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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

Who am 1?

e Postgraduate course in “Development and management of data centers for high performance scientific
computing”, 2014-2015

o Thesis title: “Dashboard for the ALICE activity in Bari Tier-2 Site”
o Tutors: Domenico Elia and Antonio Franco

e Scholarship at GARR in “Monitoring system for geographically distributed datacenters based on
Openstack”, 2016-2017

o Tutors: Domenico Elia and Giacinto Donvito

e Scholarship at INFN, currently working on “Monitoring of the ALICE O2 Facility”, since Feb 2018

o  Tutor: Domenico Elia
INFN
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Motivations

The increasing of computation resource demand for scientific purposes is leading to:
e Datacenters increasing in complexity and size.
e Taking advantages of new technologies like virtualization and cloud computing.
e Datacenter cooperation needed in order to accomplish common goals.

2

e (Goal: Increase the computation capability of overall system.

Geographically distributed datacenters

e Side effect: Increasing complexity from the monitoring and control system.

2

Project: Developing a monitoring system for geographically distributed datacenters.

(INEN
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview

Advanced features are required:
e Anomaly detector
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview

Advanced features are required:
e Anomaly detector
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview

Advanced features are required:
e Anomaly detector
e Root Cause Analysis

Fully informative monitoring data are collected:
e Service monitoring (HTTP server, DB, ... )
e  Openstack and middleware monitoring
e Hardware monitoring (physical servers, disks, disk controllers, network devices, PDU, ... )
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview

Testbed

ReCaS Bari Datacenter:

e  More than 13.000 cores
7.1 PB Disk Storage
2.5 PB Tape storage
HPC Cluster composed of 20 servers
Dedicated network link: 10Gbps x2 to GARR,
20Gbps to Naples and 20 Gbps to Bologna
Cloud platform: OpenStack
Batch system: HTCondor

o 184 Worker Nodes

o 350+ network connections
Local Monitoring System: Zabbix
Including ALICE and CMS Tier2s
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview

Data Sources:

__ e Syslog: System processes and service information.

Zabbix e Zabbix: Computation resource usage, service and Openstack monitoring.
HTCondor e HTCondor: Scheduler, completed and running job state
OpenStack e OpenStack: Information on server, images, flavors, volumes, network devices, ....
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview

Metric collectors:

Syslog

Zabbix <—L|I Sensor
HTCondor <—>|: Sensor
OpenStack <+ Sensor -F‘t e ~N

e Apache Flume Syslog Source.

e Python code inserted in Docker-container and executed periodically

using Apache Mesos.

______________

XD Apache Flume: a distributed and highly-reliable service for collecting,
Mesoshga aggregating and moving large amounts of data in a very efficient way.
@ Apache Mesos: an open-source project to manage computer clusters.
Docker: a computer program that performs operating-system-level virtualization
also known as containerization.

- /
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview

E Transport Layer:
Source % e Apache Kafka.

Zabbix <—L| Sensor [:> Kafka e Decouple all components.

Syslog

HTCondor m
OpenStack m :! \ Y,

______________

0
Mesos
Apache Kafka: an open-source stream-processing software platform, provides a

unified, high-throughput, low-latency platform for handling real-time data feeds.

@A:m?\lll
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview
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Mesos‘iﬁj Endpoints:
e Hadoop Distributed File System (HDFS): Long-term storage.

e InfluxDB-Grafana: Timeseries Dashboards.
e ElasticSearch-Kibana: Log Dashboards.
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview

22 HTCondor - ¢ o < Zoomout » @ Last24 hours

RunningJob CE

16:00
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InfluxDB: a custom high-performance data store written specifically for time series data.

Grafana: Dashboards’ builder for time-series data.
IN EmN 13
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview
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[HTCONDOR] Starting jobs per Host Started job

ElasticSearch: a search engine based on Lucene and provides a distributed, multitenant-capable
full-text search engine with an HTTP web interface and schema-free JSON documents.

Kibana: an open source data visualization plugin for Elasticsearch
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview

Processing Unit:
Source % e Apache Spark.

Zabbix <—L| Sensor :[:> Kafka e Log Analyzer.
HTCondor <—>|E Sensor |

OpenStack

Syslog

e Anomaly Detector.

e Data Correlation.

e Root Cause Analysis.

Spoark

[Apache Spark: a fast and general engine for large-scale data processing. ]

@15
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview

Tol
Flume- 2 ( y Alarm dispatcher:
Syslog Source
____________ e Riemann.
Zabbix <—L| Sensor | |:> Kafka e Plugins: Email, Slack.
HTCondor |«+ Sensor | e Processes and filters events.
OpenStack
Spoark =
DK #slack
N\ slac
[ Riemann: aggregates events from your servers and applications with a powerful stream ]
processing language. C
INEN
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview

y Information Structure:
Syslog e (lassical monitoring is not enough.
B e Relation information ( Services, network,
virtual-physical server, ... )
HTCondor o  Openstack data.
OpenStack ) o  Open connections.

o Other monitoring data.

Neo4j: High Performance native Graph Storage &
Processing.

@17
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview

Resource Usage for the monitoring system:

e 80 CPUs
e 150GB RAM
e 3 TB Disk

o 1.5TB for HDFS in replica 3
o 600 GB for Kafka nodes
o  No-volatile virtual machine volumes
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Project Overview

Apache Mesos:
Cluster:
e 3x Master (2 CPUs, 4GB RAM, 20GB Disk)
e 2x Slaves (4 CPUs, 8GB RAM, 20 GB Disk)
e 1x Load Balancer (2 CPUs, 4GB RAM, 20GB Disk)

Frameworks:
e Chronos
e Marathon
e Spark
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

MonGARR: Future works

Migrate all components in Mesos
Improve the Machine Learning algorithms efficacy
Root Cause Analysis algorithm

Integration with project management systems ( OpenProject, Trello, ....)
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

Modular Stack solution for ALICE O2 monitoring

e ALICE is a heavy-ion detector designed to study the physics of strongly interacting matter (the Quark—Gluon
Plasma) at the CERN Large Hadron Collider (LHC).
e During the Long Shutdown 2 in the end of 2018, ALICE will start its upgrade to fully exploit the increase in

luminosity.
e The current computer system (Data Acquisition, High-Level Trigger and Offline) will be replaced by a single,
common O2 (Online-Offline) system.

e Some detectors will be read out continuously, without physics triggers.
e 2 Facility will compress the 3.4 TB/s of raw data to 100 GB/s of reconstructed data

4

e Development of a Monitoring System for ALICE O2 Facility:
Modular Stack solution, with components and tools already used and tested in the MonGARR project

(approved by the ALICE O2 TB last February)
INEN 5
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

Modular Stack solution for ALICE O2 monitoring

ALICE O2 Facility:
e 268 First Level Processors
e 1500 Event Processing Nodes

Requirements:
e C(Capable of handling O2 monitoring traffic — 600 kHz
Scalable >> 600 kHz
Low latency
Compatible with CentOS 7
Open Source, well documented, actively maintained and supported by developers

Impose low storage size per measurement

INEHN 24
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

Modular Stack: Architecture

Flume

= InfluxDB — =

'Grafano

Agents

» Sensors:
o Monitoring Library
o CollectD

»  Transport Layer: M‘l’igirt;’!’;"g
o Apache Flume

» Time-series Database: System
o InfluxDB Sapsore

-;¢:collectd

» Visualization interface:
o Grafana

» Alarming component:
0 Riemann

v

Processing component:
o  Apache Spark
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

Modular Stack: Architecture

» Sensors:
o Monitoring Library: user defined metrics, monitoring process metrics
o  CollectD: CPU, network, memory, load, uptime, disk, log files,....

» Transport Layer:
o  Apache Flume: implemented custom components

» Time-series Database:

fl
o InfluxDB :
X " ) X Monitoring &
» Visualization interface: library —{_InfluxDB B
Fliie Grafano
o @Grafana: users, teams, dashboard A ot
. System
» Alarming component: Sensors
. ~y~collectd W
o  Riemann: Slack alarm X 3
N @ *slack

»  Processing component: I

o  Apache Spark: aggregation jobs [ _..
pache Spark: ageregation o
INEN' 5
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

Modular Stack: Future works

> | System Validation using the TPC monitoring data, May 2018

> New functionalities will be added ( new streaming analysis, alarming, log
analysis)

> |l System Validation using ITS monitoring data, Dec 2018
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Using Hadoop ecosystem tools for distributed datacenters and the ALICE O2 Monitoring

THANKS FOR
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ATTENTION

uuuuuuuuuuuuu



INFN and the Future of Scientific Computing @
4-may-2018

DPM-based distributed caching

system for multi-site storage in
ATLAS

Bernardino Spisso
INFN Napoli

no Spisso - DPM-based distributed caching system for multi-site storage in ATLAS



About me (NN

Istituto Nazionale di Fisica Nucleare

@® Master degree in theoretical physics at Federico Il di Napoli (2007).
@® Ph.D.in mathematics at Westfalische Wilhelms-Universitat of Miinster (2012).
® | level University Master Course in “Technologies for high-performance scientific computing” at

Federico Il di Napoli (2014).

My previous occupation was in the ASTERICS-Km3Net collaboration, responsible for the projects:

® ROAst (ROOT extension with ASTrophysical).

® CORELib (COsmic Ray Event Library).

Since December 2017 | collaborate with Naples ATLAS computing Group:
® Alessandra Doria and Giampaolo Carlino.

And with the ATLAS Tiers-2 at LNF and ROMAI.
@ Elisabetta Vilucchi (INFN-LNF) and Alessandro De Salvo (INFN-Roma).

Bernardino Spisso - DPM-based distributed caching system for multi-site storage in ATLAS



Motivations

<R

Istituto Nazionale di Fisica Nucleare

HL-LHC storage needs are above the expected technology evolution (15%/yr)
and funding (flat).
We need to optimize storage hardware usage and operational costs.
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Plots from the last Joint WLCG-HSF Workshop 2018 in Naples.
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Our scenario

@® Explore distributed storage evolution to improve overall costs (storage and ops) taking in account:
o  Single common namespace and interoperability.

O User analysis is often based on clusters hosted on medium sites (Tier2) and small sites (Tier3).

@® In order to reconcile these two trends, the target of my activity is to study a
distributed storage system featuring a single access point to large permanent
storage and capable to provide efficient and dynamic access to the data. In this view,
medium sites like Tier2 and small sites like Tier3 will not necessarily require large
storage systems, simplifying local management.

This can be achieved by the adoption of a distributed storage and
caching technologies.

@® This activity takes place in the same context of the Data Lake project having very similar
motivations.

Bernardino Spisso - DPM-based distributed caching system for multi-site storage in ATLAS



Our implementation

@® The Disk Pool Manager (DPM) is a data management
solution widely used within ATLAS, in particular in three
ltalian Tier2.

@ The latest versions of DPM are used in our implementation,
that offer the possibility to manage volatiles pools to be
used as caches.

By exploiting the fast connections between sites, we are
deploying a first testbed among Naples, Frascati and Roma-1
using DPM. The aim is to study and develop a configuration
in which a primary site represents a single entry point for the
entire archiving system and each site can use its storage as
permanent storage or as local cache.

Using a cache system the local site administrators can
be dispensed from managing a complete storage
system. The site became transparent for the central
operations of the experiment.

<R
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Conclusions CINFN

Istituto Nazionale di Fisica Nucleare

A first testbed using DPM among Naples, Frascati and Roma-1is almost ready.
Study of the best caching policy for the volatile pools.

