards’ builder for time-series data.
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MonGARR: Project Overview
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ElasticSearch: a search engine based on Lucene and provides a distributed, multitenant-capable 
full-text search engine with an HTTP web interface and schema-free JSON documents.
Kibana: an open source data visualization  plugin for Elasticsearch
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MonGARR: Project Overview
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Processing Unit:

● Apache Spark.

● Log Analyzer.

● Anomaly Detector.

● Data Correlation.

● Root Cause Analysis.

Apache Spark: a fast and general engine for large-scale data processing.  
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MonGARR: Project Overview
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Alarm dispatcher:

● Riemann.

● Plugins: Email, Slack.

● Processes and filters events.

Riemann: aggregates events from your servers and applications with a powerful stream 
processing language.
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MonGARR: Project Overview
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Sensor

Sensor

Information Structure:
● Classical monitoring is not enough.
● Relation information ( Services, network, 

virtual-physical server, … )
○ Openstack data.
○ Open connections.
○ Other monitoring data.

Neo4j: High Performance  native Graph Storage & 
Processing.
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MonGARR: Project Overview
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Information Structure:
Subgraph example:

● Blues nodes: virtual machines.
● Yellow nodes: network interfaces.
● Red nodes: networks.
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MonGARR: Project Overview
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MonGARR: Project Overview
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Resource Usage for the monitoring system:
● 80 CPUs
● 150GB RAM
● 3 TB Disk

○ 1.5TB for HDFS in replica 3
○ 600 GB for Kafka nodes
○ No-volatile virtual machine volumes
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MonGARR: Project Overview
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Apache Mesos:
Cluster:

● 3x Master (2 CPUs, 4GB RAM, 20GB Disk)
● 2x Slaves (4 CPUs, 8GB RAM, 20 GB Disk)
● 1x Load Balancer (2 CPUs, 4GB RAM, 20GB Disk)

Frameworks:
● Chronos
● Marathon
● Spark



Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

22

MonGARR: Future works
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● Migrate all components in Mesos
● Improve the Machine Learning algorithms efficacy
● Root Cause Analysis algorithm
● Integration with project management systems ( OpenProject, Trello, …. )
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Modular Stack solution for ALICE O2 monitoring
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● ALICE is a heavy-ion detector designed to study the physics of strongly interacting matter (the Quark–Gluon 
Plasma) at the CERN Large Hadron Collider (LHC).

● During the Long Shutdown 2 in the end of 2018, ALICE will start its upgrade to fully exploit the increase in 
luminosity.

● The current computer system (Data Acquisition, High-Level Trigger and Offline) will be replaced by a single, 
common O2 (Online-Offline) system.

● Some detectors will be read out continuously, without physics triggers. 
● O2 Facility will compress the 3.4 TB/s of raw data to 100 GB/s of reconstructed data   

● Development of a Monitoring System for ALICE O2 Facility: 
Modular Stack solution, with components and tools already used and tested in the MonGARR project
(approved by the ALICE O2 TB last February) 
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ALICE O2 Facility:
● 268 First Level Processors
● 1500 Event Processing Nodes

Requirements:
● Capable of handling O2 monitoring traffic – 600 kHz
● Scalable >> 600 kHz
● Low latency
● Compatible with CentOS 7
● Open Source, well documented, actively maintained and supported by developers
● Impose low storage size per measurement

Modular Stack solution for ALICE O2 monitoring
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Modular Stack: Architecture

▶ Sensors: 

○ Monitoring Library

○ CollectD

▶ Transport Layer: 

○ Apache Flume

▶ Time-series  Database: 

○ InfluxDB

▶ Visualization interface: 

○ Grafana

▶ Alarming component: 

○ Riemann

▶ Processing component: 

○ Apache Spark
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Modular Stack: Architecture

▶ Sensors: 

○ Monitoring Library: user defined metrics, monitoring process metrics

○ CollectD: CPU, network, memory, load, uptime, disk, log files,....

▶ Transport Layer: 

○ Apache Flume: implemented custom components

▶ Time-series  Database: 

○ InfluxDB

▶ Visualization interface: 

○ Grafana: users, teams, dashboard

▶ Alarming component: 

○ Riemann: Slack alarm

▶ Processing component: 

○ Apache Spark: aggregation jobs
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Modular Stack: Future works

➢ I System Validation using the TPC monitoring data, May 2018

➢ New functionalities will be added ( new streaming analysis, alarming, log 

analysis)

➢ II System Validation using ITS monitoring data, Dec 2018
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Since December 2017 I collaborate with Naples ATLAS computing Group:

● Alessandra Doria and  Giampaolo Carlino.  

And with the ATLAS Tiers-2 at LNF and ROMA1.

● Elisabetta Vilucchi (INFN-LNF)  and Alessandro De Salvo (INFN-Roma1).

About me

● Master degree in theoretical physics at Federico II di Napoli (2007).

● Ph.D. in mathematics at Westfälische Wilhelms-Universität of Münster (2012).

● I level University Master Course in “Technologies for high-performance scientific computing” at 

Federico II di Napoli (2014).  

My previous occupation was in the ASTERICS-Km3Net collaboration, responsible for the projects:

● ROAst (ROOT extension with ASTrophysical). 

● CORELib (COsmic Ray Event Library). 
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Motivations
● HL-LHC storage needs are above the expected technology evolution (15%/yr) 

and funding (flat).

● We need to optimize storage hardware usage and operational costs.

3

Plots from the last Joint WLCG-HSF Workshop 2018 in Naples.
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Our scenario
● Explore distributed storage evolution to improve overall costs (storage and ops)  taking in account:

○ Single common namespace and interoperability.

○ User analysis is often based on clusters hosted on medium sites (Tier2)  and small sites (Tier3).

4

This can be achieved by the adoption of a distributed storage and  

caching technologies.

● In order to reconcile these two trends, the target of my activity is to study a 

distributed storage system featuring a single access point to large permanent 

storage and capable to provide efficient and dynamic access to the data. In this view, 

medium sites like Tier2 and small sites like Tier3 will not necessarily require large 

storage systems, simplifying local management.

● This activity takes place in the same context of the Data Lake project having very similar 

motivations.
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Our implementation
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By exploiting the fast connections between sites, we are

deploying a first testbed among Naples, Frascati and Roma-1

using DPM. The aim is to study and develop a configuration

in which a primary site represents a single entry point for the

entire archiving system and each site can use its storage as

permanent storage or as local cache.

Using a cache system the local site administrators can 

be dispensed from managing a complete storage 

system. The site became transparent for the central 

operations of the experiment.

T2 Naples 

storage end-point

T2 LNF 

remote

disk

PERMANET

STORAGE

PERMANET

STORAGE

Volatile

Storage

Volatile

Storage

Volatile

Storage

Volatile

Storage

● The Disk Pool Manager (DPM) is a data management 

solution widely used within ATLAS, in particular in three 

Italian Tier2.

● The latest versions of DPM are used in our implementation, 

that offer the possibility to manage volatiles pools to be 

used as caches.

T2 Roma-1 

remote

disk
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Conclusions

● A first testbed using DPM among Naples, Frascati and Roma-1 is almost ready.

● Study of the best caching policy for the volatile pools.

● Evaluation of the performance of the developed prototype.

● System integration in the current ATLAS data management infrastructures.

● Synergies: 

○ collaborations with the Naples BELLEII computing group ( Silvio pardi (INFN-NA), Davide Michelino (GARR))

○ collaborations with the DPM development group.

● Create conditions for easy replication of the system on other sites or in other 

contexts.

