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HL-LHC: elephant in the room

๏ Flat budget vs. more needs = 
current rule-based reconstruction 
algorithms will not be sustainable 

๏ Adopted solution: more granular and 
complex detectors ! more computing 
resources needed ! more problems 

๏ Modern Machine Learning might be 
the way out

!3

‣ ~200 collisions/event 
‣ ~minute/event processing time(*) 
‣ (at best)Same computing resources as 
today

This is when the R&D has to 
happen

‣ ~40 collisions/event 
‣ ~10 sec/event processing time 
‣ (at best)Same computing resources as 
today

Today

(*)With nowadays software development 
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Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 
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The HGCAL Cells geometry

12

To cope the irradiation / PU:
! η-dependent depletion of Si
! η-dependent cell size

Hexagonal 6” Si wafer (256 or 512 channels

Mechanics: HGC-HCAL 
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! Bolted Brass mechanical structure (follows the current CMS HE)

! 60° Brass plates machined to insert 30° (single-side) cassettes (grey in the drawings)



๏ Too many data, too large data -> need to filter online 

๏ Filters based on theoretical bias: we might be loosing 
good events

The LHC Big Data Problem
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‣ L1 trigger: local, hardware based, on FPGA, @experiment site 

‣ HLT: local/global, software based, on CPU, @experiment site 

‣ Offline: global, software based, on CPU, @CERN T0 

‣ Analysis: user-specific applications running on the grid

High-Level  

Trigger
L1 

trig
ger

1 KHz  
1 MB/evt

40 MHz

100 KHz



๏ We are not seeing new physics: just re-doing what we do today 
with x10 more data WILL NOT be enough.  

๏ The solution to the HL-LHC problem: modern Machine Learning 
to be faster and better in what we do today, freeing 
resources for new ideas 

๏ This ML deployment need to happen in between collisions and 
data analysis (trigger, reconstruction, …), where freeing 
resources will make a difference

The LHC Big Data Problem
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Faster Particle Reconstruction 
With Computer Vision



๏ Jets are cone-like showers of 
quarks and gluons that produce 
tens of particles, all close to 
each other 

๏ Jets can be reconstructed from 
calorimetric deposits, tracks, or 
full particles 

๏ Depending on the quality of the 
ingredients, reconstruction can be 
more or less precise 

๏ coarse at trigger, when using 
fast calorimeter reconstructions 

๏ accurate offline, using all 
information

Faster/better Jet Reco
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๏ At L1/HLT, raw data 
objects are used 

๏ map of energy deposit on 
calorimeter 

๏ tracks from local/less 
accurate tracking  

๏ Low-energy jets are 
promoted to large energy 
and not discarded  

๏ So, triggers accept more 
than what should, or (at 
fixed budget) one is 
forced to apply tighter 
selection

Faster/better Jet Reco

 10

8i9

Calorimetric 
deposit in 20x20 

dells (ΔR=0.5)
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๏ One could use ML to “guess” 
the offline jet energy from 
the online one + additional 

๏ With a simple CNN2D network, 
substantial improvement 
observed 

๏ Consequences downstream: 
better select which events to 
write /sec 

๏ We can do the same physics 
with less resources 

๏ We can do more physics with 
same resources

Faster/better Jet Reco
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RAW resolution: 125% 
CNN resolution: 36% 

Drastically reduces 
promotion of low-pT jets 

to high pT



Combinatorics Reduction

�12

๏ Tracking is the most expensive workflow we have in RECO 

๏ The more tracks we have, the more problematic it becomes (non-
linearity due to combinatoric when connecting dots



๏ Track reco starts with a see in the inner layers (triplet of hits) 

๏ Finding seeds is not the most CPU intensive aspect 

๏ But its outcome determines the complexity of the following steps 

๏ one can speed up tracking by reducing the number of fake seeds 

๏ We tried to solve this problem using a ConvNN 
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CA-based HitChain Maker
• The CA is a track seeding algorithm designed for parallel architectures
• It requires a list of  layers and their pairings
– A graph of  all the possible connections between layers is created
– Doublets aka Cells are created for each pair of  layers (compatible with a region hypothesis)

9

See talk by my evil twin on this afternoon, Track 1

Combinatorics Reduction



๏ The detector sees the charge deposited by the crossing 
particle: a hit 

๏ A hit is a window of sensors (16x16 here) with its deposited 
charge. This can be seen as a sparse digital image. 

๏ Given two images, one can train a network to decide if a pair 
of hits is a good or bad match

Seeds as images

 14

CNN

12

• Typical binary classification problem : keep true doublets & reject fake doublets
• Hit is a 15x15 pixel pad/image 
• Cluster centered
• pattern recognition problem : suitable for a Convolutional Neural Network approach



Table 1: Layer map network scores for train,validation and test dataset.

TN/N at fixed TP/P TP/P at fixed TN/N

AUC Acc TP/P = 0.99 TP/P= 0.999 TN/N=0.99 TN/N=0.5

Train 0.982 0.940 0.85426 0.6706 0.5896 0.9997
Test 0.982 0.941 0.8542 0.6709 0.5899 0.9996
Val 0.982 0.939 0.8525 0.6707 0.5948 0.9996

3 Model testing and results100

Once tested and tuned on a smaller sample, the model has been trained on the whole dataset (2.5M101

doublets) split in ten batches of 250k doublets in order to fit the available memory. The model has102

been trained with a categorical cross entropy loss function [?], using Adam [?] optimizer and accuracy103

as evaluation metric. At each batch training iteration the weights and the parameters of the trained104

network are passed to the next step. This procedure has been carried out for 20 global epochs on the105

whole dataset and each iteration is run with an early stopping callback, that is a form of regularization106

used to avoid over-fitting. It stops the network training when the selected metric (validation accuracy107

in our case) does not improve for a given number of consecutive epochs, denoted as patience (p=25108

for the layer map setup). The training took about 5 days on a NVIDIA Tesla K20 node.109

Figure ?? shows the model accuracy for train and validation dataset versus the number of training110

epoch for the first 250k batch. Validation curves follow the same trend as the training ones and this111

indicates that the network is not over-fitting on the training data. Note that the validation accuracy is112

always greater than the training one. This behavior depends on the fact that dropout layers are turned113

off when the network process the validation data. Therefore the network has more connections and114

neurons active thus is more complete and accurate.115

The ROC curves for validation, test and training dataset, shown in Figure ??, completely overlay each116

other, and the area under the curves (AUCs) is more than 0.98. While assuring a 0.99 efficiency (true117

positive rate), network’s sensitivity (true negative rate) reaches 0.85. The highest accuracy reached118

is about 0.94 for all the three datasets. See Table 1 for further network performance results. The119

normalized output score, namely the network estimated probability that a doublet is true (ptrue) shows120

optimal separation between fake and true doublets sample. Both train and test ptrue distributions121

are plotted in Figure 3 and the cut for an efficiency of 0.99. In order to compare them a two sided122

Kolmogorov-Smirnov test has been performed. This tests whether two samples are drawn from123

the same distribution [?]. For both true and fake histograms, the resulting score is KS ⇡ 0.070124

corresponding to a p-value of pval ⇡ 0.961, that assures us that the two histogram come from the125

same distribution with a very high level of confidence.126

4 Conclusions and acknowledgments127

In conclusion, the results described show that CNN techniques for mitigating combinatorial explosion128

look very promising and need to be further explored. Ongoing work includes the verification of the129

Figure 3: Network score for true (blue) and
fake (doublets) for train (filled histogram) and
test dataset (diamond markers). In purple the
0.94 accuracy threshold. In green the 0.99
efficiency threshold.