Evaluation of the performance of the developed prototype.

System integration in the current ATLAS data management infrastructures.
Synergies:

O  collaborations with the Naples BELLEII computing group ( Silvio pardi (INFN-NA), Davide Michelino (GARR))

O  collaborations with the DPM development group.

® Create conditions for easy replication of the system on other sites or in other
contexts.

Bernardino Spisso - DPM-based distributed caching system for multi-site storage in ATLAS



Miguel Villaplana

e  ATLAS - Milano
e  Supervisor: Laura Perini

ATLAS Eventlndex (in collaboration with Dario Barberis)

e A database with the references to the files including each event in every stage of processing
o fast and efficient selection of events of interest, based on various criteria, from the billions of events recorded
o an indexing system that points to those events in millions of files scattered in a world-wide distributed computing system
o  contains records of all events processed by ATLAS, in all processing stages

e  Contribution to Functional Tests and User support
o  Based on previous work from A. Favareto: bash script
o  Redesigned from scratch using python
m  modular design, exception handling, code documentation
o  Added new functionality
m test MC samples
m  resubmission of failed tests

e  Status and plans

e  Short term: machinery is mostly in place but needs polishing
e Long term: design and implementation of the functional tests for the Event Whiteboard (EI's evolution)

M.Villaplana May 4, 2018



Harvester (in collaboration with Alessandro De Salvo)

e  The current production and distributed analysis system in ATLAS (PanDA) relies on a server-pilot paradigm
o A server maintains state and manages workflows with various granularities
o  Pilots are job-centric and run independently on worker nodes with a limited view of local resources

PanDA itself has no means of managing and monitoring cloud utilisation

Harvester is a resource-facing service between the PanDA server and the collection of pilots
o ltis a stateless service with knowledge of the resources
o It can act as an intermediate communication channel between PanDA server and pilots

Current activity:
o  Ourgoal is to improve site deep resource knowledge
o  Start by using the available information sources (GLUE 1.2, GLUE 2)
m  Understand if the available information sources could be reliable and useful w.r.t. what we currently have in Panda
e  Compare the values obtained from Glue 2 and what we have in Panda
e Many problems found: misconfigured sites, only a fraction (< 40%) of sites/CEs have matching values between
Glue2 and Panda
m Insummary, GLUE values do not really seem reliable enough

e  Future plans: grabbing values directly from jobs
o Initial prototype of a collector designed by A. De Salvo
o  Plan to contribute to the development and testing of the prototype

M.Villaplana May 4, 2018



Machine learning

e H ->Tau Tau mass reconstruction (in collaboration with Attilio Andreazza)

o<

o Tesi di laurea di Aldo Materassi

o  Goal: predicting the invariant mass of ditau system using the visible tau decay products kinematics
m  Difficult final state: many neutrinos

o  Status and plans:
m  Now learning basics about ATLAS software and how to get/process the data
m  We will first reproduce previous results
e using BDTs (and random forests)
e can we train at truth level and test at reco level?
e  best way to use ML frameworks in the market (scikit-learn, pyTorch,...) inside ATLAS software
m  Try other ML techniques

M.Villaplana May 4, 2018



Share resources across groups at UniMi

e  Groups are encouraged to organise their resources under HTCondor pools
o  Execute machines report to the central manager of their own pool

e We add an additional central manager to which all execute machines report too
o  This provides usage accounting across all the resources together
o  Serves as a top-level pool to submit jobs to when users want to access all possible resources

e Users get the quality of service they were already enjoying, but excess jobs may be conveniently sent to the other
resources
o  Group pools remain the default pool for job submission, but with the super-pool added to their FLOCK_TO list
o  We give the group’s negotiator priority over super-pool’s to guarantee high priority to group users on their own machines

e  Status and plans

o  The system is in place and shows good behaviour

o  ATLAS use-case:
m  Trivially parallel jobs. CVMFS is the only requirement.

o  Currently researching how to run MPI jobs encapsulated in Docker containers via HTCondor
m  Tesidilaurea triennale di Massimo Miserendino (sup. F. Prelz, D. Rebatto and A. Andreazza)

http://infn.it/thesis/thesis_dettaglio.php?tid=12211

o  Monitoring and accounting
m Based on Filebeat+Elasticsearch+Kibana

o  Documentation and user support
m  Scripts and conf files in GitLab @ INFN (baltig.infn.it)
m Instructions for sys. andmins growing both in GitLab and in a local twiki
m  User support: twiki + mailing lists for support and announcements in construction

M. Villaplana May 4, 2018
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Machine Leaming as a Service
[for the ALICE collaboration)

Sara Vallero
INFN Torino



Introducing myselt

Within the ALICE collaboration Building competences
+ Data analysis * Machine Learning (ML) algorithms
* Detector testing/commissioning - Distributed ML systems

* Data-taking operations - Integration of non standard resources
: (GPUs) with Linux containers and
orchestrators (Mesos, OpenNebula)

PRIN Project

(optimization of access to

LHC data using the grid
: and cloud computing ) INDIGO-DC
2013 2015 THIS FELLOWSHIP
2007 2012 March 1, 2018

MD in Physics PhD in Physics
(University of Torino) (University of Heidelberg)

Computing Model as a Service

Cloud C ti
oud Computing (lightweight virtualization)

(full virtualization)
« OpenNebula and KVM

« Contextualization of complex
services

* runtime/application packetization (Docker)
« Distributed scheduling (Mesos and its frameworks)

* Network virtualization (Calico)

. Auto-scaling » HPC: MPI over InfiniBand in Docker

+ FairShare scheduling |—> Batch System as a Service employed at the
INFN and UNITO’s HPC Cluster (OCCAM)



Machine Learning as a Service

CHALLENGES REQUIREMENTS IMPLEMENTATION

Reconstruction Workflow definition Lightweight virtualization

« Analysis  Results reproducibility « Modularity

- Trigger « Multi-tenancy (scheduling, * Flexibility

« Data quality authentication...) + Heterogeneous back-end
. - Parallel execution and scaling infrastructures

Detector monitoring

Computing operations Data handling ©

Monte Carlo tuning Ease of use and management

/ Existing OpenSource software (mature and maintained)
INDIGO-DataCloud products 0“.)

INDIGO - DataCloud

LEVERAGING

DEEP Hybrid DataCloud products s 2~

@ Architecture | Technologies | Implementation | Test use-case .



Brainstorming

MLaaS Front-end « Workflow definition

jupyter Lutgt ] ® Process Monitoring

e Authentication @

INDIGO - DataCloud

MLaaS Core

ML libraries [‘ -+ PYTORCH fTemr 4 Keras Deep Learning framework

[dist-keras KubeFlow *{-=)* ] Distributed DL libraries

Implementation | Test use-case .
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Data Performance .
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D
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o Cluster framework
£ [ SPQ"‘”(\Z ] (parallelize task)
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From Data to Results

DATA Machine Learning as a Service
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5 uproot g— e train/validation/test sets Clﬁ
IS . . - = o
~ Other (i.e. lodfiles...) — Z o
% "é Tralnlng =
~ Internal data: ' S N
= nternal data: : > IS <
»y ° Intermediate : IS Validation >
2 processing stages : o) <
Le) T I ted : g ¢ The framework gives a structure to

8 AL em.a Y Clsinisiels ! 0p)] conceptual analysis steps

§ data (i.e. MonteCarlo : (simplicity, reproducibility)

|_

\ ¢ |mplementation is use-case specific )

simulations) .

Case study (ambitious): framework for systematic tuning of MonteCarlo generators

(N ° data-MC comparison with Neural Network based high-dimensional discrimination
¢ |earn event re-weighting function to avoid several expensive generation calls
e tune generator parameters by back-propagation

Architecture

. From M. Paganini’s talk at the 2nd IML Workshop, April 9-12 2018, CERN



ALICE Analysis in Run 3
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Overview of the currént ALICE analysis framéWwork

¥/ ’ ' 2 %
J[“r / , .

* Abstraction layer: “Analysis Tasks” per-event processing function in ROOT/C++

Platforms: same analysis can run locally, on Grid and ROOT’s PROO

Data format: reading from reconstructed (ESD) or analysis (AOD) data (ROOT T Trees)

Extensibility: ancillary deltaAODs and ESD friends

Grid processing rate: 5 MB/s of input data processed on each Grid job

Operations: organized trains: read event once, process with many analysis tasks

Analysis data flow

Multiplicity UserTask 1

UserTask 2

ESD reader Event plane :
PhysSel Correction
OADB

Centrality

UserTask 3

reading abstraction common tasks central corrections correction maps user code
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* A new experiment: trigger-less, no “events”, no 1:1 mapping to current analysis tasks

* Non-linear analysis flow: allow for more complex workflow connections

* Insufficient rate: 100x raw data expected, how to keep up to it?

o Declarative approach: users don’t code the full workflow but connect custom or common

task units, allowing the framework for

an easlier optimization

* Optimize costly data format operations (serialization, compression, cross-referencing)

* Read from local files bypassing central file catalog operations

* Do not run on the Grid, but on specially designed HPC facilities with fast network/disk

o Rethink analysis flow: instead of prod

ucing the final results immediately on HPC

resources, do a coarse-grained selec

Dario.Berzano@cem.ch - INFN and the future of scientific computing - ALICE Analysis in Run 3
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Analysis Workflow User Large scale
facilities handling Interface operations

=] o [

ajujn (N

Low deserialization Only analyze local Allow for non- Reuse standard Interface to central
cost data linear workflows interfaces File Catalog
Efficient Fast local storage Nodes subscribe Declarative Compose analyses
INn-memory store and network to data paradigm into trains
Optimized Allow inter-nodes Use network and Optimize common Test and monitor
decompression communication shared memory operations user jobs
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Development areas™/ = 7!

Low deserialization
cost

Efficient
iINn-memory store

Optimized
decompression
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Data format

* Base processing unit: timeframes (not events: no trigger), 20 ms long (so quite long)
* Flat and simple: store numbers only, also for cross-referencing indices between tables

« Columnar: represent chunks of records as SOA in memory to leverage vectorization

 Zero size for null objects: filtered-out fields do not use RAM memory

* Extensibility: base format will never change, but easily extensible because it’s SOA
 Computing vs. storing: in some cases, recomputing some fields is cheaper than storing
* No data restructuring: disk = memory — network use the same representation

SSSSS
00000

LibFlatArray sich
Apache Arrow SOAContainer
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Data format implemeéntations: -

S0A: good for vectorization but counter-intuitive: we think event-by-event (AoS). Lazy
data access interfaces/formats to write AoS code transparently executed vectorized

* Apache Arrow - hitps://arrow.apache.org/
Developed for analytics. Standard exchange format in the Apache Foundation ecosystem.
Easy to organize and cross-reference data types with tables. Parquet as file backend

* LibFlatArray - http://www.libgeodecomp.org/libflatarray.html
Developed for scientific applications. Provides an object-oriented interface to SoA.
Leverages code generation through templates

* SOAContainer - hitps://gitlab.cern.ch/LHCbOpt/SOAContainer

Developed by LHCb, currently in use for so

me HLIT operations. Provides a std::vector-like

container for looping easily over SOA collec

Currently writing the three prototypes for a

1oNs

more concrete comparison, but we want to

be able to switch to a new one in the future without affecting Run 3 user tasks.

