

Istituto Nazionale di Fisica Nucleare

Fast parameterised simulation option in LHCb simulation framework

Benedetto Gianluca Siddi On behalf of the LHCb Collaboration

Università degli studi di Ferrara INFN - Sezione Ferrara

B. Siddi INFN Ferrara

INFN and the Future of Scientific Computing - Episode I

Editors' Suggestion

PHYSICAL REVIEW D 97, 072013 (2018)

2

Benedetto Gianluca Siddi

B. Siddi

INFN Ferrara

 Started my PhD in Ferrara in 2015 working on Lepton Flavour Universality Tests

Who am I?

INFN and the Future of Scientific Computing - Episode I

- Topic of my PhD thesis
- Two articles (PRD and PRL) came out from the analysis
- In the meantime started to work on the implementation of a Parametrized Fast Simulation option to be integrated in the LHCb Simulation framework
- PhD thesis defended in February 2018
- INFN Fellow in scientific computing in Ferrara from January 2018
 - Continuing the work on FastSimulation and future upgrades for LHCb and simulation part of TimeSpot project

FastMC: Integration of Delphes in LHCb simulation framework

- The role of Monte Carlo simulation in high energy physics experiment is to mimic the behaviour of a detector to understand experimental conditions and performance
- Systematics uncertainties in most of the analysis are dominated by the MC
- Large MC samples \rightarrow large resources
- New simulation options needs to be investigated

B. Siddi

INFN Ferrara

INFN and the Future of Scientific Computing - Episode I

3

Fast simulation with Delphes in LHCb

INFN and the Future of Scientific Computing - Episode I

B. Siddi

INFN Ferrara

Delphes

- Delphes + modifications for LHCb, has been integrated in LHCb simulation framework Gauss.
 - · It takes in input particles generated from the generator part of Gauss,
 - It writes as output objects in the format necessary for LHCb analysis framework.
- No lower level reconstructed objects!

Working on implementing relevant quantities of reconstructed tracks, e.g., covariance matrices, fit χ^2 , ghost probabilities

Work to be done :

- Particle Identification probabilities, calorimeter response for charged and neutral particles.
- Finalize the output of the objects filled with the information needed to be used in the LHCb analysis framework in order to perform physics analyses
- Review the code in order to make it thread safe and multithreading to be used in the new LHCb Framework.

B. Siddi INFN Ferrara

INFN and the Future of Scientific Computing - Episode I