6



Miguel Villaplana

● ATLAS - Milano
● Supervisor: Laura Perini

ATLAS EventIndex (in collaboration with Dario Barberis) 

● A database with the references to the files including each event in every stage of processing
○ fast and efficient selection of events of interest, based on various criteria, from the billions of events recorded 
○ an indexing system that points to those events in millions of files scattered in a world-wide distributed computing system 
○ contains records of all events processed by ATLAS, in all processing stages

● Contribution to Functional Tests and User support 
○ Based on previous work from A. Favareto: bash script
○ Redesigned from scratch using python

■ modular design, exception handling, code documentation
○ Added new functionality 

■ test MC samples
■ resubmission of failed tests    

● Status and plans
● Short term: machinery is mostly in place but needs polishing
● Long term: design and implementation of the functional tests for the Event Whiteboard (EI’s evolution) 

1M.Villaplana May 4, 2018



Harvester (in collaboration with Alessandro De Salvo)

● The current production and distributed analysis system in ATLAS (PanDA) relies on a server-pilot paradigm
○ A server maintains state and manages workflows with various granularities
○ Pilots are job-centric and run independently on worker nodes with a limited view of local resources

● PanDA itself has no means of managing and monitoring cloud utilisation

● Harvester is a resource-facing service between the PanDA server and the collection of pilots 
○ It is a stateless service with knowledge of the resources
○ It can act as an intermediate communication channel between PanDA server and pilots 

● Current activity:
○ Our goal is to improve site deep resource knowledge
○ Start by using the available information sources (GLUE 1.2, GLUE 2)

■ Understand if the available information sources could be reliable and useful w.r.t. what we currently have in Panda
● Compare the values obtained from Glue 2 and what we have in Panda
● Many problems found: misconfigured sites, only a fraction (< 40%) of sites/CEs have matching values between 

Glue2 and Panda
■ In summary, GLUE values do not really seem reliable enough

● Future plans: grabbing values directly from jobs
○ Initial prototype of a collector designed by A. De Salvo
○ Plan to contribute to the development and testing of the prototype

2M.Villaplana May 4, 2018



Machine learning

● H -> Tau Tau mass reconstruction (in collaboration with Attilio Andreazza)

○ Tesi di laurea di Aldo Materassi

○ Goal: predicting the invariant mass of ditau system using the visible tau decay products kinematics
■ Difficult final state: many neutrinos

○ Status and plans:
■ Now learning basics about ATLAS software and how to get/process the data
■ We will first reproduce previous results

● using BDTs (and random forests)
● can we train at truth level and test at reco level?
● best way to use ML frameworks in the market (scikit-learn, pyTorch,...) inside ATLAS software

■ Try other ML techniques

3M.Villaplana May 4, 2018



Share resources across groups at UniMi

● Groups are encouraged to organise their resources under HTCondor pools
○ Execute machines report to the central manager of their own pool

● We add an additional central manager to which all execute machines report too
○ This provides usage accounting across all the resources together
○ Serves as a top-level pool to submit jobs to when users want to access all possible resources

● Users get the quality of service they were already enjoying, but excess jobs may be conveniently sent to the other 
resources

○ Group pools remain the default pool for job submission, but with the super-pool added to their FLOCK_TO list
○ We give the group’s negotiator priority over super-pool’s to guarantee high priority to group users on their own machines

● Status and plans
○ The system is in place and shows good behaviour
○ ATLAS use-case: 

■ Trivially parallel jobs. CVMFS is the only requirement.
○ Currently researching how to run MPI jobs encapsulated in Docker containers via HTCondor

■ Tesi di laurea triennale di Massimo Miserendino (sup. F. Prelz, D. Rebatto and A. Andreazza) 
http://infn.it/thesis/thesis_dettaglio.php?tid=12211

○ Monitoring and accounting
■ Based on Filebeat+Elasticsearch+Kibana

○ Documentation and user support
■ Scripts and conf files in GitLab @ INFN (baltig.infn.it)
■ Instructions for sys. andmins growing both in GitLab and in a local twiki
■ User support: twiki + mailing lists for support and announcements in construction 

4M. Villaplana May 4, 2018
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Introducing myself

2007 2012

2013 2015

March 1, 2018
MD in Physics 

(University of Torino)

PRIN Project 
(optimization of access to 
LHC data using the grid 
and cloud computing ) INDIGO-DC

Within the ALICE collaboration 
• Data analysis

• Detector testing/commissioning

• Data-taking operations

Building competences 
• Machine Learning (ML) algorithms

• Distributed ML systems

• Integration of non standard resources 

(GPUs) with Linux containers and 
orchestrators (Mesos, OpenNebula)

Cloud Computing  
(full virtualization)

• OpenNebula and KVM 

• Contextualization of complex 

services

• Auto-scaling

• FairShare scheduling 

Computing Model as a Service  
(lightweight virtualization) 
• runtime/application packetization (Docker)

• Distributed scheduling (Mesos and its frameworks)

• Network virtualization (Calico)

• HPC: MPI over InfiniBand in Docker

Batch System as a Service employed at the 
INFN and UNITO’s HPC Cluster (OCCAM)

PhD in Physics 
(University of Heidelberg)

THIS FELLOWSHIP
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• Reconstruction

• Analysis

• Trigger

• Data quality

• Detector monitoring

• Computing operations

• Monte Carlo tuning

• …

• Workflow definition

• Results reproducibility


• Multi-tenancy (scheduling, 
authentication…)


• Parallel execution and scaling

• Data handling

• Ease of use and management

• …

• Lightweight virtualization

• Modularity 

• Flexibility

• Heterogeneous back-end 

infrastructures

• …

CHALLENGES REQUIREMENTS IMPLEMENTATION

LEVERAGING

Existing OpenSource software (mature and maintained)

DEEP Hybrid DataCloud products

INDIGO-DataCloud products
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• Workflow definition 
• Process Monitoring 
• Authentication

Deep Learning frameworkML libraries

Cluster framework 
(parallelize task)

Orchestrator  
(schedule on resources)

…

MLaaS Front-end

MLaaS Core

…

Distributed DL librariesdist-keras …

Singularity

DATA

Data 

pre-processing

Performance 
optimization Training

…

… Packetization and 
virtualization

Resources: 
• Bare metal 
• Infrastructure as a Service

KubeFlow



From Data to Results
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Other (i.e. logfiles…) 

Internal data: 

• intermediate 

processing stages

• internally generated 

data (i.e. MonteCarlo 
simulations)

Machine Learning as a Service
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GRID Data pre-processing: 
• feature selection/extraction 
• train/validation/test sets

Workflow

• The framework gives a structure to 
conceptual analysis steps 
(simplicity, reproducibility) 

• Implementation is use-case specific

Training

Validation

AM
AZ
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Case study (ambitious): framework for systematic tuning of MonteCarlo generators  
• data-MC comparison with Neural Network based high-dimensional discrimination 
• learn event re-weighting function to avoid several expensive generation calls  
• tune generator parameters by back-propagation

From M. Paganini’s talk at the 2nd IML Workshop, April 9-12 2018, CERN
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Overview of the current ALICE analysis framework

!2

• Abstraction layer: “Analysis Tasks” per-event processing function in ROOT/C++ 

• Platforms: same analysis can run locally, on Grid and ROOT’s PROOF 

• Data format: reading from reconstructed (ESD) or analysis (AOD) data (ROOT TTrees) 

• Extensibility: ancillary deltaAODs and ESD friends 

• Grid processing rate: 5 MB/s of input data processed on each Grid job 

• Operations: organized trains: read event once, process with many analysis tasks

PhysSel

Centrality
PID

Multiplicity
Event plane

AOD reader

ESD reader Correction 
Framework OADB UserTask 2

UserTask 3

UserTask 1

common tasksreading abstraction central corrections correction maps user code

Analysis data flow
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Motivation for a new framework for Run 3
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• A new experiment: trigger-less, no “events”, no 1:1 mapping to current analysis tasks 

• Non-linear analysis flow: allow for more complex workflow connections 

• Insufficient rate: 100x raw data expected, how to keep up to it? 

• Declarative approach: users don’t code the full workflow but connect custom or common 
task units, allowing the framework for an easier optimization 

• Optimize costly data format operations (serialization, compression, cross-referencing) 

• Read from local files bypassing central file catalog operations 

• Do not run on the Grid, but on specially designed HPC facilities with fast network/disk 

• Rethink analysis flow: instead of producing the final results immediately on HPC 
resources, do a coarse-grained selection for easier on-laptop optimization iterations

mailto:dario.Berzano@cern.ch?subject=
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Development areas
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Data 
format
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facilities

Workflow 
handling

User 
interface

Large scale 
operations

Low deserialization 
cost


Efficient 
in-memory store


Optimized 
decompression

Only analyze local 
data


Fast local storage 
and network


Allow inter-nodes 
communication

Allow for non-
linear workflows


Nodes subscribe 
to data


Use network and 
shared memory

Reuse standard 
interfaces


Declarative 
paradigm


Optimize common 
operations

Interface to central 
File Catalog


Compose analyses 
into trains


Test and monitor 
user jobs
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Data format

!6

• Base processing unit: timeframes (not events: no trigger), 20 ms long (so quite long) 

• Flat and simple: store numbers only, also for cross-referencing indices between tables 

• Columnar: represent chunks of records as SoA in memory to leverage vectorization 

• Zero size for null objects: filtered-out fields do not use RAM memory 

• Extensibility: base format will never change, but easily extensible because it’s SoA 

• Computing vs. storing: in some cases, recomputing some fields is cheaper than storing 

• No data restructuring: disk → memory → network use the same representation

Apache Arrow

LibFlatArray
SOAContainer
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Data format implementations
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SoA: good for vectorization but counter-intuitive: we think event-by-event (AoS). Lazy 
data access interfaces/formats to write AoS code transparently executed vectorized 