Dario.Berzano@cem.ch - ALICE Physics VWeek Frascat - Analysis in Run 3 and 4
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Major data formét CaVeat

* Tracks vs. vertices ambiguities: different ways to represent uncertainty

* 1:1 mapping impossible: we cannot run as they are current code with any new format

Method 1

‘event’ 2

Make ambiguous tracks available in both events

Dario.Berzano@cem.ch - ALICE Physics VWeek Frascat - Analysis in Run 3 and 4

Method 2

Primary:

Vertices:

Secondaries:

Store ambiguous tracks in a separate container
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Analysis
facilities

Only analyze local
data

Fast local storage
and network

Allow inter-nodes
communication
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AnalysistacilitieS ™ W]

In order to sustain a high-rate of process intercommunications and minimize data
reading latency, specially designed analysis facilities are foreseen

* Intentions: ALICE will provide for 2/3 large analysis facilities, aggregating ~20k cores
each, aiming to maintain the 5 MB/s read throughput. Aggregated throughput: 100 GB/s

* Local storage: a large (5 PB) cache managed centrally and accessible via the file catalog
too (but local access will bypass it for efficiency)

* Fast data turnaround: data constantly replaced with new data based on our
convenience. Datasets will have different life spans. Possible to restage data in the future

* Output results: output data size negligible. Stored on the AFs, and accessible from
everywhere through the central file catalog. Output never purged (differently than AODSs)

Dario.Berzano@cem.ch - ALICE Physics VWeek Frascat - Analysis in Run 3 and 4
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Data flow up to the @ra ‘ys'ﬂsf—CIIltles <

Tier1s/TierO Storage Archive AF
archive CTF TO/T1 1.n 0? 1
Asynchronous calibrationlj CTF -> ESD -> AOD RAW -> CTF -> ESD
CTF -> AOD
read CTF Reconstruction < Reconstruction
Calibration | g Calibration - - Calibration
QA ! Archiving [‘v' £
Analysis . 2
save ESD > 0 AN
_ unarchive CTF N AOD
AQD \\ AOD
read CTF,ESD >
Asynchronous reconstructionw
Reconstruction | _ T2/HPC 1.n 1.3
QA ; AQODs produced online
along with ESDs MC -> CTF -> ESD AQD -> HISTO, TREE Analysis
save ESD,AQOD Simulation -> AOD
archive AOD >
export AOD AODs archived on
> custodial storage and AF output can be
Tier1s/Tier0 Storage Archive || AF | |sent to the AFs also made by trees

(for subsequent fine-
grained processing)

Iwo or three Analysis Facilities with local storage for organized AOD processing

TDR

Dario.Berzano@cem.ch - ALICE Physics VWeek Frascat - Analysis in Run 3 and 4
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Analysis Facility test'etup at

ALICE has a test Analysis Facility at GSI (Darmstadt, DE). It fulfills our Run 3
requirements and allows for testing, while currently running Run 2 jobs as a Tier-2

* Test conditions: running current Run 2 framework on 1500 cores

 Fast network: 10 GB/s between nodes

» Storage: 15 PB Lustre with 78 OSS, 7 OST, 2 MDS

 Benchmark: run operations on 1500 cores. Read results for each core:

e File copy: 1200 MB/s

e Unzip: 100 MB/s = must be done in parallel on separate processes!

 Running the Run 2 framework alone: 20 MB/s = framework + deserialization cost a lot!

* Further optimization possible via a simpler data format and a novel workflow manager

Dario.Berzano@cem.ch - INFN and the future of scientific computing - ALICE Analysis in Run 3
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Deve\cpment areas

Workflow
handling

Allow for non-
linear workflows

Nodes subscribe
to data

Use network and
shared memory
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Workflow handhng rthe DataProcesSm"’ Lay"ér

File reading Is expensive: readers unzip once and dispatch, tasks subscribe to data
ALICE Run3 software is based on the Data Processing Layer: independent processes
exchanging data over the network using message queues. Using it for analysis too

S e )

On-the-fly preprocessing

e sk

VERTEX Task3

S
e
Tasks can be arbitrarily complex,

VERTEX Task3 they can be a full DAG themselves!

Different levels
of merging
possible

o T S
P .- L o

Merger3

Output on
disk
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Development areas

User
Interface

O
N

Reuse standard
Interfaces

Declarative
paradigm

Optimize common
operations
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User interface: the néw ALICE Analyais Task™ ™~

* Current analysis: very simple abstraction, only one degree of freedom: user writes a
function for “processing” an event (whatever “processing” means)

* Declarative approach: allow user to specifty how to filter data and preprocess it first, and
then where to store the results, iIn a compact way

* Transparent optimization: by using high-level declarations, optimization heavy lifting Is
performed by the framework

* ROOT’s TDataFrame: nice ROOT development (experimental) allowing to do:
TDataFrame d(input).Filter(criteria).Foreach(action)
where low-level optimization and event loop (multithreading, multicore) occur automatically

Currently writing a TDataFrame source allowing to read from Apache Arrow (and
evaluating its maintainability). Once again, users don’t deal with the underlying format

Dario.Berzano@cem.ch - INFN and the future of scientific computing - ALICE Analysis in Run 3
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Development areas™

Al 2

Large scale
operations

m

Interface to central
File Catalog

Compose analyses
into trains

Test and monitor
user jobs
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Large scale operahoﬁs

 ALICE Run 2 analysis is organized: users write analysis tasks that are assembled as

wagons Iin a train: data Is read once and processed by each task serially

 Even more organization in Run 3: reading Is so expensive that we should do It even less

and exploit network message passing of read data

* Avoid backlogs: profile analysis tasks to optimize trains composition and avoid slower

tasks to fill the reader caches too much and make faster tasks to wait

e Zero or little re-runs: current trains can e run several times on the same datase
Run 3 data turnaround Is shorter. Use trains to filter and run faster iterations on lap

* File access: even if file access is local, a central file catalog is kept. A technigue (XRootD

'S, but
0PS

plugin) was developed to bypass catalog access for local access wherever possible

* Trains web frontend is currently very popular for composing and running trains easily, we

will need to adapt it to the new framework

Dario.Berzano@cem.ch - INFN and the future of scientific computing - ALICE Analysis in Run 3
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What's to be done on the _ term'

Short term deadline is July (CHEP): we aim to have a sample analysis running as a
demonstrator by then. Converging on the data format is the most important first step

* Several small components ready: analysis facility test setup, TDataFrame, three different
data format libraries, a data processing layer handling the workflow

* Implement the base data format using the given libraries

Implement macros to convert sample data to the new forma

integration fashion)

for comparing their speed.
'S automatically (continuous

* Develop the appropriate base data processing layer tasks: a file reader/unzipper and

the actual task, based on the TDataFrame interface

* Deploy a sample workflow topology on the test Analysis

—acllity

 Develop the appropriate TDataFrame sources once we have benchmarked them

Dario.Berzano@cem.ch - INFN and the future of scientific computing - ALICE Analysis in Run 3
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National distributed disk cache for
CMS@LHC:
Status and Progress

Diego Ciangottini®

a) INFN, Perugia

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini



<R

Istituto Nazionale di Fisica Nucleare

Outline

Activity motivations remind
XRootD cache architecture
Current status

Next steps
o Deployment of a first National distributed testbed

e Longterm view
o Data-lake integration

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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Motivations

Istituo Naional i Fiia Neciare sttt Nazionale i Fisica Nelare

Recap: Statement of research interest Motivations

“Innovative Workflow and Data Management solutions
for Large Scale science: large datasets, large " . .
g g€ 9 e LHC adopt central computing coordination model
workloads, heterogeneous platforms’ i
o data placement not optimized for national (ltaly included) analysis needs
o job redirected to resources near the data location whenever is possible
o remote data access not avoidable under some circumstances

e |mplementation of a disk cache solution for CMS workflows

O Scalability: @

B local scaling: supporting cloud diskless CPU resources
B geographical scale: optimization of data access paths e Remote data access -> latency and cpu inefficiencies

o need for a high performance storage (to be maintained) near computing facilities

o unpredictable heavy load peak on T1s and T2s

o opportunistic resources or dynamic extension of existing sites suffer intrinsical inefficiency
B use heterogeneous set of metrics (data popularity, job queues, network stats etc) due toTermoteraccess

O  Easy maintenance: automated deployment and reduced operational efforts

O Intelligent decisions: data movement based on predictive models

o  Generic and modular solution for experiments other than CMS

Diego Ciangottini - Distributed and sm e for CMS data management

Diego Ciangottini - Distributed and smart cache for CMS data management

CSN1 meeting 21-23 Feb

https://agenda.infn.it/getFile.py/access?contribld=27 &resld=0&materialld=slides&confld=14896

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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A cache system to support several scenarios

e Leverage national networking to reduce total maintained storage resources
e “Data-lake” approach:
o Interposing cache on top of a central custodial site
e Opportunistic Computing: to bring not pledged resources in the computational
model
o From the experiment point of view: to integrate cloud based resources with zero effort

e Dynamic Site Extension:

o Peak of usage or more in general buying external cloud resources:
m see activities like: Aruba, Microsoft Azure, HNSci project etc

NOTE: The presented activity lives within the CMS Data Management project

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini



<R

Istituto Nazionale di Fisica Nucleare

XCache implementation

XRootd based implementation of a LT Remote — World wide

disk proxy-cache tool

STORAGE

e XRootD infrastructure spans all of the STORAGE

Tier-1 and Tier-2 sites in EU and US CMS
o  well known protocol at computing
sites
e Multiple storage backend support and

N~

STORAGE

STORAGE

Storage federation

~

STORAGE

" STORAGE

/cms/myarealfile.root

optimization
e Easy integration on current LHC
computing model

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini



Work strategy

Proof of concept implementation
(initially based on XrootD)

:> Deployment and testing

Improve existing pilot
/integrate new technologies

Gather and analyze
usage data to better

understand the model

N

Test a prototype on national scale

<R

Istituto Nazionale di Fisica Nucleare

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini



Work strategy: status update

Improve existing pilot <
/integrate new technologies

<R

Istituto Nazionale di Fisica Nucleare

Depl ent sting

Gather and analyze
usage data to better
understand the model

Test a prototype on national sc@

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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Sti n g Ca C h e With C M S WO r kfl OWS Cold cache sttt Nazionala i Rsica Hiclears
| / Warm cache

Remote A

e Afirst proof of concept has been developed
and first tests with CMS analysis workflows are
ongoing.

o DODAS environment to provide a recipe
for an automatic XrootD cache
deployment on heterogeneous cloud
resources

o utilize “any cloud provider” with almost
zero requirements and a simple text
configuration file.

m Open Telekom Cloud (OS based)
resources used for preliminary
results

& ' ' ' 100

Job CPU Efficiency

Everything behaves as expected.

Remember that the amount of efficiency gain is
heavily workflow dependent

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini



!llll‘:
oy INFN

National testbed deployment

e Objective: to deploy a national level cache
o geographically distributed cache servers ( National cache
o heterogeneous resources and providers redirector
o Leverage national networking to
optimize the total maintained storage
resources
e Collection of important data for evaluating the
benefits on a realistic scenario '

Already contacted CNAF, Pisa and Bari Starting with sites with homogeneous

to support the deployment of a national resources (gpfs-storm).

testbed for Xcache federation = Agreed!! | Then extending to other sites (e.g.
Legnaro) on a second step.

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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National testbed deployment activity

e Reproduce on national scale the same architecture and tests as on cloud
resources

o cluster of cache servers federated under a dedicated redirector
e \Write a technical proposal for activity coordination

e Functional tests with no dedicated high 1O hardware (e.g. ssd etc)
o in general no additional costs, using hardware that is already in place

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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XCache and Data-Lake

The activity on Italian testbed can be a first
benchmark for future solutions proposed in an ° Lake-HN : central service of the data lake (namespace, metadata etc)

° Lake-DN : storing data and under the management of Lake-C

LHC data-lake scenario.

