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What is Quantum Information?

Information Theory

⇔

Quantum Mechanics

Merging two big XXth century revolutions:
information theory (Shannon, Turing) and Quantum Mechanics.
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Examples of applications

Quantum computer Quantum cryptography

Quantum metrology
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Examples of applications
Quantum sensing Quantum imaging

Quantum simulation
Quantum random number

generation
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But...

...be aware of fake!
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One-slide review of classical computation

Input
n bits

Output
m bits

Universal gates: any function

f : {0, 1}n → {0, 1}m

can be built from two elementary gates: NAND and COPY.
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Quantum computer: superposition principle

I Quantum mechanics: physical states are represented as vectors
|ψ〉

I Superposition principle: if |ψ1〉 and |ψ2〉 are physical states, any
linear combination is a physical state:

|Ψ〉 = a|ψ1〉+ b|ψ2〉 a, b ∈ C

I From classical bit (two orthogonal states |0〉 and |1〉) to
quantum-bit , or qubit:

|ψ〉 = α|0〉+ β|1〉 α, β ∈ C , |α|2 + |β|2 = 1
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State superposition

above 10000 AMU, 810 atoms
Matter–wave interference of particles selected from a molecular library with masses exceeding 10000 amu,

Phys. Chem. Chem. Phys. 15, 14696 (2013)
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Circuit model of quantum computation

Input
n 
qubits

Output
n bits

0 1

0 1

0 1

I Prepare the system into |Ψin〉 = |ψ0〉 ⊗ |ψ0〉 ⊗ · · · ⊗ |ψn−1〉

I Manipulate the state into |Ψout〉 = U|Ψin〉. U is the algorithm

I Measure each qubit (usually in the computational basis)
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Universal gates

Any quantum algorithm U can be built by the following
universal gates:

Hadamard Single qubit rotation CNOT gate

H = 1√
2

(
1 1
1 −1

)
Rz(ϕ) = eiϕ2 σz

=

(
eiϕ2 0
0 e−iϕ2

) 
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


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Shor algorithm

Problem 1: factoring
Given an integer number N, find its prime factors.
The best classical algorithm requires O(en1/3(log2n)2/3

) with n = log2N

Problem 2: order finding
Choose a generic a such that 1 < a < N. The order r of a modulo N is
the minimum positive integer r such that ar = 1 mod N. Hard
(probably superpolinomial) problem.

Equivalence
By using O(n3) classical operations Problem 1 can be reformulated
as Problem 2
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Shor algorithm

Order-finding by quantum computer

Va : |x〉|y〉 → |x〉|y⊕ ax mod N〉

I The Va operation requires O(n3) gates
I DFT requires O(n2) gates
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Grover algorithm

problem: find x0 given a quantum black box Uω such that

Uω|x〉 =

{
−|x〉 for x = x0

|x〉 for x 6= x0

x0 is found with high probability using O(
√

N) evaluations
A classical computer cannot solve the problem with less than O(N)

operations
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One-way quantum computer

G. Vallone, et al., One-way quantum computation with two-photon
multiqubit cluster states, Phys. Rev. A 78, 042335 (2008)
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Quantum simulation

Quantum Simulation, Rev. Mod. Phys. 86, 154 (2014)
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Adiabatic Quantum Computing

H(t) = (1− t)H0 + tHP

T = O(
1

g2
min

)

Adiabatic Quantum Computing, Rev. Mod. Phys. 90, 015002 (2018)
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Photons

Reprogrammable optical circuit that implements all possible linear
optical protocols up to the size of the circuit (six photon input)

Universal linear optics, Science 349, 711 (2017)
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Trapped ion

Quantum computers,Nature 464, 45 (2010)
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Ultracol atoms in lattice

Quantum simulations with ultracold atoms in optical lattices,
Science 357, 995 (2017)
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Nuclear Magnetic Resonance (NMR)

NMR techniques for quantum control and computation,
Rev. Mod. Phys. 76, 1037 (2005)
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Quantum dots

Quantum computers, Nature 464, 45 (2010)
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Superconducting qubits

Quantum computers, Nature 464, 45 (2010)
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D-wave

Quantum annealing: finding the global minimum of a given function
by using quantum fluctuations.
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Google

Superconducting qubit processor

A blueprint for demonstrating quantum supremacy with
superconducting qubits, [arXiv: 1709.06678]
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IBM

IBM’s quantum processors
made up of superconducting transmon qubits

https://quantumexperience.ng.bluemix.net/qx/qasm
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Microsoft

“Our approach focuses on topological quantum computing through
Majorana fermions, which promise to yield fast, stable quantum bits,
also known as qubits.”

https://www.microsoft.com/en-us/quantum/technology
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What is a random number

A random number is a number generated by an unpredictable
process
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Why random numbers?

Random numbers are crucial in several
applications:

1 Information technology and security
(also QKD)

2 Scientific simulation (meteorology,
biology, physics...)

3 Lottery/gaming
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Generators based on classical physics

How we generate random numbers?

Head or tail?

How random is it?
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Generators based on classical physics

Output depends deterministically from initial conditions
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Pseudo Random Number Generators

Pseudo-random numbers are
generated by a deterministic
algorithm that produces a
sequence that “resemble” a random
sequence

PROS
I simple
I fast

CONS
I period
I not-uniformity
I correlations
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but....

Von Neumann (1903-1957)
(among the father of information theory

"Anyone who attempts to generate random numbers by deterministic
means is, of course, living in a state of sin"
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Problems of PRNG

RANDU
used by IBM from ’60 to ’90

Vk+1 = 65539 · Vk mod 231

V1 12589822
V2 490623226
V3 682947310
V4 1829558474
V5 535857758
V6 1781505818
V7 1571347790
V8 1984468970
V9 2059651006

V10 940136250
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Flaws in PRNG!

NSA (National Security Agency) scandal

NSA inserted a
“backdoor" in the
generator
Dual_EC_DRBG
certified by NIST

Dual_EC_DRBG was used in several RSA products. In 2013, RSA officially
discouraged his clients to use their products with Dual_EC_DRBG.
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Why QRNG?

I RANDOM NUMBERS are needed to
encrypt all digital communications
(email, social networks) and are
essential for QKD

What QRNG offer:
I intrinsic randomness of quantum measurements

I outputs not predictable even if the initial state is known

I randomness is not due to ignorance on the initial conditions (like
coin tossing)
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QRNG based on vacuum fluctuation

Switch between
two conjugate
quadratures p̂
and q̂

Pguess(p|E) ≤ c(δq, δp)(
∑

k

√
P(qk))

2
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Randomness estimation

Finite-size min-entropy evaluation
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1.25 GSamples/s, 8-bit resolution

Secure bit generation rate of approximately 1.76 Gbit/s
(with 5-bit ADC resolution sampling).
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Conclusions

I Clear trend in quantum computing: from research groups to
large companies

I Are we close to quantum supremacy?

I QRNG as a fundamental tool for simulations and security
application
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