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Introducing myselt

Within the ALICE collaboration Building competences
+ Data analysis * Machine Learning (ML) algorithms
* Detector testing/commissioning - Distributed ML systems

* Data-taking operations - Integration of non standard resources
: (GPUs) with Linux containers and
orchestrators (Mesos, OpenNebula)
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Computing Model as a Service

Cloud C ti
oud Computing (lightweight virtualization)

(full virtualization)
« OpenNebula and KVM

« Contextualization of complex
services

* runtime/application packetization (Docker)
« Distributed scheduling (Mesos and its frameworks)

* Network virtualization (Calico)

. Auto-scaling » HPC: MPI over InfiniBand in Docker

+ FairShare scheduling |—> Batch System as a Service employed at the
INFN and UNITO’s HPC Cluster (OCCAM)



Machine Learning as a Service

CHALLENGES REQUIREMENTS IMPLEMENTATION

Reconstruction Workflow definition Lightweight virtualization

« Analysis  Results reproducibility « Modularity

- Trigger « Multi-tenancy (scheduling, * Flexibility

« Data quality authentication...) + Heterogeneous back-end
. - Parallel execution and scaling infrastructures

Detector monitoring

Computing operations Data handling ©

Monte Carlo tuning Ease of use and management

/ Existing OpenSource software (mature and maintained)
INDIGO-DataCloud products 0“.)

INDIGO - DataCloud

LEVERAGING

DEEP Hybrid DataCloud products s 2~

@ Architecture | Technologies | Implementation | Test use-case .



Brainstorming

MLaaS Front-end « Workflow definition

jupyter Lutgt ] ® Process Monitoring

e Authentication @

INDIGO - DataCloud

MLaaS Core

ML libraries [‘ -+ PYTORCH fTemr 4 Keras Deep Learning framework

[dist-keras KubeFlow *{-=)* ] Distributed DL libraries

Implementation | Test use-case .
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From Data to Results

DATA Machine Learning as a Service
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\ ¢ |mplementation is use-case specific )

simulations) .

Case study (ambitious): framework for systematic tuning of MonteCarlo generators

(N ° data-MC comparison with Neural Network based high-dimensional discrimination
¢ |earn event re-weighting function to avoid several expensive generation calls
e tune generator parameters by back-propagation

Architecture

. From M. Paganini’s talk at the 2nd IML Workshop, April 9-12 2018, CERN