Synergies: Lake-HN I

e outlook on projects with similar
motivations and objectives
(eXtremeDataCloud and others if any will
come up) ' i Redirector

e with CERN investigation of XCache
application for internal EOS cache
mechanism.

Lake-DN |

Lake-DN

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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Summary
e INFN XCache for CMS@LHC is proceeding as for roadmap

o first phase ready = automation and local cluster test

e The technology used is based on XRootD
o multi-backend storages = generic application
o every system XRootD compliant can use XCache
o possible to be extended beyond CMS boundaries

e Existing synergy with pure HTTP approches (Sonja talk today)

My two major milestones for 2018:
e Tests with national testbed

e Dynamic site extension:
o e.g.overflow: CMS payloads assigned to CNAF pledged resource = redirected seamlessly to
cloud resources deployed with DODAS

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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Backup

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini



<R

Istituto Nazionale di Fisica Nucleare

Motivations and features: recall

e Reduce latencies / Improve efficiency on remote data access
o enhance CPU efficiency and job success rate

e Reduction of traffic load
o mitigate the load on custodial storages

e Optimization of data access for opportunistic resources
o e.g.sites extension, public cloud etc..

Important features:

o  Scalability

O  Easy maintenance
o Intelligent decisions

O  Modular solution

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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Architecture outlook

e Modularity

P o e e e o e e e e e e e e e e e e

. . . 1 Opportunistic Storage Service :
o factorized applications T |
i |
o cache on top of existing storages N [ Ceph/HDFS/I0Volumes/? ] !
o seamless scaling S P I P
o 1 Opportunistic Cache Service I
e Packaging o :
. 1 Xcache Xcache Xcache 1
o dockerimages L [ M ] |
o health-checks for self-healing ! |
. . 3 I_[ Redirector ]_ _
implementation :
e Plug-in SEEEEES e e S |
. i 1 |
o cache algorithms T [ WN ] [ N ] [ N ] |
o clustering data distribution o :
[ : Opportunistic CMS startd Service I

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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XCache in CMS

e Reduce latencies / Improve efficiency on remote data access
o enhance CPU efficiency and job success rate

e Reduction of traffic load
o mitigate the load on custodial storages

e Optimization of data access from opportunistic resources
o e.g.sites extension, public cloud etc..

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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Main features

e Scalability:
O local scaling: supporting cloud diskless CPU resources
O geographical scale: optimization of data access paths
e Easy maintenance:
O automated deployment and reduced operational efforts
O  self-healing
e Intelligent decisions:
O data movement based on predictive models

e Modular solution:
o easy to extend and pluggable

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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Local site scenario

e.g. opportunistic sites and remote site extension

- -

Remote

e Create a cache layer near cpu
STORAGE
resources

Bring it up on demand

Scale horizontally

STORAGE
Federate caches in a content-aware STORAGE
manner

o  redirect client to the cache that
currently have file on disk

STORAGE

1

I

1

1

1
1
1
1

Storage federation

STORAGE

STORAGE

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini



Distributed scenario

Geographically distributed cache

e The very same technology used on local
scenario can be geo-distributed

e Use ephemeral storages to enhance jobs
efficiency

[ J

Leverage high speed links to reduce the
total amount of allocated space

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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Site B Site C
Site A

| Client

| Client |

P

XROOTD
CACHE
REDIRECTOR

?

[ XROOTD STORAGE REDIRECTOR }
A CAs M

STORAGE STORAGE STORAGE

STORAGE STORAGE STORAGE
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Side note on future development

Data lakes model

° Lake-HN : central service of the data lake (namespace, metadata etc)
° Lake-DN : storing data and under the management of Lake-C

Lake-HN |

e Geo-distributed scenario is also part of a
“data lake” model

Lake-DN |

Lake-DN

Redirector

e creating a multi-site cache layer

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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Current state of the work

e Implemented local site scenario:
o Preliminary functional tests
o Local scale scenario test on cloud resources
m deployed on private and public cloud
m Setup automation
m CMS workflow test

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini



<R

Configuration and integration overview R

Example

sudo docker run -v $PWD/config:/etc/xrootd cloudpg/xrootd-proxy --config /etc/xrootd/xrd_test.conf |

e CMS Xcache Docker container has been setup to allow an easy

deployment A Docker Compose configuration file is
. available to orchestrate the
o passing a complete xcache config file % deployment of a local test instance.
O or setting caching parameter as arguments/env The stack contains a test remote
. server, a cache instance and cache
O healthcheck call |mp|emented redirector (preliminary docs here)

e then a variety of recipe for orchestration tools have been evaluated:
. . e [

o docker swarm, k8s and marathon services (redirector+caches) * ! Opportunistic Storage Service I

o config and scale services with compose-like recipes " ! - CephiHDFS/IOVolumes/? )

J R N A
E K = [
SwormT @orcmwomn kUbernetes o . 1 Opportunistic Cache Service

. . . WARATHON : [ Xcache ]—[ Xcache ]—[ Xcache ] |

e Open issue: authentication Do e : 1
o the cache server authenticate with remote storage through its ! {__Redrector J - :

own credentials T S

o no user cred forwarding o e Jww ) [w ) M

© no tOken aUthentication yet : Opportunistic CMS startd Service :
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Tests on local site scenario

e Tests with CMS analysis workflows
o DODAS service have been used
m same configuration for setup on different cloud providers

m automated deployment *

e Measurement and comparison of CPU efficiency with:
O remote data access

o cold cache (missing file)
o warm cache (file found)

>
PR
0%
S

VAVAY

docker maratHon MES

O

S
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First benchmark results cold cache
e 1cache server " / Warm cache
o Open Telecom Cloud Remote
o VM6 cores and 32GB RAM X
o 500GB HighlO flavor
o  Cache config: go

m prefetch: O

m block size: 512k

m origin: xrootd.ba.infn.it
® 4 WNs over the same internal network 002
e |O test with CMS analysis workflow

0.04

0.00 - - T T T T T
30 60 70 80 90 100

O 4 J O b S CPU efficiency [%]

o reading vertex associated tracks Everything behaves as expected.
information

o ad-hoc setup to enhance the network Remember that the amount of efficiency
latency effect gain is heavily workflow dependent

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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Cache management and monitoring

Search results for "xrootd" Clear search Create Group | Create Application

g‘f’a“, © MARATHON  Applications
Vg

docker maratHon MESOS

Scaling up and down cache servers —
dynamically —

% elastic 2 Grﬂfﬁ?" LaoS

The deployment provides an integrated
monitoring stack based on Elasticsearch
Beats and Grafana Dashboards

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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Planned activity: distributed setup f
%

|

National cache

redirector
NEXT STEPS

e get quantitative evaluation of cache
performance on local scenario
o different WFs, configuration, backend etc
e distributed scenario prototype (national level) %
o geographically distributed cache servers

o heterogeneous resources and providers

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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Summary

e Deployed a first prototype of XCache instance on private and
public cloud provider

e Started to measure performances on a benchmark workflow

e Recipes for automatic deployment of XCache on cloud
resources

e Do we find sinergies with similar activities in CMS ?

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini



<R

Istituto Nazionale di Fisica Nucleare

laaS overlay: DODAS integration

e Service for generating over cloud resources an

. S oK
on-demand, container based application deployment. 6 * o e

docker maratHon MES

>,
8
K]
»

VAVAVY

O

S

ANSIBLE

Specific DODAS
Extension
Integrated with Mesos and
i HPH Marathon
existing building
b | oC kS Token Translation
Service

Identity Access

NIonaCemEnt TOSCA (and Ansible)
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Tests on local scale scenario

What’s needed?

e XRootD cache packaging

o Docker container with different configuration
e Containers orchestration

o different solution available: docker swarm, k8s and marathon pods (redir+caches)
e Working at PaaS level

o tests with DODAS integration

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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CMS XCache packaging

A CMS Xcache Docker container has been setup to allow an
easy deployment
Example

sudo docker run -v $PWD/config:/etc/xrootd cloudpg/xrootd-proxy --config
/etc/xrootd/xrd_test.conf

A Docker Compose configuration file is available to orchestrate the
deployment of a local test instance.

The stack contains a test remote server, a cache instance and cache
redirector (preliminary docs here)

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini


https://github.com/Cloud-PG/docker-images/blob/xcache/xrd-proxy/README.md

J
swormT @orchestrotlon kUbernetes ‘ INFN
Orchestration o

MARATHON e e _

Opportunistic Storage Service

A variety of orchestration tool can be used for
the deployment:

|
|
|
1_ [ Ceph/HDFS/IOVolumes/? ]_
- _C [____- I

I Opportunistic Cache Service

1 =
1 |
. 1 1
[ <—|—[ Xcache ]—[ Xcache ]—[ Xcache ] |
) |
i |

|

|

e Docker swarm

o deploy and scale services on multiple nodes

|

|

using docker-compose recipes : I
: |_[ Redirector ] =

e Kubernetes or Mesos+Marathon :

o deploy and scale cache services containers as SN e ek -
[ 1 |

ods with a compose-like recipes ] I
P P P | [ WN ] [ WN ] [ WN ] |
| |
: Opportunistic CMS startd Service 1
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Testing cache with CMS workflows

AVAVA
VAVAY

S
we
S
O

.......................... docker maratHon MES

©)

S

e Afirst proof of concept has been developed

and first tests with CMS analysis workflows are ] e e L
! DODAS Cache Pod

1

|

1

1

o 1 1

for an automatic XrootD cache ] I

. | [ Xcache ]—[ Xcache ]—[ Xcache ]

1

1

|

ongoing.
o DODAS environment to provide a recipe

deployment on cloud resources

o utilize “any cloud provider” with almost :
zero requirements and a simple text : [ Redirector ]‘
configuration file. '

m Open Telekom Cloud (OS based)
resources used for the following
results

U |

-T T .71

=

pd

=

P4

=

P4
—_——————
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Cache in CMS: XRootD based cache

e CMS model can integrate XRootD caches (XCache) seamlessly
XRootD is widely supported at T1s and T2s

XCache is modular and pluggable

cluster many caches with a cache redirector

already under evaluation by various activities within WLCG

O O O O
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Cache keywords

e Cache metadata
o stores details about already downloaded blocks and all local accesses.
e Prefetching
o cache can issue advance read requests to reduce read latency
e Decision plugin
o allows users to configure which parts of namespace are to be cached.
e Cache purging
o e.g. high/low water mark algorithm to start/stop purging. Plugins for smarter algos should be
possible

Distributed Data Caches with XrootD - INFN and the future of Scientific Computing - Diego Ciangottini
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Clustering with xrootd cache redirector

| Client | Client |

P

e Through the XrootD redirection is possible
to federate caches in a content-aware

manner

o  redirect client to the cache that actually
have file on disk

REDIRECTOR
e Loadbalancing: If no cache has the
requested file, a round robin selection of
cache server is used (configurable)
e Overloading: If a file present on one cache [ XROOTD STORAGE REDIRECTOR 1
is requested by many clients, it can be 1 1 i
allowed to be duplicated on other servers

Client

XROOTD
CACHE

STORAGE STORAGE STORAGE

STORAGE STORAGE STORAGE
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Vision on caching for opportunistic resources

: Opportunistic Storage Pod

I
[ _[ Ceph/HDFS/? ]. —

r—=—-=—m—=-m=m=m==-mMm=-=-=-=-= i |

I Opportunistic Cache Ppd

\ |
. 1 1
| <—|—[ Xcache ]—[ Xcache ]—[ Xcache ] 1
) |
1 |
: I

|

|
1 _[ Redirector ]_ -
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XrootD cache mechanics: write queue

e Prefetched buffers are put to the beginning of the write From A-and M. Matevz tal ICEPP20T0

queue
o assume they will be needed at a later time so RAM

nonnnnn Ran

WriTE Queoe

should be vacated as soon as possible. T—U 5_\\)__”[
e Buffers obtained to serve outstanding read requests are -
put to the end of the write queue
o assume they will be needed to serve future read
requests so they should be kept in RAM as long as ‘lT>L°°\< ay Dlock Frow A
PreveTH Rean Re@uesT™

possible.