• Apache Arrow - https://arrow.apache.org/  
Developed for analytics. Standard exchange format in the Apache Foundation ecosystem. 
Easy to organize and cross-reference data types with tables. Parquet as file backend 

• LibFlatArray - http://www.libgeodecomp.org/libflatarray.html 
Developed for scientific applications. Provides an object-oriented interface to SoA. 
Leverages code generation through templates 

• SOAContainer - https://gitlab.cern.ch/LHCbOpt/SOAContainer 
Developed by LHCb, currently in use for some HLT operations. Provides a std::vector-like 
container for looping easily over SoA collections 

Currently writing the three prototypes for a more concrete comparison, but we want to 
be able to switch to a new one in the future without affecting Run 3 user tasks.
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Major data format caveat
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• Tracks vs. vertices ambiguities: different ways to represent uncertainty 

• 1:1 mapping impossible: we cannot run as they are current code with any new format

Make ambiguous tracks available in both events Store ambiguous tracks in a separate container
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Analysis facilities

!10

In order to sustain a high-rate of process intercommunications and minimize data 
reading latency, specially designed analysis facilities are foreseen 

• Intentions: ALICE will provide for 2/3 large analysis facilities, aggregating ~20k cores 
each, aiming to maintain the 5 MB/s read throughput. Aggregated throughput: 100 GB/s 

• Local storage: a large (5 PB) cache managed centrally and accessible via the file catalog 
too (but local access will bypass it for efficiency) 

• Fast data turnaround: data constantly replaced with new data based on our 
convenience. Datasets will have different life spans. Possible to restage data in the future 

• Output results: output data size negligible. Stored on the AFs, and accessible from 
everywhere through the central file catalog. Output never purged (differently than AODs)

mailto:dario.Berzano@cern.ch?subject=


Dario.Berzano@cern.ch - ALICE Physics Week Frascati - Analysis in Run 3 and 4

Data flow up to the analysis facilities
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Two or three Analysis Facilities with local storage for organized AOD processing
TDR

AODs archived on 
custodial storage and 
sent to the AFs

AF output can be 
also made by trees 
(for subsequent fine-
grained processing)

AODs produced online 
along with ESDs
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Analysis Facility test setup at GSI: benchmarks

!12

ALICE has a test Analysis Facility at GSI (Darmstadt, DE). It fulfills our Run 3 
requirements and allows for testing, while currently running Run 2 jobs as a Tier-2 

• Test conditions: running current Run 2 framework on 1500 cores 

• Fast network: 10 GB/s between nodes 

• Storage: 15 PB Lustre with 78 OSS, 7 OST, 2 MDS 

• Benchmark: run operations on 1500 cores. Read results for each core: 

• File copy: 1200 MB/s 

• Unzip: 100 MB/s ⇒ must be done in parallel on separate processes! 

• Running the Run 2 framework alone: 20 MB/s ⇒ framework + deserialization cost a lot! 

• Further optimization possible via a simpler data format and a novel workflow manager
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Workflow handling: the Data Processing Layer
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File reading is expensive: readers unzip once and dispatch, tasks subscribe to data 
ALICE Run3 software is based on the Data Processing Layer: independent processes 
exchanging data over the network using message queues. Using it for analysis too

AOD 
reader Task2

Task1

Task3
Merger1

Merger3

Preprocess

Output1

Output2

Output3
AOD 

reader Task2

Task1

Task3

Preprocess

Merger2

VERTEX

VERTEX*

VERTEX

VERTEX

VERTEX*

VERTEX

VERTEX

VERTEX

Readers assemble data from 
multiple AODs + ΔAODs

Different levels 
of merging 

possible

On-the-fly preprocessing Output on 
disk

Tasks can be arbitrarily complex, 
they can be a full DAG themselves!
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User interface: the new ALICE Analysis Task
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• Current analysis: very simple abstraction, only one degree of freedom: user writes a 
function for “processing” an event (whatever “processing” means) 

• Declarative approach: allow user to specify how to filter data and preprocess it first, and 
then where to store the results, in a compact way 

• Transparent optimization: by using high-level declarations, optimization heavy lifting is 
performed by the framework 

• ROOT’s TDataFrame: nice ROOT development (experimental) allowing to do: 

    TDataFrame d(input).Filter(criteria).Foreach(action) 

where low-level optimization and event loop (multithreading, multicore) occur automatically 

Currently writing a TDataFrame source allowing to read from Apache Arrow (and 
evaluating its maintainability). Once again, users don’t deal with the underlying format
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Large scale operations
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• ALICE Run 2 analysis is organized: users write analysis tasks that are assembled as 
wagons in a train: data is read once and processed by each task serially 

• Even more organization in Run 3: reading is so expensive that we should do it even less 
and exploit network message passing of read data 

• Avoid backlogs: profile analysis tasks to optimize trains composition and avoid slower 
tasks to fill the reader caches too much and make faster tasks to wait 

• Zero or little re-runs: current trains can be run several times on the same datasets, but 
Run 3 data turnaround is shorter. Use trains to filter and run faster iterations on laptops 

• File access: even if file access is local, a central file catalog is kept. A technique (XRootD 
plugin) was developed to bypass catalog access for local access wherever possible 

• Trains web frontend is currently very popular for composing and running trains easily, we 
will need to adapt it to the new framework
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What’s to be done on the short term
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Short term deadline is July (CHEP): we aim to have a sample analysis running as a 
demonstrator by then. Converging on the data format is the most important first step 

• Several small components ready: analysis facility test setup, TDataFrame, three different 
data format libraries, a data processing layer handling the workflow 

• Implement the base data format using the given libraries for comparing their speed. 
Implement macros to convert sample data to the new formats automatically (continuous 
integration fashion) 

• Develop the appropriate base data processing layer tasks: a file reader/unzipper and 
the actual task, based on the TDataFrame interface 

• Deploy a sample workflow topology on the test Analysis Facility 

• Develop the appropriate TDataFrame sources once we have benchmarked them
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XRootd, disk-based, caching proxy for optimization of data access, data placement and 
data replication. A. T. Bauerdick, L & Bloom, K & Bockelman, B & Bradley, Dan & Dasu, S & 
Dost, Jeffrey & Sfiligoi, I & Tadel, A & Tadel, Matevz & Wuerthwein, Frank & Yagil, A. (2014). 
Journal of Physics: Conference Series. 513. 10.1088/1742-6596/513/4/042044.

From A. and M. Matevz talk ICEPP2016

http://iopscience.iop.org/article/10.1088/1742-6596/513/4/042044/pdf
http://iopscience.iop.org/article/10.1088/1742-6596/513/4/042044/pdf
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● Lake-C : The central service of the data lake, holding namespace, metadata and making scheduling 
decisions. The “head node”.

● Lake-MS : A service storing data and under the management of Lake-C. The “disk node”.
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Work overview - Area of involvement
• Working in the context of ‘INFN Fellow in Scientific Computing’ 

since mid October 2017 at Lecce station. 

• Collaborators: Stefania Spagnolo, Gabriele Chiodini 

• Area of interest: application and development of Machine 
Learning (ML) strategies to physics analysis at the LHC and ATLAS 

• Exotics searches for heavy resonances decaying to dibosons with 
semi-leptonic final states 

• ZV → ℓℓqq (V = W,Z and ℓ=e,μ) with 3 main classes of signal models: 
spin-0 (Higgs), spin-1 (W′) and spin-2 (G*) 

• Both boosted and resolved topologies are used to maximize the 
sensitivity in the intermediate and high mass regions. 

• The current signal selection efficiency for the llqq analysis is 
around 0.4 for the merged selection (at 1TeV mass) 

• Can we do better than that at the same background rejection?  

• Try to use ML and Deep Neural Networks(DNN) to improve 
sensitivity achieved with cut-based analysis. Signal/Background 
classification problem 

• Develop parameterized DNNs to tackle problem of interpolating 
the DNN results to untrained mass points
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Deep Learning for S/B selection optimization in exotics 
searches

• Build DNNs using open source frameworks,  
ML libraries, data handling software 

• Keras, Theano, Tensorflow, Pandas, Scikit-learn, Numpy,  
SciPy 

• Train DNNs with variable sets of inputs and  
architectures 

• Basic kinematic inputs and/or high level features  
(e.g jet substructure) 

• Investigate combinations of number of neurons,  
hidden layers, activation functions, learning rate… 

• Estimate performance metrics for the DNN for each combination 

• ROC curves, Area Under Curve(AUC), model accuracy… 

• Deal with overfitting using recommended techniques (e.g dropout, K-Fold cross-validation) 

• Comparison with cut-based analysis at specific signal efficiency/ background rejection working points 

• Preliminary: significant gain in merged signal efficiency @ same background rejection wrt cut-based 
analysis 

• Future: try Recurrent Neural Networks to allow dynamic number of inputs and expand to resolved 
analysis.
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DNN setup and parameters

• DNN implemented with Keras and Theano backend 

• Number of hidden layers: [2,3] 

• Number of neurons per hidden and input layer [32,64]
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Preselection applied 
Number of leptons = 2 (ee or μμ)  
Number of fat jets >= 1 (highest pT jet 
selected) 
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Parameterized DNNs for high-energy physics 

• Problem: Since the mass of the resonance is unknown how to best train a DNN when we want to interpret the 
observed data with a hypothetical signal at many different mass points? Avoid discontinuities in limit setting. 