4

๏ The final model uses two sets of 
inputs: 

๏ the hit images  

๏ a set of expert features (e.g., 
position of the hits in the 
detector) to help the learning 
process 

๏ The trained model shows a good 
separation of true vs fake seeds 

๏ One can reduce the fake rate by one 
order of magnitude with a few % loss 
in efficiency 

PixelSeed ConvNN
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2.1 Doublet Hits Cluster Shape68

As described above, while building seeds, the compatibility between two hits is evaluated only on the69

basis of geometrical considerations. A possible way of reducing the doublet fake ratio is taking into70

account that each hit is actually a cluster of pixels with its own shape. Each pixel is characterized by71

its 16-bit A.D.C. level (maxADC = 216 � 1) and its local position (x, y) on the layer, where x is the72

azimuthal direction in the barrel detector and radial direction in the forward detectors. Then a single73

hit can be considered as a collection of three vectors: the x, the y and the ADC levels of each of its74

pixels. For each hit a 15⇥15 squared matrix M is built with the pixel local x on the rows and the75

local y on the columns. The matrix center is matched with the hit center of charge and each element76

mij is set to the A.D.C. level of the corresponding (xi, yj) pixel. Those pixels that stride over the77

hit cluster boundaries are set to zero (zero-padding technique).With this procedure each doublet can78

be considered as a collection of two 15⇥ 15 matrices, an example is shown in Figure 2, or as a two79

channel 2D image (n⇥m⇥ r = 15⇥ 15⇥ 2). Thus the rejection of fake doublets is reduced to an80

image/pattern recognition task, perfectly suitable for being dealt with CNNs.81

2.2 Doublet dataset: generation and features82

To test the feasibility of this kind of approach, the generation (via PYTHIA 8 [?]) and the reconstruc-83

tion of tt̄ events at energy of the center of mass of
p
s = 13 TeV, with average pileup < PU >= 3584

and bunch time spacing of 25 ns has been simulated within the CMS software framework (CMSSW85

[?]). For each event, both all the doublets produced and all the MC matched reconstructed tracks,86

i.e. associated with a tracking particle, are collected. A doublet is then labeled as true only if it is87

formed by pixel hits belonging to the same MC matched track. About 106 doublets are produced per88

each event and the ratio between true and fake doublets is between 300-400. For each doublet 53789

parameters are stored:90

• 225 + 225 pixels for the inner and the outer hit;91

• 63 doublet features defined for each doublet and that include detector information and92

further hit and cluster characteristics;93

• 24 track labels defined only for MC matched doublets, e.g. the corresponding track vertex94

coordinates, pt and eta;95

On the whole, 1000 events are simulated, 800 for the training dataset, 150 for testing and 50 for96

validation. The training and the validation set are balanced so that the ratio between fake and true97

doublet is one. The whole balanced training dataset is composed of approximately 2.5 millions98

doublets.99

Figure 2: Layer map model architecture

3
fMap
• Accuracies and loss function for train and validation sets on GTX1080
– Train:0.909
– validation:0.911
– test:0.906

20

Efficiency (tpr) @ fake rejection



๏ (next generation) digital calorimeters: 3D arrays of sensors with 
more regular geometry 

๏ Ideal configuration to apply Convolutional Neural Network 

๏ speed up reconstruction at similar performances 

๏ and possibly improve performances

Calorimetry & Computer Vision
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Deep Learning for Imaging Calorimetry

Vitoria Barin Pacela,⇤ Jean-Roch Vlimant, Maurizio Pierini, and Maria Spiropulu
California Institute of Technology and

CMS

We investigate particle reconstruction using Deep Learning, based on a dataset consisting of single-

particle energy showers in a highly-granular Linear Collider Detector calorimeter with a regular 3D

array of cells. We perform energy regression on photons, electrons, neutral and charged pions, and

discuss the performance of our model in each particle dataset.

I. INTRODUCTION

One the greatest challenges at the LHC at
CERN is to collect and analyse data e�ciently.
Sophisticated machine learning methods have
been researched to tackle this problem, such as
boosted decision trees and deep learning. In
this project, we are using deep neural networks
(DNN) [1] [2] to recognize images originated by
the collisions in the Linear Collider Detector
(LCD) calorimeter [3] [4], designed to operate
at the Compact Linear Collider (CLIC).

Preliminary studies have explored the possi-
bility of reconstructing particles from calorimet-
ric deposits using image recognition techniques
based on convolutional neural networks, using
a dataset of simulated hits of individual par-
ticles on the LCD surface. The dataset con-
sists of calorimetric showers produced by sin-
gle particles (pions, electrons or photons) hit-
ting the surface of an electromagnetic calorime-
ter (ECAL) and eventually showering within
a hadronic calorimeter (HCAL). This project
aimed at reconstructing the energy of particles
through regression.

The code used for defining the mod-
els and training the DNNs is hosted at
https://github.com/vitoriapacela/NotebooksLCD,
and analysis tools are hosted at
https://github.com/vitoriapacela/RegressionLCD.

⇤ vitoria.barinpacela@helsinki.fi

FIG. 1. Visualization of the data. Charged pion

event displayed in the ECAL and HCAL. Every hit

is shown in its respective cell in each of the calorime-

ters. Warmer colors (like orange and pink) repre-

sent higher energies, as 420 GeV, whereas colder

colors, like blue, represent lower energies, as 50

GeV.[5]

II. METHODS

The datasets were simulated as close as pos-
sible to real collision data, using a preliminary
version of the CLIC detector design, imple-
mented in the DDhep software framework [3].
They consist of 3D arrays representing energy
values in the cells of the ECAL and HCAL, and
the true energy of the particle. The ECAL data
arrays have shape 25 x 25 x 25, whereas the
HCAL data arrays have shape 4 x 4 x 60. Events
are of discrete, integer-valued energies over the
range 10-510 GeV, and fixed direction, so that
they impact the center of the calorimeter bar-
rel, with an impact angle of 90�. The datasets
for each particle are stored in the Hierarchical
Data Format (HDF5) [6], which is designed to
store and organize large amounts of data. Each
HDF5 file contains 10 000 events, and there are

See contribution to NIPS workshop

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf


๏ We tried particle ID on a sample of 
simulated events 

๏ one particle/event (e, γ, π0, π) 

๏ Different event representations 

๏ high-level features related to event 
shape (moments of X,Y, and Z 
projections, etc) 

๏ raw data (energy recorded in each 
cell) 

๏ Pre-filtered pion events to select the 
nasty ones and make the problem harder

Proof of Principle: Particle ID

 17
See contribution to NIPS workshop

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf


๏ Correctly reconstruct energy, 
with physics meaningful 
performances 

๏ ECAL performances better 
than HCAL (as expected) 