XRootd, disk-based, caching proxy for optimization of data access, data placement and
data replication. A. T. Bauerdick, L & Bloom, K & Bockelman, B & Bradley, Dan & Dasu, S &
Dost, Jeffrey & Sfiligoi, | & Tadel, A & Tadel, Matevz & Wuerthwein, Frank & Yagil, A. (2014).
Journal of Physics: Conference Series. 513. 10.1088/1742-6596/513/4/042044.
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XrootD cache mechanics: overview

Open File Storage Federation

1. Cold cache: remote open through storage Federation
2. Warm cache: opens file on local disk

Note: remote open is only initiated if/when a requested
block is not available in the cache.

Read File

1. Ifin RAM/disk=serve from RAM/disk [ B A }

2. Otherwise request data from remote and
a. serve it to the client
b.  write it to disk via write queue (this way data remains — Hit
in RAM until written to disk) — Miss
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<R

Istituto Nazionale di Fisica Nucleare

Dynamic On Demand Analysis Service

Dynamic On Demand Analysis * + @ +
Service (DODAS) is a solution

dOCer ANSIBLE
developed n the ConteXt Of To support user tailored To automate configuration and deployment of To define input parameters and
computing environments custom services and/or dependencies customize the workflow execution

INDIGO-DataCloud project.

DODAS User Data Analysts

It is a service for generating over /‘\ .
cloud resources an on-demand, Home 1dP™
container based application

deployment.

That includes solutions that spans - ‘_ ! public Cloud
from a standalone HTCondor . i
batch system to a Big Data
processing cluster

1\ Executor Executor
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XDC scenario

Request

Data

INFN

Istituto Nazionale di Fisica Nucleare

Lake-C : The central service of the data lake, holding namespace, metadata and making scheduling
decisions. The “head node”.
Lake-MS : A service storing data and under the management of Lake-C. The “disk node”.

-y
P S
\
Name Name \
Space / Space \
I
)4 I !
” \ R(-,jquest
Lake-C
v Lake-Cache
\
Lake-MS
Lake-MS

Federator

Request
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Work overview - Area of involvement

Working in the context of 'INFN Fellow in Scientific Computing’
since mid October 2017 at Lecce station. W - qUCII'kS

 Collaborators: Stefania Spagnolo, Gabriele Chiodini

Area of interest: application and development of Machine
Learning (ML) strategies to physics analysis at the LHC and ATLAS W/

Exotics searches for heavy resonances decaying to dibosons with
semi-leptonic final states

Z — |, ee

« ZV = 2qq (V = W,Z and £=e,p) with 3 main classes of signal models:
spin-0 (Higgs), spin-1 (W’) and spin-2 (G*)

» Both boosted and resolved topologies are used to maximize the
sensitivity in the intermediate and high mass regions.

The current signal selection efficiency for the llgg analysis is 7 qUCII'kS
around 0.4 for the merged selection (at 1TeV mass)

» Can we do better than that at the same background rejection?

Try to use ML and Deep Neural Networks(DNN) to improve ~  § -~~~
sensitivity achieved with cut-based analysis. Signal/Background G*
classification problem

Develop parameterized DNNs to tackle problem of interpolating Z = UM, ee
the DNN results to untrained mass points

May 04, 2018



Deep Learning for S/B selection optimization in exotics

searches

* Build DNNs using open source frameworks,
ML libraries, data handling software

* Keras, Theano, Tensorflow, Pandas, Scikit-learn, Numpy,
SciPy

* Train DNNs with variable sets of inputs and
architectures

* Basic kinematic inputs and/or high level features
(e.g jet substructure)

* Investigate combinations of number of neurons,
hidden layers, activation functions, learning rate...

QA
e
«
0;0

%3
N
X
N
A
‘;

=\

input layer

tput layer

X
o

hidden layer 1 hidden layer 2

()
mass, pt

Input Leptons Leptons Fatjet pt,
Variables pt, E eta, phi E

Set 0 X
Set 1 X
Set 2 X

Fatjet
eta, phi

Fatjet
D2,C2

' Preselection applied

* Estimate performance metrics for the DNN for each combination <[‘3 Number of leptons = 2 (ee or pip)

* ROC curves, Area Under Curve(AUC), model accuracy...

| Number of fat jets >= 1 (highest pT jet
selected)

« Deal with overfitting using recommended techniques (e.g dropout, K-Fold cross-validation)

« Comparison with cut-based analysis at specific signal efficiency/ background rejection working points

 Preliminary: significant gain in merged signal efficiency @ same background rejection wrt cut-based

analysis

 Future: try Recurrent Neural Networks to allow dynamic number of inputs and expand to resolved

analysis.
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Parameterized DNNs for high-energy physics

* Problem: Since the mass of the resonance is unknown how to best train a DNN when we want to interpret the

observed data with a hypothetical signal at many different mass points? Avoid discontinuities in limit setting.

« Using a single parameterized DNN which tackles the full set of related tasks (based on idea in Eur. Phys. J. C
(2016) 76:235)

* Include as input feature one or more parameters that describe the larger scope of the problem (e.g new particle’s mass)

* A parameterized classifier can smoothly interpolate between masses and replace sets of classifiers trained

at individual values.

e Benchmark in ligq analysis already seems promising: Comparison of a parameterized DNN trained on ALL

X1

X2

X1

X2

6=0,
Eur. Phys. J. C (2016) 76:235
fa(x1,x2)
7
X1
0=0s X2
fo(x1,x2)

flx1,x2,0)

Signal efficiency

1.0

0.8 -

©
o

©
N
T

0.2

mass points except a single point and a DNN trained on ALL points yields same results.

- L e e o o

By, =750
B m, —1000 .

Eur. Phys. J. C (2016) 76:235

—— Parameterized
@ @ Fixed

0.2 0.4 0.6 0.8 1.0
Background efficiency
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Summary

* Working since mid October 2017 at Lecce on ML techniques for physics analysis

* Current research focused around the use of DNNs in ATLAS searches for heavy
resonances decaying to dibosons

1. Signal and background event classification with Deep NN to maximize sensitivity of
cut-based analysis

2. Development of parameterized DNNs to interpolate the DNN results across the

mass range and ease the interpretation of observed data to several different
hypothetical signals

e Results up to now are very encouraging although preliminary.

e Future goals:

e Completely cover the llgqg analysis using a DNN approach

* Expand to different NN architectures depending on the problem (e.g RNN, Adversarial
NN)

* If time allows look into anomaly detection techniques for general BSM searches.

May 04, 2018
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Who am 1?

PHYSICAL REVIEW D 97, 072013 (2018)

Editors’ Suggestion

Test of lepton flavor universality by the measurement of the
B’ - D*~z*v, branching fraction using three-prong z decays

- Benedetto Gianluca Siddi

- Started my PhD in Ferrara in 2015 working on _ ueGhe
Lepton Flavour Universality Tests

The ratio of branching fractions R(D*~) = B(B® - D*"t*v,)/B(B® = D*"y*v,) is measured using
a data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies
of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb~". The 7 lepton is reconstructed with three
charged pions in the final state. A novel method is used that exploits the different vertex topologies of
signal and backgrounds to isolate samples of semitauonic decays of b hadrons with high purity. Using
the B - D* 7'z z" decay as the normalization channel, the ratio B(B® — D*"7'v,)/B(B" —
D*n*x~x") is measured to be 1.97 +0.13 4 0.18, where the first uncertainty is statistical and the
second systematic. An average of branching fraction measurements for the normalization channel is used to
derive B(B" - D*"z'v,) = (1.42 + 0.094 + 0.129 + 0.054)%, where the third uncertainty is due to the
limited knowledge of B(B® — D*~z*z~xz"). A test of lepton flavor universality is performed using the
well-measured branching fraction B(B” — D*"u"1,) to compute R(D*") = 0.291 +0.019 + 0.026:

- Topic of my PhD thesis

0.013, where the third uncertainty originates from the uncertainties on B(B® — D*~z "z~ z") and B(B" —

- Two articles (PRD and PRL) came out from L
the analysis

PHYSICAL REVIEW LETTERS 120, 171802 (2018)

I. INTRODU Measurement of the Ratio of the B® — D*~z*y, and B® > D*~p*y,
In the Standard Model (SM) Branching Fractions Using Three-Prong 7-Lepton Decays

flavor universality (LFU) is an a R. Aaij et al.”

- In the meantime started to work on the S

implementation of a Parametrized Fast
Simulation option to be integrated in the LHCDb
Simulation framework

- PhD thesis defended in February 2018

-+ INFN Fellow in scientific computing in Ferrara
from January 2018

+ Continuing the work on FastSimulation and
future upgrades for LHCb and simulation part
of TimeSpot project

B. Siddi

INFN Ferrara
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ments, are compatible with 1
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Since uncertainties due to h:
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The ratio of branching fractions R(D*~) = B(B” - D*~t*v,)/B(B" — D'~ 1) is measured using a
data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies
of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb~!. For the first time, R(D*
determined using the z-lepton decays with three charged pions in the final state. The B® — D*~z*y, yield is
normalized to that of the B® — D*"z*z~z" mode, providing a measurement of B(B’ — D*"t%v,)/
B(B® = D*"z'z ") = 1.97 £ 0.13 £ 0.18, where the first uncertainty is statistical and the second
systematic. The value of B(B® — D*~ztu,) = (1.42 £0.094 £0.129 £ 0.054)% is obtained, where
the third uncertainty is due to the limited knowledge of the branching fraction of the normalization
mode. Using the well-measured branching fraction of the B” — D*~u*y, decay, a value of R(D*") =
0.291 £ 0.019 £ 0.026 £ 0.013 is established, where the third uncertainty is due to the limited knowledge

of the branching fractions of the normalization and B® — D*"p*v, modes. This measurement is in
agreement with the standard model prediction and with previous results.

DOI: 10.1103/PhysRevLett.120.171802

In the standard model (SM) of particle physics, flavor-
changing processes such as semileptonic decays of b
hadrons are mediated by a W boson with universal coupling
to leptons. Differences between the expected branching
fraction of semileptonic decays into the three lepton
families originate from the different masses of the charged
leptons. Lepton universality can be violated in many
extensions of the SM with nontrivial flavor structure.
Since uncertainties due to hadronic effects cancel to a
large extent, the SM prediction for the ratios between
branching fractions of semitauonic decays of B mesons
relative to decays involving lighter lepton families, such as
R(DY) =B(B® - DW=tty,)/B(B® - DYt y,) and

Collaborations in final states involving electrons or muons
from the 7 decay. The LHCb Collaboration published a
determination of R(D*7) [12], where the 7 lepton was
reconstructed using leptonic decays to a muon. The first
simultaneous measurements of R(D*~), R(D*’), and 7
polarization, using 7 decays with one charged hadron in the
final state, has recently been published by the Belle
Collaboration [13]. All these measurements yield values
that are above the SM predictions with a combined
significance of 3.9 standard deviations [14].