• Using a single parameterized DNN which tackles the full set of related tasks (based on idea in Eur. Phys. J. C 
(2016) 76:235 ) 

• Include as input feature one or more parameters that describe the larger scope of the problem (e.g new particle’s mass) 

• A parameterized classifier can smoothly interpolate between masses and replace sets of classifiers trained  
at individual values.  

• Benchmark in llqq analysis already seems promising: Comparison of a parameterized DNN trained on ALL 
mass points except a single point and a DNN trained on ALL points yields same results.
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Fig. 1 Left, individual networks with input features (x1, x2), each
trained with examples with a single value of some parameter θ = θa, θb.
The individual networks are purely functions of the input features. Per-
formance for intermediate values of θ is not optimal nor does it nec-
essarily vary smoothly between the networks. Right, a single network
trained with input features (x1, x2) as well as an input parameter θ ; such
a network is trained with examples at several values of the parameter θ

tion of θ̄ introduces additional considerations in the training
procedure. While traditionally the training only requires the
conditional distribution of x̄ given θ̄ (which is predicted by
the theory and detector simulation), now the training data
has some implicit prior distribution over θ̄ as well (which is
arbitrary). When the network is used in practice it will be
to predict y conditional on both x̄ and θ̄ , so the distribution
of θ̄ used for training is only relevant in how it affects the
quality of the resulting parameterized network – it does not
imply that the resulting inference is Bayesian. In the studies
presented below, we simply use equal sized samples for a few
discrete values of θ̄ . Another issue is that some or all of the
components of θ̄ may not be meaningful for a particular target
class. For instance, the mass of a new particle is not meaning-
ful for the background training examples. In what follows,
we randomly assign values to those components of θ̄ accord-
ing to the same distribution used for the signal class. In the
examples studied below, the networks have enough general-
ization capacity and the training sets are large enough that
the resulting parameterized classifier performs well without
any tuning of the training procedure. However, the robust-
ness of the resulting parameterized classifier to the implicit
distribution of θ̄ in the training sample will in general depend
on the generalization capacity of the classifier, the number of
training examples, the physics encoded in the distributions
p(x̄ |θ̄ , y), and how much those distributions change with θ̄ .

3 Toy example

As a demonstration for a simple toy problem, we construct a
parameterized network which has a single input feature x and
a single parameter θ . The network, with one hidden layer of
three nodes and sigmoid activation functions, is trained using
labeled examples where examples with label 0 are drawn
from a uniform background and examples with label 1 are

Fig. 2 Top training samples in which the signal is drawn from a Gaus-
sian and the background is uniform. Bottom, neural network response
as a function of the value of the input feature x , for various choices of
the input parameter θ ; note that the single parameterized network has
seen no training examples for θ = −1.5,−0.5, 0.5, 1.5

drawn from a Gaussian with mean θ and width σ = 0.25.
Training samples are generated with θ = −2,−1, 0, 1, 2;
see Fig. 2a.

As shown in Fig. 2, this network generalizes the solu-
tion and provides reasonable output even for values of the
parameter where it was given no examples. Note that the
response function has the same shape for these values (θ =
−1.5,−0.5, 0.5, 1.5) as for values where training data was
provided, indicating that the network has successfully param-
eterized the solution. The signal-background classification
accuracy is as good for values where training data exist as it
is for values where training data does not.

4 1D physical example

A natural physical case is the application to the search for new
particle of unknown mass. As an example, we consider the
search for a new particle X which decays to t t̄ . We treat the
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Fig. 3 Feynman diagrams showing the production and decay of the
hypothetical particle X → t t̄ , as well as the dominant standard model
background process of top quark pair production. In both cases, the t t̄
pair decay to a single charged lepton (ℓ), a neutrino (ν) and several
quarks (q, b)

most powerful decay mode, in which t t̄ → W+bW−b̄ →
qq ′bℓνb̄. The dominant background is standard model t t̄
production, which is identical in final state but distinct in
kinematics due to the lack of an intermediate resonance.
Figure 3 shows diagrams for both the signal and background
processes.

We first explore the performance in a one-dimensional
case. The single event-level feature of the network ismWWbb,
the reconstructed resonance mass, calculated using tech-
niques described in Ref. [14]. Specifically, we assume
resolved top quarks in each case, for simplicity. Events
are simulated at the parton level with madgraph5 [15],
using pythia [16] for showering and hadronization and
delphes [17] with the ATLAS-style configuration for detec-
tor simulation. Figure 4a shows the distribution of recon-
structed masses for the background process as well as sev-
eral values of mX , the mass of the hypothetical X particle.
Clearly the nature of the discrimination problem is distinct
at each mass, though similar across masses.

In a typical application of neural networks, one might con-
sider various options:

• Train a single neural network at one intermediate value of
the mass and use it for all other mass values as was done in
Refs. [11,12]. This approach gives the best performance
at the mass used in the training sample, but performance
degrades at other masses.

• Train a single neural network using an unlabeled mixture
of signal samples and use it for all other mass values. This
approach may reduce the loss in performance away from
the single mass value used in the previous approach, but
it also degrades the performance near that mass point, as
the signal is smeared.

• Train a set of neural networks for a set of mass values
as done in Refs. [9,10]. This approach gives the best
signal-background classification performance at each of
the trained mass values. However, performance degrades
for mass values away from the ones used in training.
Most importantly, this approach leads to discontinuities
in selection efficiencies across masses, and interpolation

Fig. 4 Top distributions of neural network input mWWbb for the back-
ground and two signal cases. Bottom, ROC curves for individual fixed
networks as well as the parameterized network evaluated at the true
mass, but trained only at other masses

of the observed limits is not possible, as the degradation
of the performance away from the training points is not
defined.

In contrast, we train a single neural network with an addi-
tional parameter, the true mass, as an input feature. For a
learning task with n event-level features and m parameters,
one can trivially reconcieve this as a learning task with n+m
features. Evaluating the network requires supplying the set
of event-level features as well as the desired values of the
parameters.

We note that Ref. [18] previously applied a similar idea
with the same goal of improving the interpolation among
model parameters. However, in that study the application of
BDTs led to a marked decrease in sensitivity at each point
compared to isolated algorithms at specific values, and no
demonstration was made of the ability to interpolate complex
problems in high-dimensional spaces.

123
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Summary

• Working since mid October 2017 at Lecce on ML techniques for physics analysis 

• Current research focused around the use of DNNs in ATLAS searches for heavy 
resonances decaying to dibosons 

1. Signal and background event classification with Deep NN to maximize sensitivity of 
cut-based analysis 

2. Development of parameterized DNNs to interpolate the DNN results across the 
mass range and ease the interpretation of observed data to several different 
hypothetical signals 

• Results up to now are very encouraging although preliminary. 

• Future goals:  

• Completely cover the llqq analysis using a DNN approach 

• Expand to different NN architectures depending on the problem (e.g RNN, Adversarial 
NN) 

• If time allows look into anomaly detection techniques for general BSM searches.
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Test of lepton flavor universality by the measurement of the
B0 → D! − τ + ντ branching fraction using three-prong τ decays

R. Aaij et al.*

(LHCb Collaboration)

(Received 8 November 2017; published 25 April 2018)

The ratio of branching fractions RðD!−Þ≡ BðB 0 → D!−τþντÞ=BðB 0 → D!−μþνμÞ is measured using
a data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies
of 7 and 8 TeV, corresponding to an integrated luminosity of3fb−1. The τ lepton is reconstructed with three
charged pions in the final state. A novel method is used that exploits the different vertex topologies of
signal and backgrounds to isolate samples of semitauonic decays of b hadrons with high purity. Using
the B 0 → D!−πþπ−πþ decay as the normalization channel, the ratio BðB 0 → D!−τþντÞ=BðB 0 →
D!−πþπ−πþÞ is measured to be 1.97% 0.13% 0.18, where the first uncertainty is statistical and the
second systematic. An average of branching fraction measurements for the normalization channel is used to
derive BðB 0 → D!−τþντÞ ¼ ð1.42% 0.094% 0.129% 0.054Þ%, where the third uncertainty is due to the
limited knowledge of BðB 0 → D!−πþπ−πþÞ. A test of lepton flavor universality is performed using the
well-measured branching fraction BðB 0 → D!−μþνμÞ to compute RðD!−Þ ¼ 0.291% 0.019% 0.026%
0.013, where the third uncertainty originates from the uncertainties on BðB 0 → D!−πþπ−πþÞ and BðB 0 →
D!−μþνμÞ. This measurement is in agreement with the Standard Model prediction and with previous
measurements.