๏ π0 resolution ~ √2 γ 
resolution (as expected) 

๏ FAST: used only RAW data as 
inputs -> no pre-processing 

‣ Processing time reduced by 103 
wrt traditional approaches 

‣ Potentially usable both 
online and offline

Proof of Principle: Energy Regression
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FIG. 3. Test performed on photons, electrons, neu-

tral and charged pions, comparing the predicted en-

ergy with its true value for each type of particle.

were sorted and divided into ten bins, each one
having an energy interval of 50 GeV, in order
to evaluate the influence of the true energy on
the tested model. In Fig. 5, the absolute means
of the energy di↵erence is proportional to the
true energy value; according to this analsis, the
best performances seem to be between 10 and
200 GeV. In Fig. 6, the relative mean of the
energy di↵erence is approximately constant for
di↵erent energy intervals in the normal datasets
(photons, electrons and neutral pions). In this
analysis, the lowest energy bin (10 to 50 GeV)
has the worst performance, whereas in all the
others the relative means are slightly varying
around 0. In Fig. 7, we notice that the stan-
dard deviations are approximately linearly de-
pendent on the energy value. The model perfor-
mance is good in the normal datasets, since the
standard deviation varies between 0 and 5 GeV.
In Fig. 8, the calorimeter resolution was plot-
ted according to the relative standard deviation
values obtained from the test in each particle
dataset, and in all cases it satisfied the general

FIG. 4. Test performed on photons, electrons, neu-

tral and charged pions, comparing the di↵erence

between the true energy and the predicted energy,

relative to the true energy value, for each type of

particle.

expression �(�E)
Etrue

= ap
Etrue

+ b+ c
Etrue

.

IV. CONCLUSION

We train a DNN model to solve a regression
problem in the LCD, in which the inputs are
the raw data from highly-granular calorimeters.
We train the model on four di↵erent datasets,
achieving good performance for photons, elec-
trons, and neutral pions, having the mean of the
di↵erence between true and predicted values ap-
proximating to zero by a factor of 10�1. In order
to train the dataset containing charged pions,
it is necessary to select the data that presented
a correlation between the true energy and the
actual shower deposits in the calorimeter. The
training is limited to such limited filtering of the
data, and as a result, the test has a worse per-
formance when compared to the other datasets.

2

80 HDF5 files for each particle, totalizing 80
000 events for each dataset. After preprocess-
ing, data is archived using Numpy arrays.

The neural networks are built and studied
using the highly modular Keras [7] 1.0.8 deep
learning libraries running on top of TensorFlow
[8]. All code is written in Python 2.7. The
training and testing of neural networks have
been performed on Caltechs Culture Plate. It
has eight available NVIDIA GeForce GTX 1080
graphical processing units (GPU).

Convolutional Neural Networks (CNNs) [9]
are in general well-suited for image recogni-
tion problems. We use a Convolutional 3D
layer, followed by a MaxPooling3D layer, and a
fully-connected layer at the end of the CNN. A
branched topology is used to input both ECAL
and HCAL data into the neural network, since
they have di↵erent dimensions. The illustra-
tion of the model topology is found in Fig.
2. When applying the Convolution3D in the
ECAL branch, we use a kernel size of 3, and
stride dimensions of 4 x 4 x 4; for the HCAL
branch, the kernel size is 10, and the stride di-
mensions are 2 x 2 x 6, which are proportional
to the input dimensions. The other parameters
were set to default.

The model uses a training set of 40 000
events, a validation set of 10 000 events, and
a test set of 30 000 events. Events are fed into
training in batches of 100 events using an event
generator [10]. The training used the adam
optimizer [11] with default parameters, mean-
squared error (MSE) as the loss function, and a
linear activation function. Early stopping was
performed when training failed to reduce the
validation loss for more than ten epochs.

III. RESULTS

Fig. 3 evaluates the performance of the model
in the testing sets fot photons, electrons, neutral
pions, and charged pions. The distributions ap-
proximate to identity functions in all the cases.
The data is more scattered in the charged pi-
ons plot due to a problem in the dataset, as
explained in Appendix B, but the high density

FIG. 2. Deep Neural Network topology. ECAL

(with dimensions 25 x 25 x 25) and HCAL (with

dimensions 5 x 5 x 60) inputs are processed in di↵er-

ent branches, where each one receives a Convolution

3D layer according to its dimensions, followed by a

MaxPooling 3D layer. The branches are merged af-

ter being flattened, then dense layers are applied to

converge the output to the predicted energy value.

of points along the identity function shows that
the performance is reasonable enough.

When taking the di↵erence between true and
predicted energy, it is relevant to normalize
the such di↵erence, relative to the true energy
value, as detailed in Appendix C. Fig. 4 shows
the distribution of the relative energy di↵erence
Etrue�Epred

Etrue
for tests on the photons, electrons,

charged and neutral pions datasets. For pho-
tons, the mean is (�3.09± 0.05)10�1 %, with a
standard deviation of 2.64 %. For electrons, the
mean is (2.86 ± 0.04)10�1 %, with a standard
deviation of 2.43 %. For neutral pions, the mean
is (0.66 ± 0.07)10�1 %, with a standard devia-
tion of 3.81 %. For charged pions, the mean is
(�6.21± 0.04) %, with a standard deviation of
19.08 %.

From Fig. 5 to 8, the true and prediction data
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FIG. 8. Calorimeter resolution based on the en-

ergy regression test performed on photons, elec-

trons, neutral and charged pions.
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FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

Q C D - I N S P I R E D  R E C U R S I V E  N E U R A L  N E T W O R K S
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kt

anti-kt

• choice of jet 
algorithm matters 

• GRU “gating” 
improves 
performance

anti-ktkt

Particle Flow & language processing

 20

๏ CMS uses particle flow for event reconstruction: 

๏ At some point in the central processing, collision 
images are turned into a list of particles.  

๏ From these particles, complex objects (e.g., jets) are 
formed 

๏ In this framework, Computing vision approaches are not 
necessarily ideal 

๏ One can instead use language-processing approaches (e.g., 
recurrent neural networks 

๏ particles are words in a sentence 

๏ QCD is the grammar



๏ A network architecture 
suitable to process an 
ordered sequence of inputs 

๏ words in text processing 

๏ a time series 

๏ particles in a list 

๏ Could be used for a single 
jet or the full event  

๏ Next step: graph networks 
(active research 
direction)

Recurrent Neural Networks

 21

Recurrent Neural Networks (RNNs)

I RNNs can process an arbitrarily length sequence

I Output is a fixed dimensional vector for each jet

dguest@cern.ch (UCI) RNN b-tagging May 9, 2017 11 / 20
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A typical example: leptonic triggers  

๏ at the LHC, producing an isolated 
electron or muon is very rare. 
Typical smoking gun that something 
interesting happened (Z,W,top,H 
production)-> TAKE THEM! 