This Letter reports the first determination of R(D*7)
using the three-prong 7t -7tz z'D, and " —
a*a~ata0, decays. A more detailed description of this
oo i~ Pef. [15]. The D*~ meson is

Y~ = D= K*z™ )z~ decay
consists of six charged tracks;
‘his analysis. A data sample of
irresponding to an integrated
‘ed with the LHCb detector at
=7 and 8 TeV is used.

lental systematic uncertainties,
/ is chosen as a normalization
asurement of the ratio

)

1
— 3ap,) + B(z* — 322%,)"

M

, for the LHCb Collaboration
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FastMC: Integration of Delphes in LHCb simulation
framework

The role of Monte Carlo simulation in high energy physics experiment is to mimic the behaviour
of a detector to understand experimental conditions and performance

Systematics uncertainties in most of the analysis are dominated by the MC
Large MC samples — large resources
New simulation options needs to be investigated

1015
Pledgeable —— Sim at 50% of data
] = Sim at 100% of data FastSim at 100% of data

CPU resources [HS06.seconds]

10" - ”im speed assumed to
] be 1/10 of FullSim
:  , = |
1013 T T T
2021 2022 2023
Year
Requirements for a FastMC: e R R
Two orders of magnitude faster than GEANT4 ooal
Less CPU consuming o025} |
Reconstructed particle information in order to use the standard LHCb oez- + +
tools for analysis 0015 §
As close as possible to the full simulation oot f
0.005;— f
B. Siddi : C )
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Fast simulation with Delphes in LHCb

Random number reset
Pile-up number determination

(veto empty events)

o
o
.ﬁ
-
c o
g £
()]
w Q

Signal
Generation in t=0
/Event/Gen/HepMCEvents

Generation ->
G4 Primary Vertex

Simulation inside the detector

Fill MCParticle/MCVertex/
MCHits in /Event/MC/Particles

Reconstruction

B. Siddi HHCh
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Delphes

Delphes + modifications for LHCb, has been integrated in LHCb simulation framework Gauss.
It takes in input particles generated from the generator part of Gauss,

It writes as output objects in the format necessary for LHCb analysis framework.
No lower level reconstructed objects!

sl Patinlos

///gh;lmﬂa.hw .r('hrgclﬂnlnntlilfcicu-y ovarped Hadrons (‘hur_.':cdlialanlmmlunSncmmg\] harpedHadrns Merge a"
— e ‘ \ smeared
cledrons ElectronEfliciency ) e ElectronEncrgySmearmg ) . TrackMerger i
A Alciency - e ’b) mMuons . tracks in a
— single particles
\ M soaFfficiency MusaMomeunSy carng container
1 stableParticles
Propagator l Delphes workflow
inside
HepMC -
Rezder constant Efficiency Momentum
magnetic field smearing smearing for
module different

particles types

Working on implementing relevant quantities of reconstructed tracks, e.g., covariance matrices, fit y2, ghost
probabilities

Work to be done :

Particle Identification probabilities, calorimeter response for charged and neutral particles.

Finalize the output of the objects filled with the information needed to be used in the LHCb analysis
framework in order to perform physics analyses

Review the code in order to make it thread safe and multithreading to be used in the new LHCb Framework.

B. Siddi
INFN Ferrara
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PAST ACTIVITIES AND RESPONSIBILITIES

» Research activity within the CMS experiment

> Analysis of the date collected with the CMS
experiment at LHC

» Electroweak physics: measurement of the Z
boson production cross section through its
decay to a tau lepton pair

» Search for a Standard Model Higgs boson
produced in association with a W vector
boson

» Study of the physics objects in CMS

» Study of the muon reconstruction and
identification performance in CMS

» Study of the hadronic tau reconstruction and
identification performance in CMS

> Activities concerning the detectors
» Study of the RPC performance in CMS

» Upgrade of the CMS Muon System forward
region with new detectors based on GEM
technology

» Phase-2 upgrade of the Muon System

(

|

' > Responsibilities within the CMS experiment

» 2010 - 2012: Responsible for the study and
monitoring of the RPC efficiency (L3)

> 2014 - 2015: GEM Reconstruction and
Validation Coordinator (L3)

> 2014 - 2017: GEM Software and Online
Contact for Upgrade (L3)

» 2015 - 2017: GEM DPG Coordinator (L2) 1:

» 2016 - 2017: Muon Phase-II Simulation
Coordinator (L3)

» 2016 - 2017: Contact person between Upgrade
Studies Group and CMS Offline & Computing
group (L3)

» 2016 - 2017: Link person CMS - Bari Tier2

> Development and integration of the software

needed for the Phase2 Muon Upgrade studies |
(muon reconstruction and identification, validation
tools, study of the neutron background and muon
perfomance...)




CURRENT ACTIVITIES

In the context of my INFN “fellowship” regarding the R&D on scientific computing for
innovative solutions for the LHC experiments, my activity is twofold:

1. Parallel programming on GPU: I am collaborating with the “Future tracking” group

» The group takes care in CMS of developing a demonstrator for the pixel tracking on
GPU and all the other infrastructures needed to exploit at best the available hardware
resources (heterogeneous computing)

» So far I contributed to the implementation on GPU and to the optimization of
the first step of the chain: the unpacking of raw data (Raw2Digi) for the pixel
detector (details in the next slides)

2. Machine learning application: I am collaborating with the “ML Muon” group

» The groups take care inside the CMS Muon community (DT, RPC, CSC, GEM) of
developing innovative tools for monitoring the performance of the CMS Muon System
and the detection of its anomalies

» Currently I am working on the development of a monitoring tool based on ML
techniques for the DT Trigger System

» On long term this R&D work is meant to lead to a tool that can be run at different
stages of the L1 Muon Trigger (details in the next slides)






THE CMS TRIGGER SYSTEM

» CMS Trigger System

» Reduce input rate (40 MHz) to a data rate (~1 kHz) that can be stored,
reconstructed and analyzed Offline maximizing the physics reach of the

eXperiment 250 CMS Preliminary 13 TeV
. E - 220ms
> Level 1 Trigger + F _ty =220
£ 200 *4
» Coarse readout of the Calorimeters and Muon detectors g : /
8 150 ¥
» Implemented in custom electronics (ASICs and FPGAs) & * ]
(0] - .
.. . g 100
» Output rate limited to 100 kHz by the readout electronics ¢ f : :
° . 50__ . .- ./
» High Level Trigger F LT
. . T AT AT N AT AT PR PR RN R
» Readout of the whole detector with full granularity % 2 4 6 8 10 12 14 16 18 20

average inst. luminosity x10* [Hz cm™

» Qutput rate limited to an average of ~1 kHz by the Offline resources

» Today the CMS HLT online farm consists of ~22k Intel Xeon cores
» The current approach: one event per logical core
» Pixel Tracks cannot be reconstructed for all the events at the HLT
» This will be even more difficult at higher pile-up

» Combinatorial time in pixel seeding O (pileup!) in worst case



THE CMS PIXEL TRACKING AND THE PATATRACK PROJECT

» Solution (objective of the “Patatrack" project in CMS):

» Develop a hybrid CPU-GPU application that takes
RAW data coming from the pixel detector and gives
Tracks as result

Pixel Tracking
L

Raw to Digi

» Trigger average latency should stay within 220ms

» GOAL: demonstrator ready by 09/2018 to run parasitically
at the HLT farm (in order to be included for Run3 and then
hopefully Run4)

Hits - Pixel Clusterizer

» Ingredients:
» Massive parallelism within the event o
CA-based Hit Chain Maker (quadruplets)
» Avoid useless data transfers and transformations

» Simple data formats optimized for parallel memory access Track Fit

» Renovation at algorithmic level

» My contribution to the project is on the implementation
on GPU of the first step of the pixel tracking chain:
Raw2Digi step



RAW2DIGI ON GPU: STATUS OF THE IMPLEMENTATION

> Main goal: reproduce what the CPU code does with a Upload the processed
simpler and parallel implementation (CUDA) and try to Cabling Map on the GPU
speed up as much as possible the processing l
» A fully working implementation of the pixel raw to digi [Read thj F:aW '"PUtJ
ata

algorithm on GPU is ready

v
> It unpacks x, y pixel coordinates and the corresponding Transfer data from

adc count host to device
asynchronously

» [t unpacks also FED errors

> It is already integrated in the CMS framework analysis Launch the
RawToDigi Kernel
» How GPU parallel architecture is exploited l
» Each FED is assigned to a block of threads Launch cluster
kernel with output
» Words coming from a FED are saved in an array, copied of RawToDigi as
. i t
to the GPU memory and assigned to the threads of the P
block where they are unpacked in parallel FFDs -> RawToDigi Grid
» Each thread executes the same set of instructions 0 T 2 3 MAX FED

(kernel) on each word 512 Theads

0t t2

> Optimization of the memory usage and memory
transfers for speeding up the algorithm (details in the ggg """ g
backup slides)




RAW2DIGI ON GPU: STATUS OF THE IMPLEMENTATION

» The GPU results have been validated

against the CPU algorithm using the E’:";e""y vS Py
official validation plots 2 |
. < ST SOOI SRS S
» No differences between the two E i :
implementations :|E> 08_— ........................... ............
> We started to study the performance of 06‘_...‘«*..+,.+++++f* """""
the GPU with specific tool provided by ! . S } ............
NVIDIA R § +
02__.~ ............ ............
» More optimization is possible R .1 |
.9 I.£- T l .l.“.: ] l .:
> Reducing the time spent in the host- & | ||“|”||||||§||| :
: . /8 TR
device and device-host memory copy : |“””””||;|||
"o 1 10

» Optimizing the kernel

» Maximizing the concurrency

fake+duplicates vs P,

~ 0.5

Take+aupiucales raie vs p

o
N
[$)]

................................

................................

o
© w ©
w G b

—=— DQM_CPU
—— DQM_GPU

> We discovered almost all the time is spent on the CPU

» We are also re-engineering the remaining part of the serial code (a.k.a. host code) to improve the performance

and reduce the CPU execution time

17.812s

17.813s 17.814s

17.815s 17.816s

S

CPU execution time

PixelDigisCPU

iPixelDigisGPU

GPU execution time

17.821s




CONCLUSIONS AND NEXT STEPS

» The work on the R2D step on GPU is completed
» More refinements and improvements are possible, but those are left for the future

» NEXT: develop a memory arena (in CUDA)

» A memory arena is simply a large, contiguous chunk of memory that is allocated once and
then used to manage memory manually by handing out smaller chunks of that memory

» This tool will be used to manage dynamically and efficiently the memory needed for
saving the doublets used by the track seeding algorithm (for the quadruplet generation),
since its number increases dramatically with PU

NQ‘&\\ .X'x E’ f/ /// ./:
Sswzegl

< = =

» More infos about the Patatrack project at the link below:

> https://patatrack.web.cern.ch/patatrack/




MACHINE LEARNING
FOR THE CMS DATA
QUALITY
MONITORING



CMS DATA QUALITY MONITORING (DQM) SYSTEM

> A critical asset to guarantee a high-quality data for
physics analyses (online and offline) 5 R o

8 ﬁ“i—"
g-g Raw

Relval DQM | Tier0 | e
~T1
i @P5 Express Fromet [ Reco

» Online DQM assess data goodness and identifies
emerging problems in the detector

2

. .. . _ g
» Data with poor quality is flagged by eyeballing DQM i l 5 : g
GUI and comparing a set of histograms to a reference Relval 3 Online”  Offfne Offline
q 1 DQMGUI £ DQMGUI  DAMGUI DM GU
good sample @ @ o @ m
s Validators Online shifters_ ’ PWF..‘.GR...‘:;rtIflcatlon Experts
> Pr Oblems Wlth current StratngI (DPG-POG-PAG) (DPG) (DPG) (DPG-POG)
. . . . VAL Online Run - Offline RunOffline Run
» Delay: human intervention and tests require collecting 08 Registry |~ Registry | Registry
. . . end product: end product:
sufficient statistics Validated software Certified data "

» Volume budget: amount of quantities a human can
process in a finite time period

» Human driven decision process: alarms based on
shifter judgment

» Changing running conditions: reference samples
change over time

» Manpower: the effort to train a shifter and maintain
instructions




A TOOL FOR MONITORING THE L1 BARREL TRIGGER WITH ML

» GOAL: Use ML/DL techniques for developing an
innovative tool for the L1 Barrel Trigger rate

monitoring in CMS Starting the project from the DT system!