DOI: 10.1103/PhysRevD.97.072013

I. INTRODUCTION

In the Standard Model (SM) of particle physics, lepton
flavor universality (LFU) is an accidental symmetry broken
only by the Yukawa interactions. Differences between the
expected branching fraction of semileptonic decays into the
three lepton families originate from the different masses of
the charged leptons. Further deviations from LFU would be
a signature of physics processes beyond the SM.
Measurements of the couplings of Z and W bosons to

light leptons, mainly constrained by LEP and SLC experi-
ments, are compatible with LFU. Nevertheless, a 2.8
standard deviation difference exists between the measure-
ment of the branching fraction of the Wþ → τþντ
decay with respect to those of the branching fractions of
Wþ → μþνμ and Wþ → eþνe decays [1].
Since uncertainties due to hadronic effects cancel to a

large extent, the SM prediction for the ratios between
branching fractions of semitauonic decays of B mesons
relative to decays involving lighter lepton families, such as

RðDð!Þ−Þ≡BðB 0→Dð!Þ−τþντÞ=BðB 0→Dð!Þ−μþνμÞ; ð1Þ

RðDð!Þ0Þ≡BðB −→Dð!Þ0τ−ν̄τÞ=BðB −→Dð!Þ0μ−ν̄μÞ; ð2Þ

is known with an uncertainty at the percent level [2–5].
For D! decays, recent papers [5,6] argue for larger uncer-
tainties, up to 4%.These decays therefore provide a sensitive
probe of SM extensions with flavor-dependent couplings,
such as models with an extended Higgs sector [7], with
leptoquarks [8,9], or with an extended gauge sector [10–12].
The B → Dð!Þτþντ decays have recently been subject to

intense experimental scrutiny. Measurements of RðD0;−Þ
and RðD!−;0Þ and their averages RðDÞ and RðD!Þ have
been reported by the BABAR [13,14] and Belle [15,16]
Collaborations in final states involving electrons or muons
from the τ decay. TheLHCbCollaborationmeasuredRðD!Þ
[17] with results compatible with those from BABAR, while
the result from the Belle Collaboration is compatible with
the SMwithin 1 standard deviation. Themeasurements from
both the BABAR and Belle Collaborations were performed
with events that were “tagged” by fully reconstructing the
decay of one of the two B mesons from theϒð4SÞ decay to a
fully hadronic final state (hadronic tag); the other B meson
was used to search for the signal. In all of the above
measurements, the decay of the τ lepton into a muon, or
an electron, and two neutrinos was exploited.More recently,
the Belle Collaboration published a measurement [16] with

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.
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Measurement of the Ratio of the B0 → D!− τ + ντ and B0 → D!− μ+ νμ
Branching Fractions Using Three-Prong τ-Lepton Decays

R. Aaij et al.*

(LHCb Collaboration)

(Received 8 November 2017; revised manuscript received 5 March 2018; published 25 April 2018)

The ratio of branching fractions RðD!−Þ≡ BðB0 → D!−τþντÞ=BðB0 → D!−μþνμÞ is measured using a
data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies
of 7 and 8 TeV, corresponding to an integrated luminosity of 3fb−1. For the first time, RðD!−Þ is
determined using the τ-lepton decays with three charged pions in the final state. The B0 → D!−τþντ yield is
normalized to that of the B0 → D!−πþπ−πþ mode, providing a measurement of BðB0 → D!−τþντÞ=
BðB0 → D!−πþπ−πþÞ ¼ 1.97& 0.13& 0.18, where the first uncertainty is statistical and the second
systematic. The value of BðB0 → D!−τþντÞ ¼ ð1.42& 0.094& 0.129& 0.054Þ% is obtained, where
the third uncertainty is due to the limited knowledge of the branching fraction of the normalization
mode. Using the well-measured branching fraction of the B0 → D!−μþνμ decay, a value of RðD!−Þ ¼
0.291& 0.019& 0.026& 0.013is established, where the third uncertainty is due to the limited knowledge
of the branching fractions of the normalization and B0 → D!−μþνμ modes. This measurement is in
agreement with the standard model prediction and with previous results.

DOI: 10.1103/PhysRevLett.120.171802

In the standard model (SM) of particle physics, flavor-
changing processes such as semileptonic decays of b
hadrons are mediated by aW boson with universal coupling
to leptons. Differences between the expected branching
fraction of semileptonic decays into the three lepton
families originate from the different masses of the charged
leptons. Lepton universality can be violated in many
extensions of the SM with nontrivial flavor structure.
Since uncertainties due to hadronic effects cancel to a
large extent, the SM prediction for the ratios between
branching fractions of semitauonic decays of B mesons
relative to decays involving lighter lepton families, such as
RðDð!Þ−Þ≡ BðB0 → Dð!Þ−τþντÞ=BðB0 → Dð!Þ−μþνμÞ and
RðDð!Þ0Þ≡ BðB− → Dð!Þ0τ−ν̄τÞ=BðB− → Dð!Þ0μ−ν̄μÞ, is
known with an uncertainty at the percent level [1–4].
The inclusion of charge-conjugate modes is implied
throughout. These decays therefore provide a sensitive
probe of SM extensions with mass-dependent couplings,
such as models with an extended Higgs sector [5], or
leptoquarks [6,7].
Measurements of RðD0Þ, RðD−Þ, RðD!−Þ, andRðD!0Þ

have been reported by the BABAR [8,9] and Belle [10,11]

Collaborations in final states involving electrons or muons
from the τ decay. The LHCb Collaboration published a
determination of RðD!−Þ [12], where the τ lepton was
reconstructed using leptonic decays to a muon. The first
simultaneous measurements of RðD!−Þ, RðD!0Þ, and τ
polarization, using τ decays with one charged hadron in the
final state, has recently been published by the Belle
Collaboration [13]. All these measurements yield values
that are above the SM predictions with a combined
significance of 3.9 standard deviations [14].
This Letter reports the first determination of RðD!−Þ

using the three-prong τþ → πþπ−πþν̄τ and τþ →
πþπ−πþπ0ν̄τ decays. A more detailed description of this
measurement is given in Ref. [15]. The D!− meson is
reconstructed through the D!− → D̄0ð→ Kþπ−Þπ− decay
chain. The visible final state consists of six charged tracks;
neutral pions are ignored in this analysis. A data sample of
proton-proton collisions, corresponding to an integrated
luminosity of 3fb−1, collected with the LHCb detector at
center-of-mass energies

ffiffiffi
s

p
¼ 7and 8 TeV is used.

In order to reduce experimental systematic uncertainties,
the B0 → D!−πþπ−πþ decay is chosen as a normalization
channel. This leads to a measurement of the ratio

KðD!−Þ≡ BðB0 → D!−τþντÞ
BðB0 → D!−3πÞ

¼
Nsig

Nnorm

εnorm
εsig

1

Bðτþ → 3πν̄τÞ þ Bðτþ → 3ππ0ν̄τÞ
;

ð1Þ

*Full author list given at the end of the article.
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• Benedetto Gianluca Siddi
• Started my PhD in Ferrara in 2015 working on 

Lepton Flavour Universality Tests
• Topic of my PhD thesis
• Two articles (PRD and PRL) came out from 

the analysis
• In the meantime started to work on the 

implementation of a Parametrized Fast 
Simulation option to be integrated in the LHCb 
Simulation framework

• PhD thesis defended in February 2018
• INFN Fellow in scientific computing in Ferrara 

from January 2018
• Continuing the work on FastSimulation and 

future upgrades for LHCb and simulation part 
of TimeSpot project

Delphes 

• Is a modular framework for fast simulation, 
written in C++, available as library. 
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FastMC: Integration of Delphes in LHCb simulation 
framework

The role of Monte Carlo simulation in high energy physics experiment is to mimic the behaviour 
of a detector to understand experimental conditions and performance 
Systematics uncertainties in most of the analysis are dominated by the MC
Large MC samples  ➞ large resources
New simulation options needs to be investigated

Requirements for a FastMC:
Two orders of magnitude faster than GEANT4
Less CPU consuming
Reconstructed particle information in order to use the standard LHCb 
tools for analysis
As close as possible to the full simulation
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• FastSim speed assumed to 
be 1/10 of FullSim
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Fast simulation with Delphes in LHCb