๏ Triggers like those are very central 
to ATLAS/CMS physics 

๏ The sample selected is enriched in 
interesting events, but still 
contaminated by non-interesting ones 

๏ Can we clean this up w/o biasing the 
physics? yes, with ML

A Topology Classifier

 22 See contribution to NIPS workshop

https://dl4physicalsciences.github.io/files/nips_dlps_2017_3.pdf


A Topology Classifier
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Photons

Barrel EndcapEndcapForward Forward Barrel EndcapEndcapForward Forward Barrel EndcapEndcapForward Forward

Charged Tracks Neutral Hadrons

Figure 2: An example of a tt̄ event as the input of the raw-image classifier.

hexagons for neutral hadrons. The images are digitized as arrays of size 5⇥ 150⇥ 94, where each
of the first four channels contains a separated particle class, and the last channel contains the E

miss
T ,

represented as a circle. As an example, the abstract representation for the event in Fig. 2 is shown in
Fig. 3.

This abstract representation allows mitigating the sparsity problem of the raw images. On the other
hand, there is no guarantee that the physics information is fully retained in this translation. As a result,
there could be a reduction of discrimination power. This is one of the points we aim to investigate in
this study.

(a) Photons (b) Charged Particles (c) Neutral Hadrons

(d) Lepton (e) Emiss
T

Figure 3: Example of a tt̄ event, represented as a 5-channel abstract image.

3 Model description

In this section, we describe five types of multi-class classifiers, trained on the four data representations
described in the previous section. We start by considering a state-of-the art HEP application, based
on the high-level features listed in Sec. 2. We then consider a convolutional neural network taking as
input the raw images. This model offers the baseline point of comparison for the classifier using the
abstract images. In order to have a fair comparison between the two approaches, the same kind of
network architecture is used for the two sets of images. Next, we consider recurrent neural networks
based on LSTMs and GRUs, trained directly on the lists of 801 particles. Finally, we consider a
classifier taking both the high-level features and the list of 801 particles as inputs, using a combination
of recurrent neural networks and fully connected neural networks.

The CNNs are implemented in PyTorch [12]. The recurrent neural networks and feed-forward
neural networks are implemented in Keras and trained using Theano [13] as a back-end. The Adam
optimizer [14] is used to adapt the learning rate. The training is capped at 50 epochs, and can be
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Selection performances

 24

Can select 99% of the top events and reduce the 
fraction of written events by a factor ~ 7 

(a) tt̄ selector (b) W selector

Figure 5: ROC curves for the tt̄ (left) and W (right) selectors described in the paper.

Figure 6: Pearson correlation coefficients between the ytt̄ (left) and yW (right) scores of the Particle-
sequence classifier and the 14 quantities of the HLF dataset.

The trigger baseline selection we use in this study, looser than what is used nowadays in CMS, gives
an overall trigger rate (i.e., summing electron and muon events) of ⇠ 690 Hz, more than a factor
two larger than what is currently allocated. Using the 99% working points of the two classifiers, one
would reduce the overall rate to ⇠ 280 Hz (counting the overlap between the two triggers). This
would be comparable to what is currently allocated for these triggers, but with a looser selection,
i.e., with a less severe bias on the offline analysis. In addition, the trigger efficiency (the TPR) is so
large that the bias imposed on offline quantities is quite minimal. This is illustrated in Fig. 7, where
the dependence of the TPR on the most relevant HLF quantities is shown. In our experience, any
rule-based algorithm with the same target trigger rate would result in larger inefficiencies at small
values of at least some of these quantities, e.g., the lepton pT . One should also consider that the
principle of a topology classifier could be generalized to other physics cases, as well as to other uses
(e.g., labels for fast reprocessing or access to specific subsets of the triggered samples).

5 Impact on other topologies

While reducing the resource consumption of standard physics analyses is the main motivation behind
this study, it is important to evaluate the impact of the proposed classifiers on other kind of topologies.
For this purpose, we consider a handful of beyond-the-standard-model (BSM) scenarios, and we
compute the TPR as a function of the most relevant kinematic quantities, similar to what was done in
Fig. 7 for the standard topologies.

We consider the following BSM processes:
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What is the network learning?  
• tt events are more crowded that W events

• leptons in W and tt events are isolated from other 

particles

(a) tt̄ selector (b) W selector

Figure 5: ROC curves for the tt̄ (left) and W (right) selectors described in the paper.

Figure 6: Pearson correlation coefficients between the ytt̄ (left) and yW (right) scores of the Particle-
sequence classifier and the 14 quantities of the HLF dataset.
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rule-based algorithm with the same target trigger rate would result in larger inefficiencies at small
values of at least some of these quantities, e.g., the lepton pT . One should also consider that the
principle of a topology classifier could be generalized to other physics cases, as well as to other uses
(e.g., labels for fast reprocessing or access to specific subsets of the triggered samples).
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While reducing the resource consumption of standard physics analyses is the main motivation behind
this study, it is important to evaluate the impact of the proposed classifiers on other kind of topologies.
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Fig. 7 for the standard topologies.
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Generative Adversarial 
Networks



๏ Two networks trained in 
competition 

๏ Generator: creates images 
starting from random 
noise (and optionally 
some other information to 
transform) 

๏ Discriminator: tries to 
distinguish true from 
generator-created images

Generative Adversarial Training

 27

9HGCAL Fast Simulation with Deep Learning | Vitória Barin Pacela | 17.08.18

GANs

๏ The loss function to minimise is written as Loss(Gen)-Loss(Disc) 

๏ Goes up is discriminator improves 

๏ Goes down if the generator improves 

๏ The generator learns to make images like a given set it never sees, 
simply training itself to fool the generator



Generative Adversarial Training
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Generative Adversarial Training
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Image generation
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• Start from random noise

• Works very well with images

• Applied to electron showers in digital calorimeters as a 
replacement of GEANTSome images

13
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See contribution to NIPS workshop

https://dl4physicalsciences.github.io/files/nips_dlps_2017_15.pdf


Generating full jets
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• Start from random noise

• Works very well with images

• Applied to electron showers in digital calorimeters 
as a replacement of GEANT

where Ii, ⌘i, and �i are the pixel intensity, pseudorapidity, and azimuthal angle, respectively. The
sums run over the entire image. The quantities ⌘a and �a are axis values determined with the one-pass
kt axis selection using the winner-take-all combination scheme [42].

The distributions of m(I), pT(I), and ⌧21(I) are shown in Fig. 6 for both GAN and Pythia images.
These quantities are highly non-linear, low dimensional manifolds of the 625-dimensional space in
which jet images live, so there is no guarantee that these non-trivial mappings will be preserved under
generation. However this property is desirable and easily verifiable. The GAN images reproduce many
of the jet-observable features of the Pythia images. Shapes are nearly matched, and, for example, signal
mass exhibits a peak at ⇠ 80GeV, which corresponds to the mass of the W boson that generates the
hadronic shower. This is an emergent property - nothing in the training or architecture encourages
this. Importantly, the generated GAN images are as diverse as the true Pythia images used for training
- the fake images do not simply occupy a small subspace of credible images.

Figure 6: The distributions of image mass m(I), transverse momentum pT(I), and n-subjettiness
⌧21(I). See the text for definitions.

