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Introducing myself

2007 2012

2013 2015

March 1, 2018
MD in Physics 

(University of Torino)

PRIN Project 
(optimization of access to 
LHC data using the grid 
and cloud computing ) INDIGO-DC

Within the ALICE collaboration 
• Data analysis

• Detector testing/commissioning

• Data-taking operations

Building competences 
• Machine Learning (ML) algorithms

• Distributed ML systems

• Integration of non standard resources 

(GPUs) with Linux containers and 
orchestrators (Mesos, OpenNebula)

Cloud Computing  
(full virtualization)

• OpenNebula and KVM 

• Contextualization of complex 

services

• Auto-scaling

• FairShare scheduling 

Computing Model as a Service  
(lightweight virtualization) 
• runtime/application packetization (Docker)

• Distributed scheduling (Mesos and its frameworks)

• Network virtualization (Calico)

• HPC: MPI over InfiniBand in Docker

Batch System as a Service employed at the 
INFN and UNITO’s HPC Cluster (OCCAM)

PhD in Physics 
(University of Heidelberg)

THIS FELLOWSHIP



Machine Learning as a Service
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• Reconstruction

• Analysis

• Trigger

• Data quality

• Detector monitoring

• Computing operations

• Monte Carlo tuning

• …

• Workflow definition

• Results reproducibility


• Multi-tenancy (scheduling, 
authentication…)


• Parallel execution and scaling

• Data handling

• Ease of use and management

• …

• Lightweight virtualization

• Modularity 

• Flexibility

• Heterogeneous back-end 

infrastructures

• …

CHALLENGES REQUIREMENTS IMPLEMENTATION

LEVERAGING

Existing OpenSource software (mature and maintained)

DEEP Hybrid DataCloud products

INDIGO-DataCloud products



Brainstorming
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• Workflow definition 
• Process Monitoring 
• Authentication

Deep Learning frameworkML libraries

Cluster framework 
(parallelize task)

Orchestrator  
(schedule on resources)

…

MLaaS Front-end

MLaaS Core

…

Distributed DL librariesdist-keras …

Singularity

DATA

Data 

pre-processing

Performance 
optimization Training

…

… Packetization and 
virtualization

Resources: 
• Bare metal 
• Infrastructure as a Service

KubeFlow



From Data to Results
G

oa
ls

Te
ch

no
lo

gi
es

Im
pl

em
en

ta
tio

n
Te

st
 u

se
-c

as
e

Ar
ch

ite
ct

ur
e

DATA

ESDs/AODs

ntuples

Other (i.e. logfiles…) 

Internal data: 

• intermediate 

processing stages

• internally generated 

data (i.e. MonteCarlo 
simulations)

Machine Learning as a Service
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GRID Data pre-processing: 
• feature selection/extraction 
• train/validation/test sets

Workflow

• The framework gives a structure to 
conceptual analysis steps 
(simplicity, reproducibility) 

• Implementation is use-case specific

Training

Validation
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Case study (ambitious): framework for systematic tuning of MonteCarlo generators  
• data-MC comparison with Neural Network based high-dimensional discrimination 
• learn event re-weighting function to avoid several expensive generation calls  
• tune generator parameters by back-propagation

From M. Paganini’s talk at the 2nd IML Workshop, April 9-12 2018, CERN