. . ENDCAP TRACK OVERLAP TRACK BARREL TRACK
» To be run at the level of TwinMux inputs (DT ~ FINDERS | FINDERS | FINDERS
and RPC inputs), TwinMux output and BMTF B RPC

input

» The algorithm must:

DETECTORS
AND SPLITERS

» correlate trigger rates and instantaneous —— =4~ -4 —

luminosities coming from CMS database I 5

» identify chamber(s) with rate problem(s) § 2
» correlate different sources of information to o -

make a diagnosis of the issue, e.g.: %‘ §

» all rates up to TwinMux output are in line g §

with expectation for a given inst. lumi, but
BMTF input is crazy = suspect
communication issue between TwinMux Details about the TwinMusx and BMTE

Output and BMTF algorithm in the backup slides

» Consumer: online operation teams

12



Simple Neural Network
@\

Deep Learning Neural Network

ALGORITHMS

® 6 6 06 06 0 06 0 0 0 0 06 0 0 0 0 0 O 0 O 0 O 0 O O O O O O O O O 0 O 0 O O O O 0 0 0 O 0 0 O 0 O 0 O O 0 O 0 O 0 0 O 0 0O 0 0O 0 0 0o o o .lnPUtLayer

© Hidden Layer @ Output Layer oo o o

Compressed Data

> Input dimensionality: 10 features e

ot @

¢ o—

> [system, wheel, sector, station, rate, rate uncertainty, 9 =

inst. lumi., lumi/rate, uncertainty on ratio] mushroom @ Leamed
» Building a deep neural network (DNN)
. . Layer (type) Output Shape Param #
» Four hidden layers with 32 neurons F———— o—— -
flatten_ann (Flatten) (None, 10) 0
» Trying an autoencoder (AE), i.e. a semi-supervised Gerse_anm (pense) (vene, 32 e
h dense_ann2 (Dense) (None, 32) 1056
approac dense_ann3 (Dense) (None, 32) 1056
. . . dense_ann4 (Dense) (None, 32) 1056
» Only the sample with normalies is needed for the e o) e, T T

Total params: 3,586

training Trainable params: 3,586

Non-trainable params: 0

» The network learns the features of good data in a

Autoencoder Architecture:

processs of encoding-decoding Tayer (eype) Gutput shape aran #
input_29 (InputLayer) (None, 10) 0
> After that it should be able to re-reconstruct with some =~ o2 ®emee) (vene, 20) o
dense 282 (Dense) (None, 9) 99
preCISlon Only the gOOd data dense 283 (Dense) (None, 8) 80
dense_284 (Dense) (None, 7) 63
> Bottle neck leads to a dimensionality of 6 (from 10) dense 765 (Bense) (Rene ) =
dense_286 (Dense) (None, 6) 42
» Testing on a DT known issue: fonee B (hemee oner ”
dense_288 (Dense) (None, 8) 64
. . dense_289 (Dense) (None, 9) 81
> Trigger board W+1, S4, MB3 is permanently oft e ser e e —
Total params: 736
Trainable params: 736 13

Non-trainable params: 0




Distribution of scores: DNN (4 layers)

mm Normalies

104 Anomalies

PERFORMANCE

.......................................................... g >
glO2
» DNN shows very good separation between
L L] 10]l
normalies and anomalies
> The DNN is able to classify in the correct way a L1 11 . | , . L1
0.0 0.2 0.4 0.6 0.8 1.0
. . . Score
the normalies and anomalies in the test sample
Distribution of scores: AE
10¢ :
> Tried some options for the number of layers: = hnamaics

good results are reached already with 2 layers o

» The classification with the AE is not clear as
the DNN, anyway it is possible to fix a WP to
recognize:

[
o
N

Frequency

10t

» 100% of the true positives with a 1% of false
positives

10°

Score

» AE approach seems promising: RoC

1.0

» no need to provide labels for anomalies

0.8

> it can spot unforeseen problems

o
o

> Tried also some other classic approaches, but DNN
and AE provide the best performance (see backup o

M 0.2 ~—— SNN, AUC: 0.9155
SlldeS) —— DNN (2 layers), AUC: 1.0
—— DNN (3 layers), AUC: 1.0

—— DNN (4 layers), AUC: 1.0
0.0 e *  DNN working pgint

o
>

True positive rate

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate



FURTHER ALGORITHMS: GOING COMPLETELY UNSUPERVISED

> Moving to completely unsupervised algorithms is
the best approach in order to detect all the possible
anomalies without specific trainings in general
performed over a limited number of anomalies that
will never cover all the possible cases

» Local outlier factor (LOF)
> Based on k-NearestNeighbor algorithm

» It detects all the known anomalies, but with too
many false positives (10%):

» < 2 FPs per LS, but still too much

> Details here: http://scikit-learn.org/stable/
modules/outlier detection.html and in the backup

SlideS 102

> Looking into clustering algorithms (like K-Means
clustering)

Frequency

> Started working on it but the method and the
results need to be better understood

> Details here: http://scikit-learn.org/stable/
modules/clustering.html#k-means and in the 100

backup slides

Normalized confusion matrix
[[ 0.90299202 0.09700798)
[ 0. 1. 11

Confusion matrix LOF, with normalization

1.0

normaly

True label

anomaly

0.2

» ,&i
&
S &
Predicted label

Distribution of false positives: LOF, 306125

mm False positives
True positives

500 1000 1500 2000 2500 3000
Average LS


http://scikit-learn.org/stable/modules/outlier_detection.html
http://scikit-learn.org/stable/modules/outlier_detection.html
http://scikit-learn.org/stable/modules/clustering.html#k-means
http://scikit-learn.org/stable/modules/clustering.html#k-means

CONCLUSIONS AND NEXT STEPS

» DNN is performing very well, but it is strongly specialized on the issue it is trained on

» AE is also performing very well and it is promising for the detection of generic/unknown
issues with a reasonable level of false positives

» NEXT: Test DNN and AE on further DT anomalies

» Unsupervised learning is desirable because it can offer the chance to spot unforeseen
problems, but it needs to be studies and understood better

» NEXT: Work on other algorithms, mainly unsupervised
» NEXT: Extend the R&D project

» Extend the development to RPC in order to be able to check completely the TwinMux
inputs

» Extend the development to the TwinMux output

» Cross the two informations and create a standalone monitoring tool able to
determine the origin of the anomalies

» The python scripts to access the database and the jupiter-notebook used to train the model can be
found here:

> https://github.com/calabria/DTTriggerRateMonitoringWithML

16
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FUTURE CHALLENGES FOR HL-LHC

> Higher instantaneous luminosity and consequently
pile-up (up to 200 interactions per BX)

> Higher event size

» More time needed for the pattern recognition
algorithms

» Increasing computing power both for the online
selection and for the oftline reconstruction

» How we managed in the past:
> Increase computational and storage resources

» There will not be financial resources to support
this!

> More improvements will have to be found in
algorithm speed, by a combination of smarter
algorithms and by making better use of parallel
architectures, for instance:

» GPU accelerators and massive parallel
programming

» Machine learning algorithms

> Performance tuning and software engineering

* Peak luminosity =Integrated luminosity

6.0E+34

1 = 3500
5.0€+34 G sl o | 3000
2500
p— 4.0E4_34 ........... - v v
& 00‘\ ! 0’(\1 o‘\fb 2000
£ ® — B ol &
~ 3.0E+34 U )
2 T s 1500
v
o
£ 2.0e+34 L R e
£ : . 1000
= |
= o
1.0E+34 ” 500
Y . _/
2 s |
0.0E+00 * - - 0
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Year
*® Peak luminosity ==Integrated luminosity
8.0E+34 I T =
L .
7.0E+34 ' "
6.0E+34 .
:: 5'0E+34 bevovgreved - ... :, - Y
o P
£ ATy N o <
= 4.0E434 ) vy V) B )
> - - — —
@ ¢
O 3.06+434 3 e
£ 1500
£
3 2.0E+34 g eTe = 1604
: . :
1.0E+34 = e ....‘: ..... .....;.....:L.. 500
L . : s
0.0E+00 —_— L = 0

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Year

Integrated luminosity [fb]

1

Integrated luminosity [fb

|

| LHC design | HL-LHC design | HL-LHC ultimate |

peak luminosity (10** cm 2s 1) 1.0 5.0 7.5
integrated luminosity (fb 1) 300 3000 4000
number of pileup events ~30 ~140 ~200
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THE CMS (PHASE-1) PIXEL DETECTOR

> n-on-n silicon sensor thickness: 300 pm  cusormscron

Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS
Overall diamets m (100x M channels
Overall length 128.7 Microstrips 1 ~200m? -9.6M channels
° ° Magnetic field  :3.8
) ° SUPERCONDUCTING SOLENOID
1 x e SlZe. x | l I I I f— Niobium titanium coil carrying ~ 18,0004
> e —_— MUON CHAMBE
7 - . Barrel: 250 Drift Tl 0 Resistive Pl
0 rip, 576 Resist
» four barre dyers Instead or current three N sowm

Silicon strips ~16m* ~ 137,000 channels

/| FORWARD CALORIMETER
Steel + Quartz fibres ~2,000 Channels

» 3-disk forward system instead of current
2-disk

» Total Modules: 1856 (1184 + 672)
> Total Pixels: 124 million (79 M + 45 M)

upgrade ~15 outer rings
upgrade n=0 n=05 n=10 n=1. n=2.0

4 barrel layers / / ad n=2.5

/ / Jer rings

current
3 barrel layers

current \

n=0 n=05 n=10

19



RAW2DIGI ON GPU: STATUS OF THE IMPLEMENTATION

> Some details about the GPU implementation:
» New GPU-friendly cabling map improves speed

» A GPU-friendly cabling map (basically a LUT) is generated and updated if it changes
in the next event and copied again to the GPU memory

» Errors are treated and unpacked as in the serial code

» All the functions to check the status of the pixel rocs and recognize the type of error
have been implemented as device functions (part of the kernel)

> The possibility to exclude bad pixels and specific regions of the detector is also
implemented

» To this end the cabling map was also extended with the list of modules to unpack
and the list of pixel bad rocs for the error unpacking

> Optimized memory reserved for each kind of device array

» Optimized memory transfers packing the digi informations on the device and
unpacking on the host avoiding to copy several arrays