We claim that the network is not only learning to produce samples with a diverse range of m, pT
and ⌧21, but it’s also internally learning these projections of the true data distribution and making use
of them in the discriminator. To provide evidence for this claim, we explore the relationships between
the D’s primary and auxiliary outputs, namely P (real) and P (signal), and the physical quantities that
the generated images possess, such as mass m and transverse momentum pT .

The auxiliary classifier is trained to achieve optimal performance in discriminating signal from
background images. Fig. 7 confirms its ability to correctly identify the class most generated images
belong to. Here, we can identify the response’s dependence on the kinematic variables. Notice how
D is making use of its internal representation of mass to identify signal-like images: the peak of the
m distribution for signal events is located around 80 GeV, and indeed images with mass around that
point have a higher P (signal) than the ones at very low or very high mass. Similarly, low pT images
are more likely to be classified as background, while high pT ones have a higher probability of being
categorized as signal images. This behavior is well understood from a physical standpoint and can be
easily cross-checked with the m and pT distribution for boosted W and QCD jets displayed in Fig. 6.
Although mass and transverse momentum influence the label assignment, D is only partially relying
on these quantities; there is more knowledge learned by the network that allows it, for example, to
still manage to correctly classify the majority of signal and background images regardless of their m
and pT values.

– 9 –

Figure 2: In the simplest (i.e., all-square) case, a convolutional layer consists of N filters of size F⇥F
sliding across an L ⇥ L image with stride S. For a valid convolution, the dimensions of the output
volume will be W ⇥W ⇥N , where W = (L� F )/S + 1.

Figure 3: A locally connected layer consists of N unique filters applied to each individual patch of
the image. Each group of N filters is specifically learned for one patch, and no filter is slid across
the entire image. The diagram shows the edge case in which the stride S is equal to the filter size F ,
but in general patches would partially overlap. A convolution, as described above, is simply a locally
connected layer with a weight sharing constraint.

distribution. Both batch normalization [37] and label flipping [4, 35] were also essential in obtaining
stability in light of the large dynamic range.

In summary, a Location Aware Generative Adversarial Network (LAGAN) is a set of guidelines
for learning GANs designed specifically for applications in a sparse regime, when location within the

– 5 –

de Olivera, Paganini, and Nachman 
https://arxiv.org/pdf/1701.05927.pdf

https://arxiv.org/pdf/1701.05927.pdf


๏ Reconstruction involves more 
than one detector (e.g., tracker 
+ calorimeter) and produces (at 
least in CMS) a list of 
particles 

๏ GANs were proved to be useful to 
emulate the SIM+RECO step in one 
goal 

๏ jets out of full particle 
reconstruction emulated in a 
GAN 

๏ trained on actual SIM+RECO 
synthetic data by CMS 

Simulation is half of the problem

 33
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6 Pasquale Musella, Francesco Pandolfi

Fig. 6 Distribution of high level variables used for quark/gluon
discrimination (first two rows) and merged jets tagging (last row).
Blue histograms are obtained from the input data, while red ones
are obtained using the generative model.

the evolution of distribution of the aggregated pixel in-
tensities as a function of the particle-level jet transverse
momentum. These results show that our set-up allows
good modelling of hadronic jet structure over more than
two orders of magnitude in jet transverse momentum.

We further investigate the goodness of the learned
model by evaluating its ability to reproduce high level
jet features that are typically used in physics analyses.
We concentrate, in particular on two sets of variables:

1. variables used in the context of quark/gluon discri-
mination;

2. jet substructure variables used in the context of
merged jets discrimination.

From the first set, we choose the so-called major
and minor axes, i.e. the eigenvalues of the ⌘-� covari-
ance matrix of the jet image, and the pTD variable,
i.e. the ratio between the square root of the second and
first non-central moment of the pixel intensities [40].
From the second set, we choose the ratio between the
2- and 1-subjettines [41] and that between the 2- and 3-
subjettiness. The subjettiness variables were computed
using the FastJet package [42,43], approximating each
jet as a set of mass-less particles with energies and direc-
tions obtained from the pixel intensities and positions.

Figure 6 shows the distribution of the quark/gluon
and merged jets discrimination variables that we con-
sidered aggregated over the test dataset, while figure 7

Fig. 7 Evolution of the quark/gluon (first two rows) discrimi-
nation and merged jet tagging (last row) variables as a func-
tion of the particle level jet transverse momentum. Solid lines
represent the median of the distribution, filled regions show the
inter-quartile range, while dashed lines mark the 10% and 90%
quantiles. Blue lines are obtained from the input data, while red
ones are obtained using the generative model.

shows the evolution of the distributions as a function
of the transverse momentum of the jet at particle level.
The level at which these variables are predicted by our
set-up is good, even though some mismodelling can be
observed for the quark-gluon discriminating variables.
In particular, the pTD distribution suggests that the
correlation between the number of non-empty pixels
and their energy sharing is not perfectly modelled. In
addition, the size of the major and minor axes is over-
estimated for jets with transverse momentum below
roughly 300GeV and it is underestimated above.

3.1 Discussion

The results that we discussed above represent a step
forward in terms of accuracy of fast simulation systems
proposed in the context of collider detector physics.
We believe that three main aspects which were not ex-
ploited in similar works contributed to this:

– the use a generative model that is designed to handle
well space correlations, and the use of a conditioning
space (i.e. that of particle-level images) that encodes
large amounts of spatial information;

– the explicit handling of the sparsity through the
soft-mask layer;

https://inspirehep.net/record/1671151


๏ CPU is only part of the problem. Storage is the 
other big one (biggest at the moment) 

๏ A typical LHC event takes 1 MB of disk / tape. 
Typically, multiple copies of the same event are 
stored in different sites worldwide 

๏ After all processing, a typical analysis uses a 
few KB of data: high-level features computed from 
the 1 MB of raw information (e.g. CMS nanoAOD) 

๏ Can we use a generative model to go straight to 
this dataset? 

๏ PRO: big save both on disk & CPU 

๏ CONS: the training setup is analysis specific. 
Several Generative Models will be needed to 
cover all use cases

An application-specific approach

 35



RECO→ RECO GAN
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Noise Generator N-Dim learned 
distribution

RECO DATA

Discriminator

Real RECO DATA 
or “FAKES”?

๏ We consider a classic GAN setup as baseline (also tried wGAN) 

๏ Train a generator an discriminator in an adversarial fashion 

๏ Add regression of mℓℓ to the generator cost function, in order to 
stabilize the training 

๏ Implemented in keras+TF 

๏ Running on server mounting GTX1080 cards + CSCS Piz Daint (project cn01)

mℓℓ regression (to 
help convergence)



Training
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• Somewhat stable — collapses after ~50k epochs
• Most distributions have good agreement, but network has issues with sharp edges 

(e.g., metphi, lep charge)
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7animationFigure 3. Left: Discriminator and generator loss as a function of the training epoch, when training
with (top) and without (bottom) the skip-connection discriminator. Right: Mean and width of the
m`` distribution returned by the regression network during the same training.