G. Corti 

  The first step – Gauss 

Gauss	is	a	framework	
  It	fully	exploits	the	Gaudi	architecture	and	‘plug-and-play’	philosophy	

LHCb A&S Week, CERN, 10 May 2016 6 Fitting all together 
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  The first step – Gauss 

Gauss	is	a	framework	
  It	fully	exploits	the	Gaudi	architecture	and	‘plug-and-play’	philosophy	

LHCb A&S Week, CERN, 10 May 2016 6 Fitting all together 

Reconstruction

{
G. Corti 

  Gauss sequence 

Things	can	be	easily	replaced	at	the	whole	event	level	via	the	
Gauss()	configurable	sequencing	(once	they	are	available	J)	

LHCb A&S Week, CERN, 10 May 2016 7 Fitting all together 

Delphes	

PGun	

G. Corti 

  The first step – Gauss 

Gauss	is	a	framework	
  It	fully	exploits	the	Gaudi	architecture	and	‘plug-and-play’	philosophy	

LHCb A&S Week, CERN, 10 May 2016 6 Fitting all together 
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• Delphes + modifications for LHCb, has been integrated in LHCb simulation framework Gauss.
• It takes in input particles generated from the generator part of Gauss,
• It writes as output objects in the format necessary for LHCb analysis framework.

• No lower level reconstructed objects!

Delphes

HepMC 
Reader

Delphes workflowPropagator 
inside 

constant 
magnetic field

Momentum 
smearing for 

different 
particles types

Merge all 
smeared 

tracks in a 
single particles 

container

Efficiency 
smearing
module

• Working on implementing relevant quantities of reconstructed tracks, e.g., covariance matrices, fit 𝝌2, ghost 
probabilities

• Work to be done :
• Particle Identification probabilities, calorimeter response for charged and neutral particles. 
• Finalize the output of the objects filled with the information needed to be used in the LHCb analysis 

framework in order to perform physics analyses
• Review the code in order to make it thread safe and multithreading to be used in the new LHCb Framework.
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PAST ACTIVITIES AND RESPONSIBILITIES
➤ Research activity within the CMS experiment 

➤ Analysis of the date collected with the CMS 
experiment at LHC  

➤ Electroweak physics: measurement of the Z 
boson production cross section through its 
decay to a tau lepton pair  

➤ Search for a Standard Model Higgs boson 
produced in association with a W vector 
boson  

➤ Study of the physics objects in CMS  

➤ Study of the muon reconstruction and 
identification performance in CMS  

➤ Study of the hadronic tau reconstruction and 
identification performance in CMS  

➤ Activities concerning the detectors 

➤ Study of the RPC performance in CMS 

➤ Upgrade of the CMS Muon System forward 
region with new detectors based on GEM 
technology 

➤ Phase-2 upgrade of the Muon System

�2

➤ Responsibilities within the CMS experiment 

➤ 2010 - 2012: Responsible for the study and 
monitoring of the RPC efficiency (L3) 

➤ 2014 - 2015: GEM Reconstruction and 
Validation Coordinator (L3) 

➤ 2014 - 2017: GEM Software and Online 
Contact for Upgrade (L3)  

➤ 2015 - 2017: GEM DPG Coordinator (L2) 

➤ 2016 - 2017: Muon Phase-II Simulation 
Coordinator (L3)  

➤ 2016 - 2017: Contact person between Upgrade 
Studies Group and CMS Offline & Computing 
group (L3) 

➤ 2016 - 2017: Link person CMS - Bari Tier2 

➤ Development and integration of the software 
needed for the Phase2 Muon Upgrade studies 
(muon reconstruction and identification, validation 
tools, study of the neutron background and muon 
perfomance…)



CURRENT ACTIVITIES
In the context of my INFN “fellowship” regarding the R&D on scientific computing for 
innovative solutions for the LHC experiments, my activity is twofold: 

1. Parallel programming on GPU: I am collaborating with the “Future tracking” group 

➤ The group takes care in CMS of developing a demonstrator for the pixel tracking on 
GPU and all the other infrastructures needed to exploit at best the available hardware 
resources (heterogeneous computing) 

➤ So far I contributed to the implementation on GPU and to the optimization of 
the first step of the chain: the unpacking of raw data (Raw2Digi) for the pixel 
detector (details in the next slides) 

2. Machine learning application: I am collaborating with the “ML Muon” group 

➤ The groups take care inside the CMS Muon community (DT, RPC, CSC, GEM) of 
developing innovative tools for monitoring the performance of the CMS Muon System 
and the detection of its anomalies 

➤ Currently I am working on the development of a monitoring tool based on ML 
techniques for the DT Trigger System 

➤ On long term this R&D work is meant to lead to a tool that can be run at different 
stages of the L1 Muon Trigger (details in the next slides)

�3



CMS PIXEL 
TRACKING ON GPU
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➤ CMS Trigger System 

➤ Reduce input rate (40 MHz) to a data rate (~1 kHz) that can be stored, 
reconstructed and analyzed Offline maximizing the physics reach of the 
experiment 

➤ Level 1 Trigger 

➤ Coarse readout of the Calorimeters and Muon detectors 

➤ Implemented in custom electronics (ASICs and FPGAs) 

➤ Output rate limited to 100 kHz by the readout electronics  

➤ High Level Trigger 

➤ Readout of the whole detector with full granularity 

➤ Output rate limited to an average of ~1 kHz by the Offline resources 

➤ Today the CMS HLT online farm consists of ~22k Intel Xeon cores 

➤ The current approach: one event per logical core 

➤ Pixel Tracks cannot be reconstructed for all the events at the HLT 

➤ This will be even more difficult at higher pile-up 

➤ Combinatorial time in pixel seeding O(pileup!) in worst case

THE CMS TRIGGER SYSTEM
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THE CMS PIXEL TRACKING AND THE PATATRACK PROJECT
➤ Solution (objective of the “Patatrack" project in CMS): 

➤ Develop a hybrid CPU-GPU application that takes 
RAW data coming from the pixel detector and gives 
Tracks as result 

➤ Trigger average latency should stay within 220ms 

➤ GOAL: demonstrator ready by 09/2018 to run parasitically 
at the HLT farm (in order to be included for Run3 and then 
hopefully Run4) 

➤ Ingredients: 

➤ Massive parallelism within the event 

➤ Avoid useless data transfers and transformations 

➤ Simple data formats optimized for parallel memory access 

➤ Renovation at algorithmic level 

➤ My contribution to the project is on the implementation 
on GPU of the first step of the pixel tracking chain: 
Raw2Digi step

�6

Raw to Digi

Hits - Pixel Clusterizer

Hit Pairs

CA-based Hit Chain Maker (quadruplets)

Track Fit

Tracks

Pixel Tracking



➤ Main goal: reproduce what the CPU code does with a 
simpler and parallel implementation (CUDA) and try to 
speed up as much as possible the processing 

➤ A fully working implementation of the pixel raw to digi 
algorithm on GPU is ready 

➤ It unpacks x, y pixel coordinates and the corresponding 
adc count 

➤ It unpacks also FED errors 

➤ It is already integrated in the CMS framework analysis 

➤ How GPU parallel architecture is exploited 

➤ Each FED is assigned to a block of threads 

➤ Words coming from a FED are saved in an array, copied 
to the GPU memory and assigned to the threads of the 
block where they are unpacked in parallel 

➤ Each thread executes the same set of instructions 
(kernel) on each word 

➤ Optimization of the memory usage and memory 
transfers  for speeding up the algorithm (details in the 
backup slides)

RAW2DIGI ON GPU: STATUS OF THE IMPLEMENTATION
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RAW2DIGI ON GPU: STATUS OF THE IMPLEMENTATION
➤ The GPU results have been validated 

against the CPU algorithm using the 
official validation plots 

➤ No differences between the two 
implementations 

➤ We started to study the performance of 
the GPU with specific tool provided by 
NVIDIA 

➤ More optimization is possible 

➤ Reducing the time spent in the host-
device and device-host memory copy 

➤ Optimizing the kernel 

➤ Maximizing the concurrency 

�8

➤ We discovered almost all the time is spent on the CPU 

➤ We are also re-engineering the remaining  part of the serial code (a.k.a. host code) to improve the performance 
and reduce the CPU execution time 

CPU execution time GPU execution time



CONCLUSIONS AND NEXT STEPS
➤ The work on the R2D step on GPU is completed 

➤ More refinements and improvements are possible, but those are left for the future 

➤ NEXT: develop a memory arena (in CUDA) 