» Using a GPU-friendly vector class instead of several arrays for the error

unpacking 2



THE CMS LEVEL-1 TRIGGER BARREL TRACK FINDER

CMS DETECTOR STEEL RETURN YOKE
» The muon barrel architecture groups the muon detectors in 12 v dametr 150m a Pt o 6 ke

Overall length ~ :28.7m Microstrips (80x180 gm) ~200m? ~9.6M channels
wedges. Each wedge has five sectors and each sector, 4 DT detectors et ‘
and 3 RPC |

SUPERCONDUCTING SOLENOID
Niobium titanium coil carrying ~18,000A

MUON CHAMBERS
Barrel: 250 Drift Tube, 480 Resistive Plate Chambers
Endcaps: 540 Cathode Strip, 76 Resistive Plate Chambers

> The front-end electronics record muon primitives and send them to
the TwinMux which concentrate data from different sectors. The
TwinMux combines DT and RPC to create more reliable primitives J
which are called superprimitives. Then it fanout the data to the barrel \
and the overlap track finders N |

y PRESHOWER
= Silicon strips ~16m* ~ 137,000 channels

FORWARD CALORIMETER
~ Steel + Quartz fibres ~2,000 Channels

» The BMTF receive muon primitives from the DT and RPC detectors ELECTROMAGNETIC

CALORIMETER (ECAL)

from the Barrel area of CMS (|n|<1) 760 cnlating PO, il

> The data primitives give muon coordinates, bending angle as well HADRON CALORIMETER (HCAD
as quality bits that are used to evaluate the inputs

i 2

. . . ENDCAP TRACK OVERLAP TRACK BARREL TRACK
» The BMTF algorithm use the information to represent muon FINDERS | FINDERS | FINDERS

tracks and calculate physical parameters like the transverse g Tl
momentum (pT), the total bending angle the quality of the track
and the track addresses

DETECTORS
AND SPLITERS _

» Each BMTF processor search for muon tracks in one wedge (own
wedge) which may go also to the neighbor wedge (left and right)

MUX and
FANOUT

» The algorithm runs in parallel for 2 muons in 6 sectors which
correspond to 1 wedge (the sectors are 5 but the logic splits the
middle to two). In the barrel there are 12 wedges. So it can find 2
x 6 = 12 muon tracks

REGIONAL
PROCESSORS

» Every BMTF processor has a sorting logic which give the best 3

muons of the 12 possible tracks 21



A SIMPLE TEST CASE FOR DT TRIGGER RATE

> Testing some simple neural networks on a known issue:
> Trigger board W+1, S4, MB3 is permanently off

> A supervised approach needs samples of normalies and anomalies for the training:
> Take runs certified as “good” runs
> Anomalies come for free in some sense, since the trigger board is always oft

> One can build the sample of normalies by exploiting the symmetry of the system and
forcing the rate to the one of the symmetric trigger board, in this case: W-1, S3, MB3

> [system, wheel, sector, station, rate, rate uncertainty, inst. lumi., lumi/rate, uncertainty on the ratio]

Normal chimney:

[2, -1, 3, 3] 4032.193,(|53.42, 17987.064, 173.3344, 4.4609, 0.0731]
Anomalous chimney:
(2, 1, 4, 3,13071.4035,140.4563, 17987.064, 173.3344, 5.8563, 0.0956]

» Number of normalies and anomalies considered in this exercise
> Very few faults, so anomalies and normalies are strongly unbalanced
» Weighting properly anomalies and normalies
> 20% of the data are reserved for the test

22



METRIC FOR PERFORMANCE EVALUATION

» TP (true positive) is a correctly classified fault, while TN (true
negative) is a correctly classified normal observation

» Sensitivity TP/P: to keep high, i.e. maximize detection
» Specificity TN/N: to keep high, i.e. minimize false alarms
» Fall-out FP/N (1-Specificity): to keep low, i.e. minimize false alarms

» Receiver Operating Characteristic (ROC) curve and its Area Under
Curve (AUC):

> illustrates the performance of different classifiers when
discrimination threshold is varied

» Deciding on the penalty of a false alarm versus false negative (or
upper-bound false alarms) will be an essential in final implementation
steps

23



True positive rate

COMPARISON WITH SOME BENCHMARK ALGORITHMS

> Statistical: variance (probably not the best for facing this kind of problem)

» QOutlier detection algorithms:

> Details : http://scikit-learn.org/stable/modules/outlier_detection.html

» Classical machine learning: OneClassSVM (SVM) (need to perform a complete grid search for best parameters)
» Unsupervised: Isolation Forest (IF)
> Supervised nearest neighbor classifier (KNN): it performs very well but it is still a supervised approach

> Details: http://scikit-learn.org/stable/modules/neighbors.html#classification

> DNN and AE still remains the best algorithms Nornalized confusion matrix
([ 1. 0.]
[ 0. 1.]]
Confusion matrix KNN, with normalization
ROC 1.0
1.0 -
0.8
0.8 normaly
0.6 1 3
©
g
£
0.4
0.4 1
anomaly
0.2 —— Variance, AUC: 0.3629 0.2
| —— IF, AUC: 0.4293
—r —— SVM, AUC: 0.9104
— —— AE, AUC: 0.9889
0.0 [ ] —— DNN, AUC: 1.0 — 0.0
0.0 0.2 0.4 0.6 0.8 1.0
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http://scikit-learn.org/stable/modules/outlier_detection.html
http://scikit-learn.org/stable/modules/neighbors.html#classification

WHY IS THE AUTOENCODER APPROACH PROMISING?

» DNN is performing very well, but it is trained against a specific issue
» AE is trained only using good data, so in principle is able to spot any kind of problem
» AE is able to spot some luminosity oscillations during the fill, recognized as anomalies

» This feature is not seen by DNN, since it is strongly specialized to find one type of issue

Distributions of the FPs (as defined by fixing a WP for the AE) vs. LS

Distribution of false positives: AE, 306125 Distribution of false positives: AE, 306126
m False positives B False positives
True positives True positives /
10!
g g‘ 10!
g [
-] -]
g g
fre fre
10° / l I 10°
0 500 1000 1500 2000 2500 3000 0 100 200 300 400 500
Average LS Average LS
16000 Rates for Fill/Run/Board: 6360 / 306125/ YB+1_S4 Rates for Fill/Run/Board: 6360 / 306125/ YB+1_S4
4000 ®®ec0cse e lumi
L ®e LI Y

14000 S I A I Mt ®%cececvesne TERTY
~ 12000 ~ 3000
g E : ¢
g g
T .
S 10000 s 200
2 o .
& = 2000 4
€
5 8000 5 '
g & 1500
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6000
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4000
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SOME DETAILS ABOUT THE UNSUPERVISED ALGORITHMS

J 52l g z - A gl a5

13> The KMeans algorithm clusters data by trying to
i separate samples in n groups of equal variance,
minimizing a criterion known as the inertia or
within-cluster sum-of-squares

= = = -

! > The Local Outlier Factor (LOF) algorithm

¢ computes a score (called local outlier factor)
reflecting the local density deviation of a given
data point with respect to its neighbors

1§ > This algorithm requires the number of clusters to be
specified

> The idea is to detect the samples that have a
. substantially lower density than their neighbors

$§ > The k-means algorithm divides a set of samples into §
. disjoint clusters, each described by the mean of the
samples in the cluster (called the cluster “centroids”) §

} > The LOF score of an observation is equal to the

' ratio of the average local density of his k-nearest
neighbors, and its own local density: a normal it
instance is expected to have a local density similar §§
to that of its neighbors, while abnormal data are
expected to have much smaller local density

minimize the inertia that can be recognized as a
measure of how internally coherent clusters are

K-means clustering on the digits dataset (PCA-reduced data)

Centroids are marked with white cross
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K. Androsov (Pisa): INFN Fellow presentation
flash talk

‘Past activities \
Projects Affiliations

HH - bbtt analysis * Dec. 2015 —Dec. 2017 INFN
Fellowship for foreign students

* Dec. 2012 — Dec. 2015 PhD at
the University of Siena

Pixel Phase 1 R&D and production

Service work for tracking algorithms

R&D: Tau L1 pixel trigger for Phase 2

Current projects (Dec. 2017 - Now)

 Machine Learning in HEP:

* Deep Tau ID and beyond
» Data analysis

* Advanced pixel detector simulations for Phase 2 using GPU

* Possible involvement in HPC tests at Cineca (under discussion)



Machine Learning in HEP

 What is the best way to apply Deep Learning in HEP?

_M + Can we afford “Zero Deep Learning” (without any

human knowledge)?

* This requires huge statistics, while full event simulations are
CPU costly...

* How to pass our knowledge without adding significant bias?

» Select relatively small set of discriminant variables based on mathematical
algorithms from an extensive set of variables provided by “human experts”

* Use those variables to pre-train inner layers of Deep NN or as an input of BDT

 We (me, A. Giraldi et al.) implemented an algorithm based on Jensen Shannon
Divergence and Mutual Information measure that selects the most discriminating
variables

Comparison of ROC Curves --- Non-Resonant SM
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Deep Tau |ID

Physics objects reconstruction and
identification is an excellent task for DL

As the inputs, we can use a low level
variables to not loose any information

As the first target, the taus were chosen:

* Current tau ID has 3 separate
discriminators (against electron, muons
and jets)

e With DL | plan to introduce an unique
multi-class discriminator

* In the future, | plan to do full Deep Tau
reconstruction

To improve convergence (without
introducing bias) we plan to pre-train the
inner layers of the NN graph using
algorithm described in the previous slide

The full framework is in a very early stages
of development, but first very preliminary

results results of Deep Tau ID looks
promising

Jet mis-id probability

Electron mis-id probability

Muon mis-id probability
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Advanced pixel detector simulations for
Phase 2 using GPU

* For Phase 2, the advances in the frontend design require
sensors with smaller pixel cells and thinner active thickness

* R&D of such pixel detectors require detailed simulation to
obtain reliable results. Within R&D we need to:
* Find optimal pixel technologies and geometrical layouts
» Test validity of the various radiation models

* 3D device modeling are very computational demanding

* Licenses for simulation soft are very expensive and number of CPU is
limited by 4 per license

* On the other hand, simulation software allows to implement custom
models as plugins

* Most of the simulation algorithms are parallelizable => GPU isideal
candidate to perform part of the calculation

e Within Pisa group, I’'m starting to work on implementation of
a plugin with GPU support for Sentaurus Device simulation
TCAD.



Efficient and reliable data
access using distributed and
coordinated cache system

Sonia Taneja
INFN-CNAF




Personal info...

e Post-doctoral research fellow at INFN-CNAF, Bologna
ltaly

e User support - contact person for CMS

e Research and Development division (was part of
INDIGO-DataCloud project)

e Started this fellowship - April 2018




Project and research interest

*Theme - Innovative Workflow and Data Management solutions for Large
Scale science: large datasets, large workloads, heterogeneous platforms.

* Project- Distributed and coordinated cache system

e Architecture - based on pool of distributed caches (provided by well
connected WLCG sites), which are loosely coordinated by a central
orchestrator to create an effective larger cache which will scale to better
accommodate LHC needs for an efficient data access

*Reduce latencies / Improve efficiency on remote data access
* Reduced operational cost

*Present status:
e Cache for http/WebDAV and StoRM (Nginx)

e Collaborating with INFN-Perugia to converge on a generic cache solution




Future activities

e Automated deployment
e EXxploring available cache technologies

e Customise the cache algorithms to match experiment
requirements (Predictive analysis)

e To investigate AuthN/Z policies
e Implement federated cache

e Eventually test on commercial clouds