As one can easily predict, GANs have problems with discrete quantities. In the case of
the vertex distribution (see Section 2), we find it convenient to make the feature continuous,
applying a Gaussian smearing. One can then take the integer part of the continuous feature
returned by the generator in a post-processing phase. This approach could be used in general
for any discrete quantity, but it is also true that a use-case-dependent clever design of the
dataset might avoid the need to deal with some of the discrete features. For instance, when
dealing with opposite-charge lepton pairs, one could order the two leptons by their electric
charge (rather than by the pT ) and implicitly encode any correlation between the charge
and kinematic features into differences in the distribution of the kinematic quantities (e.g.,
p
(+)
T vs.p(�)

T ). We didn’t follow this strategy here, in the spirit of showing the drawbacks as
well as the strong points of the approach we propose.

We also observe a problem with sharp edges, notably in the case of periodic variables
like the � distributions. In general, it is convenient to exploit the azimuthal symmetry of
collider detectors to rotate all the four-momenta, fixing the � = 0 for one of the particles
(in our case, the second lepton). Doing so, one reduces the dataset dimensionality by one,
and replaces the sharp-edged � distributions with the better behaving �� quantities. The
problem with edges also justifies the usage of Cartesian coordinates for target features,
rather than polar coordinates.

We stress the fact that a � rotation is not a generic solution. In the case of our
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๏ fixed c = 0.01 

๏ Dataset size: 2M events 

๏ 100K epochs / 512 events per batch 

๏ Multiple trainings of the same model 
with randomized starting point, to 
minimise dependency on initial 
conditions 

๏ (as normal with GANs) training quite 
unstable and wGAN didn’t really help 

๏ Cannot use the loss function itself 
as a guide to the best model 

๏ instead, work on defining a generator 
quality assessment based on 
statistics tests

๏ Loss function: cross entropy + c · mse(mℓℓ)



๏ Define global- and feature-specific quality tests

Generator quality

 38

๏ Work in progress: investigating usage of standard pdf-distance 
definitions (KL divergence, earth-mover distance, etc)



Results

 39

Results With Everything

 9

Trial  Epoch   LepIsoRank  MetPhiRank  MLLRank  ScoreRank  StatsScore    MLLKS     MetPhiKS  LepIsoKS  SortKey
12     69500   160         298         59       43         27.826635     0.085580  0.032840  0.236480  560.000000
12     99000   34          166         107      392        47.069988     0.096820  0.024580  0.188500  699.000000
6      29000   144         309         79       228        40.682663     0.090900  0.033440  0.232180  760.000000
12     53000   571         139         23       67         30.737935     0.075540  0.022300  0.305880  800.000000
7      89500   85          448         88       181        38.685347     0.092740  0.041520  0.214840  802.000000
12     81500   284         74          306      154        37.152292     0.122060  0.013740  0.263080  818.000000

Again, many of the best models identified this way were at the top of the 
other lists. This is seems to be a reasonable way to rank the models before 
spending human energy.

Probably Best Overall



GEN→ RECO GAN
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• In view of large statistics needs, 
one can use generative models 
as statistics augmentation tools

• For instance, could generate 
expert-feature quantities used 
in an analysis (muon four-
momenta, jet momenta, etc.)

• Like sampling from histogram 
with two main advantages

• no need to bin

• generalizes to multi-
dimensional problems

GENERATION

SIMULATION

RECONSTRU
CTION

GEANT

Tracking+clust
ering+…

+ParticleFlow

ANALYSIS-
SPECIFIC 
DATASET

Selection

Fast 
Simulation

with K. Dutta, N. Amin, B. Hashemi and D. Olivito (in preparation)



๏ Dimuon events at LHC 

๏ Typical analysis would use a few handful of quantities (muon 
momenta, isolation, jet pTs, etc) 

๏ Can learn the N-dim distribution of these quantities with GAN setup 

๏ Can use the generator network as a fastsim tool

An example

 41

GEN DATA

Noise

Generator N-Dim learned 
distribution

RECO DATA

Discriminator

+

Real RECO DATA 
of “FAKES”?

GEAN+…

with K. Dutta, N. Amin, B. Hashemi and D. Olivito (in preparation)



๏ Dimuon events at LHC 

๏ Typical analysis would use a few handful of quantities (muon 
momenta, isolation, jet pTs, etc) 

๏ Can learn the N-dim distribution of these quantities with GAN setup 

๏ Can use the generator network as a fastsim tool

An example

 42

Dilepton mass (not given as input quantity) is learned 
from the four-momenta

PRELIMINARY

PRELIMINARY

with K. Dutta, N. Amin, B. Hashemi and D. Olivito (in preparation)



Analysis-specific unfolding

 43

• One could invert the process and learn to predict 
the GEN features from the RECO ones

• Formally the same procedure

• Invert the role of the target and the input datasets

Unfolding

PRELIMINARY

PRELIMINARY

with K. Dutta, N. Amin, B. Hashemi and D. Olivito (in preparation)

GENERATION

SIMULATION

RECONSTRU
CTION

GEANT

Tracking+clust
ering+…

+ParticleFlow

ANALYSIS-
SPECIFIC 
DATASET

Selection



Fast Decision Taking



EXAMPLE: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary16 inputs

64 (relu)

32 (relu)

5 (softmax)

32 (relu) Fully connected deep 
neural network

The LHC Big Data Problem
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High-Level  

Trigger
L1 

trig
ger

1 KHz  
1 MB/evt

40 MHz

100 KHz

CASE STUDY: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary

Fully connected deep 
neural network

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

Easy

sort of 
OK

Complicated: 
need to be fast 
(10 ms) and with 

very small 
resources



๏ The L1 trigger is a complicated 
environment 

๏ decision to be taken in ~10 μsec 

๏ only access to local portions of 
the detector 

๏ processing on Xilinx FPGA, with 
limited memory resources 

๏ Some ML already running @L1  

๏ CMS has BDT-based regressions 
coded as look-up tables 

๏ Working to facilitate DL solutions 
@L1 with dedicated library

Bring DL to L1

 46

HLS4ML: CERN/FNAL/MIT collaboration

PROJECT OVERVIEW 14

compressed 
model

Keras 
TensorFlow 

PyTorch 
…

tune configuration
precision  

reuse/latency

HLS  
project

HLS  
conversion

Co-processing kernel

Custom firmware design

model

Usual ML  
software workflow

hls  4  ml

hls4ml

HLS  4  ML

https://hls-fpga-machine-learning.github.io/hls4ml/


๏ You have a jet at LHC: spray of 
hadrons coming from a “shower” 
initiated by a fundamental 
particle of some kind (quark, 
gluon, W/Z/H bosons, top quark) 

๏ You have a set of jet features 
whose distribution depends on the 
nature of the initial particle 

๏ You can train a network to start 
from the values of these 
quantities and guess the nature 
of your jet 

๏ To do this you need a sample for 
which you know the answer 

Example: jet tagging

 47

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic! 
Might not be the best application, but a familiar one


ML in substructure is well-studied



Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Jet substructure features

 21

Jet substructure observables provide large discrimination 
power between these types of jets


mass, multipliticity, energy correlation functions, … 
(computed with FastJet [*])

[*] E. Coleman et al. JINST13(2018) T01003,

    M. Cacciari et al, Eur. Phys. J.C72(2012)1896 

These are expert-level features

Not necessarily realistic for L1 trigger 
“Raw” particle candidates more suitable (to be studied next) 
But lessons here are generic 