➤ A memory arena is simply a large, contiguous chunk of memory that is allocated once and 
then used to manage memory manually by handing out smaller chunks of that memory 

➤ This tool will be used to manage dynamically and efficiently the memory needed for 
saving the doublets used by the track seeding algorithm (for the quadruplet generation), 
since its number increases dramatically with PU

�9

➤ More infos about the Patatrack project at the link below: 

➤ https://patatrack.web.cern.ch/patatrack/
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CMS DATA QUALITY MONITORING (DQM) SYSTEM
➤ A critical asset to guarantee a high-quality data for 

physics analyses (online and offline) 

➤ Online DQM assess data goodness and identifies 
emerging problems in the detector 

➤ Data with poor quality is flagged by eyeballing DQM 
GUI and comparing a set of histograms to a reference 
good sample 

➤ Problems with current strategy:  

➤ Delay: human intervention and tests require collecting 
sufficient statistics 

➤ Volume budget: amount of quantities a human can 
process in a finite time period 

➤ Human driven decision process: alarms based on 
shifter judgment 

➤ Changing running conditions: reference samples 
change over time 

➤ Manpower: the effort to train a shifter and maintain 
instructions
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A TOOL FOR MONITORING THE L1 BARREL TRIGGER WITH ML
➤ GOAL: Use ML/DL techniques for developing an 

innovative tool for the L1 Barrel Trigger rate 
monitoring in CMS  

➤ To be run at the level of TwinMux inputs (DT 
and RPC inputs), TwinMux output and BMTF 
input 

➤ The algorithm must: 

➤ correlate trigger rates and instantaneous 
luminosities coming from CMS database 

➤ identify chamber(s) with rate problem(s) 

➤ correlate different sources of information to 
make a diagnosis of the issue, e.g.:  

➤ all rates up to TwinMux output are in line 
with expectation for a given inst. lumi, but 
BMTF input is crazy ⇒ suspect 
communication issue between TwinMux 
Output and BMTF 

➤ Consumer: online operation teams
�12

Starting the project from the DT system!

Details about the TwinMux and BMTF 
algorithm in the backup slides



➤ Input dimensionality: 10 features 

➤ [system, wheel, sector, station, rate, rate uncertainty, 

 inst. lumi., lumi/rate, uncertainty on ratio] 

➤ Building a deep neural network (DNN) 

➤ Four hidden layers with 32 neurons 

➤ Trying an autoencoder (AE), i.e. a semi-supervised 
approach 

➤ Only the sample with normalies is needed for the 
training 

➤ The network learns the features of good data in a 
processs of encoding-decoding 

➤ After that it should be able to re-reconstruct with some 
precision only the good data 

➤ Bottle neck leads to a dimensionality of 6 (from 10) 

➤ Testing on a DT known issue: 

➤ Trigger board W+1, S4, MB3 is permanently off

ALGORITHMS
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➤ DNN shows very good separation between 
normalies and anomalies  

➤ The DNN is able to classify in the correct way 
the normalies and anomalies in the test sample 

➤ Tried some options for the number of layers: 
good results are reached already with 2 layers 

➤ The classification with the AE is not clear as 
the DNN, anyway it is possible to fix a WP to 
recognize: 

➤ 100% of the true positives with a 1% of false 
positives 

➤ AE approach seems promising:  

➤ no need to provide labels for anomalies 

➤ it can spot unforeseen problems 

➤ Tried also some other classic approaches, but DNN 
and AE provide the best performance (see backup 
slides) 

PERFORMANCE
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FURTHER ALGORITHMS: GOING COMPLETELY UNSUPERVISED
➤ Moving to completely unsupervised algorithms is 

the best approach in order to detect all the possible 
anomalies without specific trainings in general 
performed over a limited number of anomalies that 
will never cover all the possible cases 

➤ Local outlier factor (LOF) 

➤ Based on k-NearestNeighbor algorithm 

➤ It detects all the known anomalies, but with too 
many false positives (10%): 

➤ < 2 FPs per LS, but still too much 

➤ Details here: http://scikit-learn.org/stable/
modules/outlier_detection.html and in the backup 
slides 

➤ Looking into clustering algorithms (like K-Means 
clustering) 

➤ Started working on it but the method and the 
results need to be better understood 

➤ Details here: http://scikit-learn.org/stable/
modules/clustering.html#k-means and in the 
backup slides
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CONCLUSIONS AND NEXT STEPS
➤ DNN is performing very well, but it is strongly specialized on the issue it is trained on 

➤ AE is also performing very well and it is promising for the detection of generic/unknown 
issues with a reasonable level of false positives 

➤ NEXT: Test DNN and AE on further DT anomalies 

➤ Unsupervised learning is desirable because it can offer the chance to spot unforeseen 
problems, but it needs to be studies and understood better 

➤ NEXT: Work on other algorithms, mainly unsupervised 

➤ NEXT: Extend the R&D project 

➤ Extend the development to RPC in order to be able to check completely the TwinMux 
inputs 

➤ Extend the development to the TwinMux output 

➤ Cross the two informations and create a standalone monitoring tool able to  
determine the origin of the anomalies
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➤ The python scripts to access the database and the jupiter-notebook used to train the model can be 
found here: 

➤ https://github.com/calabria/DTTriggerRateMonitoringWithML

https://github.com/calabria/DTTriggerRateMonitoringWithML


BACKUP
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FUTURE CHALLENGES FOR HL-LHC 
➤ Higher instantaneous luminosity and consequently 

pile-up (up to 200 interactions per BX) 

➤ Higher event size 

➤ More time needed for the pattern recognition 
algorithms  

➤ Increasing computing power both for the online 
selection and for the offline reconstruction 

➤ How we managed in the past: 

➤ Increase computational and storage resources 

➤ There will not be financial resources to support 
this! 

➤ More improvements will have to be found in 
algorithm speed, by a combination of smarter 
algorithms and by making better use of parallel 
architectures, for instance: 

➤ GPU accelerators and massive parallel 
programming  

➤ Machine learning algorithms 

➤ Performance tuning and software engineering
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THE CMS (PHASE-1) PIXEL DETECTOR 
➤ n-on-n silicon sensor thickness: 300 μm 

➤ Pixel size: 100 x 150 μm  

➤ Four barrel layers instead of current three 

➤ 3-disk forward system instead of current 
2-disk 

➤ Total Modules: 1856 (1184 + 672 )  

➤ Total Pixels: 124 million (79 M + 45 M)
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RAW2DIGI ON GPU: STATUS OF THE IMPLEMENTATION
➤ Some details about the GPU implementation: 

➤ New GPU-friendly cabling map improves speed  

➤ A GPU-friendly cabling map (basically a LUT) is generated and updated if it changes 
in the next event and copied again to the GPU memory 

➤ Errors are treated and unpacked as in the serial code 

➤ All the functions to check the status of the pixel rocs and recognize the type of error 
have been implemented as device functions (part of the kernel) 

➤ The possibility to exclude bad pixels and specific regions of the detector is also 
implemented 

➤ To this end the cabling map was also extended with the list of modules to unpack 
and the list of pixel bad rocs for the error unpacking 

➤ Optimized memory reserved for each kind of device array 

➤ Optimized memory transfers packing the digi informations on the device and 
unpacking on the host avoiding to copy several arrays 

➤ Using a GPU-friendly vector class instead of several arrays for the error 
unpacking
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THE CMS LEVEL-1 TRIGGER BARREL TRACK FINDER
➤ The muon barrel architecture groups the muon detectors in 12 

wedges. Each wedge has five sectors and each sector, 4 DT detectors 
and 3 RPC 

➤ The front-end electronics record muon primitives and send them to 
the TwinMux which concentrate data from different sectors. The 
TwinMux combines DT and RPC to create more reliable primitives 
which are called superprimitives. Then it fanout the data to the barrel 
and the overlap track finders 

➤ The BMTF receive muon primitives from the DT and RPC detectors 
from the Barrel area of CMS (|η|<1) 

➤ The data primitives give muon coordinates, bending angle as well 
as quality bits that are used to evaluate the inputs 

➤ The BMTF algorithm use the information to represent muon 
tracks and calculate physical parameters like the transverse 
momentum (pT), the total bending angle the quality of the track 
and the track addresses 

➤ Each BMTF processor search for muon tracks in one wedge (own 
wedge) which may go also to the neighbor wedge (left and right) 

➤ The algorithm runs in parallel for 2 muons in 6 sectors which 
correspond to 1 wedge (the sectors are 5 but the logic splits the 
middle to two). In the barrel there are 12 wedges. So it can find 2 
x 6 = 12 muon tracks 

➤ Every BMTF processor has a sorting logic which give the best 3 
muons of the 12 possible tracks �21



➤ Testing some simple neural networks on a known issue: 