One more case: H→bb discrimination vs W/Z→qq requires more “raw” inputs for 
b-tagging information
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Each input layer 
transmits a 

feature to the 
following hidden 

layer

𝔁1 𝔁N-1 𝔁N
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Jet substructure features

 21

Jet substructure observables provide large discrimination 
power between these types of jets


mass, multipliticity, energy correlation functions, … 
(computed with FastJet [*])

[*] E. Coleman et al. JINST13(2018) T01003,

    M. Cacciari et al, Eur. Phys. J.C72(2012)1896 

These are expert-level features

Not necessarily realistic for L1 trigger 
“Raw” particle candidates more suitable (to be studied next) 
But lessons here are generic 

One more case: H→bb discrimination vs W/Z→qq requires more “raw” inputs for 
b-tagging information

๏ Simple DNN based on 
high-level features 
(jet masses, 
multiplicities, energy 
correlation functions)

CASE STUDY: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary

Fully connected deep 
neural network

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

Example: jet tagging



๏ Simple DNN based on 
high-level features 
(jet masses, 
multiplicities, energy 
correlation functions)
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Full model

EXAMPLE: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

HLS4ML Preliminary16 inputs

64 (relu)

32 (relu)

5 (softmax)

32 (relu) Fully connected deep 
neural network

Sensitivity = True Positive Rate
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sp

ec
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HLS4ML Preliminary

Fully connected deep 
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16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax

Example: jet tagging



๏ Pruning: remove 
parameters that don’t 
really contribute to 
performances 

๏ force parameters 
to be as small as 
possible 
(regularization) 

๏ Remove the small 
parameters 

๏ Retrain

Make the model cheaper
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Efficient NN design: compression
• Iterative approach: 

- train with L1 regularization (loss function augmented with penalty term):

 24

- sort the weights based on the value relative to the max value of the weights in that layer

Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……
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Efficient NN design: compression
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Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations
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Efficient NN design: compression
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Train 
with L1

Retrain 
with L1

Prune

Prune

Retrain 
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss

๏ Pruning: remove 
parameters that don’t 
really contribute to 
performances 

๏ force parameters 
to be as small as 
possible 
(regularization) 

๏ Remove the small 
parameters 

๏ Retrain

Make the model cheaper
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Efficient NN design: compression
• Iterative approach: 

- train with L1 regularization (loss function augmented with penalty term):

 24
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Efficient NN design: compression
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Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights 
and multiplications w/o 
performance loss



COMPRESSION 18

There are many schemes for compression 
We do a simplistic, iterative version 

Training with “L1” regularization, up-weight important synapses 
Remove X% of weights and retrain 
Rinse, repeat 

Our case study: 70% network reduction with no performance loss

< total bits, integer bits >

Reaches 32-bit floating 
point performance with 
16-bit fixed point!

Distribution of 
weights in NN

๏ Quantization: reduce the 
number of bits used to 
represent numbers (i.e., 
reduce used memory) 

๏ models are usually trained 
at 64 or 32 bits 

๏ this is not necessarily 
needed in real life 

๏ In our case, we could reduce 
to 16 bits w/o loosing 
precision 

๏ Beyond that, one would have to 
accept some performance loss

Make the model cheaper
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Efficient NN design: quantization
• In FPGAs use fixed point data types → less resources and latency than 32-bit floating 

point 

• NN inputs, weights, biases, outputs represented as

 29

0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Quantization

Quantized [24, 36–39] and even binarized [40–43] neural networks have been studied in detail as an
additional way to compress neural networks by reducing the number of bits required to represent each
weight. FPGAs provide considerable freedom in the choice of data type and precision. Both are
important to consider to prevent the wasting of FPGA resources and latency. In hls4ml we use fixed
point arithmetic, which uses less resources and latency than floating point arithmetic. Resource usage
using floating point arithmetic and integer arithmetic use the same resources.

The inputs, weights, biases, sums, and outputs of each layer (see Eq. 2.1) are all represented as
fixed point numbers. For each, the number of bits above and below the binary point can be configured
for the use case. It is broadly observed that precision can be reduced significantly without causing a
loss in performance [XXX], but this must be done with care. In Fig. 7, we show the distribution of
the absolute value of the weights after the compression described in Sec. 2.3. In this case, to avoid
overflow in the weights, at least three bits should be assigned above the binary point — two to envelope
the largest absolute value and one for the sign. The neuron values, xm, and intermediate signals in the
FPGA used to compute them, require more bits, given the form of Equation 2.1. We determine the
number of bits to assign below the binary point by scanning physics performance versus number of
these bits.

Figure 7: Distribution of the absolute value of the weights after compression.

In addition to saving on resources used for signal routing, reducing precision saves on resources
and latency used for mathematical operations. For many applications the primary limitation will be
the DSP resources of the FPGA used for multiplication. The number of DSPs used per multiplier
depends on the precision of the numbers being multiplied and can change abruptly. For example, one
Xilinx DSP48 block [XXX] can multiply a 25-bit number with an 18-bit number, but two are required
to multiply a 25-bit number with a 19-bit number. Similarly, the latency of multipliers increases with
precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with 
multiplications and sums → we perform a scan of 
physics performance versus bit precision

• To avoid overflow/underflow of weights at 
least 3 bits needed

ap_fixed<width,integer>

weights
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precision, though they can remain pipelined. Detailed exploration of the e�ect of calculation precision
is presented in Sec. 3.

– 12 –

integer bits = 2 + 1 for sign
(need more for neurons)

• But need more bits for neurons as computed with 
multiplications and sums → we perform a scan of 
physics performance versus bit precision

• To avoid overflow/underflow of weights at 
least 3 bits needed

ap_fixed<width,integer>

weights
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Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: parallelization
• Trade-off between latency and FPGA resource usage determined by the parallelization of 

the calculations in each layer 

• Configure the “reuse factor” = number of times a multiplier is used to do a computation

 31

mult

mult

mult

mult

mult

mult

mult

reuse = 4
use 1 multiplier 4 times

reuse = 2
use 2 multipliers 2 times each

reuse = 1
use 4 multipliers 1 time each

Reuse factor: how much to parallelize operations in a hidden layer

Fully parallel

Fully serial Less resources/ 
Less throughput
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TIMING 23

Behavior of pipeline 
interval controlled well 

by the reuse factor

Additional latency 
introduced by reusing 

the multipliers

15-40 clock cycles (75-200 ns)

RESOURCE USAGE 22

Tuning the throughput with reuse factor  
will reduce the DSP usage

NB: FPGA emulator over-estimates resource needs by a factor 
2-4 (tested our emulation vs actual deployment)



A roadmap

 55

๏ We need to be ready by 2025 (High-Luminosity LHC) 

๏ LHC Run 3 (2020-2022) is the ultimate demonstration opportunity 

๏ for model building, deployment and commissioning 

๏ Strong synergy with other research lines in HEP, when Deep Learning is 
even easier to apply 

๏ Dark Matter underground experiments 

๏ Neutrino experiments



Backup



Detector Monitoring



๏ When taking data, >1 person watches 
for anomalies in the detector 24/7 

๏ At this stage no global processing of 
the event 

๏ Instead, local information from 
detector components available (e.g., 
detector occupancy in a certain time 
window)