➤ Trigger board W+1, S4, MB3 is permanently off 

➤ A supervised approach needs samples of normalies and anomalies for the training: 

➤ Take runs certified as “good” runs 

➤ Anomalies come for free in some sense, since the trigger board is always off 

➤ One can build the sample of normalies by exploiting the symmetry of the system and 
forcing the rate to the one of the symmetric trigger board, in this case: W-1, S3, MB3 
➤ [system, wheel, sector, station, rate, rate uncertainty, inst. lumi., lumi/rate, uncertainty on the ratio] 

➤ Number of normalies and anomalies considered in this exercise 

➤ Very few faults, so anomalies and normalies are strongly unbalanced 

➤ Weighting properly anomalies and normalies 

➤ 20% of the data are reserved for the test

A SIMPLE TEST CASE FOR DT TRIGGER RATE
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METRIC FOR PERFORMANCE EVALUATION
➤ TP (true positive) is a correctly classified fault, while TN (true 

negative) is a correctly classified normal observation 

➤ Sensitivity TP/P: to keep high, i.e. maximize detection 

➤ Specificity TN/N: to keep high, i.e. minimize false alarms 

➤ Fall-out FP/N (1-Specificity): to keep low, i.e. minimize false alarms 

➤ Receiver Operating Characteristic (ROC) curve and its Area Under 
Curve (AUC): 

➤ illustrates the performance of different classifiers when 
discrimination threshold is varied 

➤ Deciding on the penalty of a false alarm versus false negative (or 
upper-bound false alarms) will be an essential in final implementation 
steps
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COMPARISON WITH SOME BENCHMARK ALGORITHMS
➤ Statistical: variance (probably not the best for facing this kind of problem) 

➤ Outlier detection algorithms: 

➤ Details : http://scikit-learn.org/stable/modules/outlier_detection.html 

➤ Classical machine learning: OneClassSVM (SVM) (need to perform a complete grid search for best parameters) 

➤ Unsupervised: Isolation Forest (IF) 

➤ Supervised nearest neighbor classifier (KNN): it performs very well but it is still a supervised approach 

➤ Details: http://scikit-learn.org/stable/modules/neighbors.html#classification 

➤ DNN and AE still remains the best algorithms
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WHY IS THE AUTOENCODER APPROACH PROMISING?
➤ DNN is performing very well, but it is trained against a specific issue 

➤ AE is trained only using good data, so in principle is able to spot any kind of problem 

➤ AE is able to spot some luminosity oscillations during the fill, recognized as anomalies  

➤ This feature is not seen by DNN, since it is strongly specialized to find one type of issue
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Distributions of the FPs (as defined by fixing a WP for the AE) vs. LS 



SOME DETAILS ABOUT THE UNSUPERVISED ALGORITHMS
➤ The Local Outlier Factor (LOF) algorithm 

computes a score (called local outlier factor) 
reflecting the local density deviation of a given 
data point with respect to its neighbors 

➤ The idea is to detect the samples that have a 
substantially lower density than their neighbors 

➤ The LOF score of an observation is equal to the 
ratio of the average local density of his k-nearest 
neighbors, and its own local density: a normal 
instance is expected to have a local density similar 
to that of its neighbors, while abnormal data are 
expected to have much smaller local density
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➤ The KMeans algorithm clusters data by trying to 
separate samples in n groups of equal variance, 
minimizing a criterion known as the inertia or 
within-cluster sum-of-squares 

➤ This algorithm requires the number of clusters to be 
specified 

➤ The k-means algorithm divides a set of  samples  into  
disjoint clusters, each described by the mean of the 
samples in the cluster (called the cluster “centroids”) 

➤ The k-means algorithm aims to choose centroids that 
minimize the inertia that can be recognized as a 
measure of how internally coherent clusters are



Past activities

• Dec. 2015 – Dec. 2017 INFN 
Fellowship for foreign students

• Dec. 2012 – Dec. 2015 PhD at 
the University of Siena

K. Androsov (Pisa): INFN Fellow presentation
flash talk

Affiliations
• !! → ##$$ analysis

• Pixel Phase 1 R&D and production

• Service work for tracking algorithms

• R&D: Tau L1 pixel trigger for Phase 2

Projects

Current projects (Dec. 2017 - Now)
• Machine Learning in HEP:

• Deep Tau ID and beyond
• Data analysis

• Advanced pixel detector simulations for Phase 2 using GPU

• Possible involvement in HPC tests at Cineca (under discussion)



Machine Learning in HEP
• What is the best way to apply Deep Learning in HEP?

• Can we afford “Zero Deep Learning” (without any
human knowledge)?
• This requires huge statistics, while full event simulations are 

CPU costly...

• How to pass our knowledge without adding significant bias?
• Select relatively small set of discriminant variables based on mathematical 

algorithms from an extensive set of variables provided by “human experts”
• Use those variables to pre-train inner layers of Deep NN or as an input of BDT

• We (me, A. Giraldi et al.) implemented an algorithm based on Jensen Shannon 
Divergence and Mutual Information measure that selects the most discriminating 
variables

0 0.2 0.4 0.6 0.8 1
Signal efficiency

0

0.2

0.4

0.6

0.8

1

Ba
ck

gr
ou

nd
 re

je
ct

io
n

Comparison of ROC Curves --- Non-Resonant SM

eTau --- HIG-17-002
muTau --- HIG-17-002
eTau --- current analysis
muTau --- current analysis
tauTau --- current analysis

• As a first try, this algorithm was applied to 
!! → ##$$ analysis, keeping the same 
learner (BDT from TMVA) as in the previous 
version of the analysis:
• Significant improvements wrt to the ”human 

expert” variable choice
• The final expected limits for SM !! → ##$$

improvement by almost a factor 2



Deep Tau ID
• Physics objects reconstruction and 

identification is an excellent task for DL
• As the inputs, we can use a low level 

variables to not loose any information
• As the first target, the taus were chosen:

• Current tau ID has 3 separate 
discriminators (against electron, muons 
and jets)

• With DL I plan to introduce an unique 
multi-class discriminator

• In the future, I plan to do full Deep Tau 
reconstruction

• To improve convergence (without
introducing bias) we plan to pre-train the 
inner layers of the NN graph using 
algorithm described in the previous slide

• The full framework is in a very early stages
of development, but first very preliminary 
results results of Deep Tau ID looks 
promising

- byIso ID from TAU POG
- deep tau vs jets

- against-ele from TAU POG
- deep tau vs electron

- against muon loose from TAU POG
- against muon tight from TAU POG
- deep tau vs muon



Advanced pixel detector simulations for 
Phase 2 using GPU

• For Phase 2, the advances in the frontend design require 
sensors with smaller pixel cells and thinner active thickness
• R&D of such pixel detectors require detailed simulation to 

obtain reliable results. Within R&D we need to:
• Find optimal pixel technologies and geometrical layouts
• Test validity of the various radiation models

• 3D device modeling are very computational demanding
• Licenses for simulation soft are very expensive and number of CPU is 

limited by 4 per license
• On the other hand, simulation software allows to implement custom 

models as plugins
• Most of the simulation algorithms are parallelizable => GPU isideal 

candidate to perform part of the calculation
• Within Pisa group, I’m starting to work on implementation of 

a plugin with GPU support for Sentaurus Device simulation 
TCAD.



Efficient and reliable data 
access using distributed and 
coordinated cache system

Sonia Taneja

INFN-CNAF

INFN and The Future of Scientific Computing - Episode I : The HPC Opportunity           Torino 04/05/2018  



Personal info…

• Post-doctoral research fellow at INFN-CNAF, Bologna 
Italy


• User support - contact person for CMS


• Research and Development division (was part of 
INDIGO-DataCloud project)


• Started this fellowship - April 2018
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Project and research interest
•Theme - Innovative Workflow and Data Management solutions for Large 
Scale science: large datasets, large workloads, heterogeneous platforms. 


•Project- Distributed and coordinated cache system 


•Architecture - based on pool of distributed caches (provided by well 
connected WLCG sites), which are loosely coordinated by a central 
orchestrator to create an effective larger cache which will scale to better 
accommodate LHC needs for an efficient data access


•Reduce latencies / Improve efficiency on remote data access 


•Reduced operational cost


•Present status:


•Cache for http/WebDAV and StoRM (Nginx)


•Collaborating with INFN-Perugia to converge on a generic cache solution 

INFN and The Future of Scientific Computing - Episode I : The HPC Opportunity           Torino 04/05/2018  



Future activities
• Automated deployment


• Exploring available cache technologies


• Customise the cache algorithms to match experiment 
requirements (Predictive analysis)


• To investigate AuthN/Z policies


• Implement federated cache


• Eventually test on commercial clouds
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