Data Quality Monitoring
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A

B

C

Fig. 4 Example of visualization of input data for three DT
chambers. The data in (A) manifest the expected behavior
in spite of having a dead channel in layer 1. The chamber
shown in (B) su↵ers of a region of layer 1 with lower e�ciency,
which should be identified as anomalous. The plot in figure
(C) instead shows regions of low occupancy across the 12
layers and should also classified as faulty. According to the
run log, this e↵ect was induced by a transient problem with
the detector electronic.

use of layer by layer one dimensional linear interpo-
lation to match the size of the smallest layer s in
dataset, where ↵ is an interpolation point:

↵ = j
ni

ns

x̃i,j = frac(↵)(xi,b↵c+1 � xi,b↵c) + xi,b↵c

– smoothing: according to CMS DT experts, misbe-
having channels are problematic only when a cluster
of them, spatially contiguous, is observed. Instead,
isolated misbehaving channels are not considered a
problem. To account for this caveat the one dimen-
sional median filter was applied:

x̂i,j = med(xi,j , xi,j+1, xi,j+2).

– normalization: the occupancy of the chambers in the
input dataset depends on the integration time and
on the LHC beam configuration and intensity i.e.
on the number of LS spanned when creating the
image and corresponding luminosity. The normal-
ization strategy depends on the need of comparing
data across chambers or across runs: the precise pro-
cedure used in the two approaches is described in
Sections 4 and 6 respectively.

A

B

Fig. 5 Example of two kinds of input sample preprocesing.
(A) reshaping each layer directly from acquired (raw) values
using linear interpolation. (B) smoothing the raw data with
median filter before reshaping. The isolated low-occupancy
spot in layer 1, corresponding to a dead channel, is discarded.

3 Machine learning for DQM Anomaly

Detection

Machine learning techniques present several advantages
over the currently adopted procedure. The high data
dimensionality precludes simple parametric density es-
timation of the normal behavior; and statistical testing
is not su�cient, as faulty data must be singled out.
This leaves us with an extremely wide range of meth-
ods, that we will briefly discuss here in the light of both
the operational condition and the a priori knowledge of
the data (for a general survey see [5]).

Anomaly detection techniques usually make at least
one of the two following assumptions: rarity of abnor-
mal events, which are considered outliers with respect
to the normal generating process; and/or partial or
complete lack of representative examples of all type
of behaviors. If such representative examples are avail-
able, anomaly detection reduces to binary classification
(supervised learning), with possibly the help of various
resampling methods [6] or reformulation of the objec-
tive function [7] for dealing with class imbalance. In our
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Fig. 2 View on wheel positioning in the detector.

Fig. 3 Numbering schema of the Drift Tube sectors and sta-
tions.

CMS data are organized in acquisition runs (or just
runs in CMS jargon), corresponding to homogeneous
conditions both of the CMS detector and of LHC ac-
celerator. Runs are denoted as integers, with increasing
numbering along time. Their duration is varying from
as little as few seconds to as much as several hours.

Each of them is divided into luminosity sections
(LSs), a time interval corresponding to a fixed beam or-
bits in the LHC and amounting to approximately 23 s.
LSs are numbered progressively from 1 at the start of
each run. A single LS can be identified univocally by
specifying the LS number and the run number.

Runs are grouped together when corresponding to
the same fill, i.e. the time interval between two proton
injections into the LHC. A fill can last for as much as
tens of hours. During the fill, the number of protons in
the beam reduces, due to proton collisions happening
at four interaction points along the ring. As a result of
that, the beam intensity (also referred as luminosity)

decreases along the fill as well as the absolute number
of events.

For each chamber k and each run, the current DQM
infrastructure, [4], records an occupancy plot matrix Ck,
which is the total number of electronic hits at each read-
out channel. The occupancy plot matrix can be viewed
as a varying size two-dimensional array organized along
layer (row) and channel (column) indexes:

Ck = {xk
i,j ; 1  i  l, 0  j < ni},

where l = 12 is the number of layers and ni is the
number of channels in layer i. Formally we should index
the chambers and their components e.g. Ck and xk

i,j but
wherever the discussion concerns a single chamber, we
drop the k index for clarity until Section 6. Figure 4
shows examples of occupancy plot matrices.

In this work we look for an algorithm that identi-
fies faulty chambers. Only data collected during LHC
collision runs, and acquired during year 2016 and 2017
have been used in this study. The dataset is composed
of 21000 chamber samples collected during 84 runs. We
consider two complementary approaches to the prob-
lem:

– Local approach: data collected in each layer is treated
independently from the other layers. The domain
experts regard chambers which have occupancy of
the hits with small variance between neighboring
readout channels as expected behavior. Chambers
which have dead, ine�cient or noisy regions, are
considered problematic, (see figure 4 for reference).
We explore this approach in Section 4.

– Extended local approach: data collected in each cham-
ber is treated independently from the other cham-
bers. We extend the local approach to account for
failures spotted only when the information about all
layers within one chamber is present. We exploit this
approach in the algorithm described in Section 6.

– Global approach: we use the information of all the
chambers for a given run. The geographical infor-
mation in the CMS detector (wheel, station or sec-
tor) impacts the occupancy distribution of the chan-
nel hits. We exploit this information in the test de-
scribed in Section 7.

Regardless of the strategy, the data need to be pre-
processed. Three steps are performed (for visual inter-
pretation, see figure 5):

– standardization of the chamber data: the number of
readout channels in a layer (corresponding to one
row of channels in a muon chamber) varies not only
within the chamber but also depends on the cham-
ber position in the detector. This quantity falls be-
tween 47 and 96. In order to have fixed input di-
mensionality, the matrices were composed with the



๏ Given the nature of these 
data, ConvNN are a natural 
analysis tool. Two 
approaches pursued 

๏ Classify good vs bad 
data. Works if failure 
mode is known 

๏ Use autoencoders to 
assess data “typicality”. 
Generalises to unknown 
failure modes 

Two approaches
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This choice scaled the original 21000 chambers to 228480
samples.

Hit counts in a layer are normalized to a [0, 1] range,
dividing them by the maximum of the absolute occu-
pancy value in the layer:

zi,j =
x̃i,j

max(Xi)
,

The need for normalization comes form the intrinsic
variation of the occupancy depending on the spatial
position of the chamber, that will be described in more
details later (Section 6).

The primary goal of this first experiment is to eval-
uate the potential of the various flavors of Machine
Learning methods. We compare:

– supervised learning, with a) a fully connected neu-
ral network (DNN), and b) a convolutional neural
network (CNN), [16];

– semi-supervised learning, with a) Isolation Forest,
and b) µ-SVM.

– unsupervised with a) a simple statistical indicator,
the variance within the layer, and b) an image pro-
cessing technique, the maximum value of the vector
obtained by the application of a variant of an edge
detection Sobel filter [17]: Si = max(

⇥
�1 0 1

⇤
⇤Xi).

The ground truth has been established on a ran-
dom subset of the dataset, by visually inspecting the
input sample before any processing: 5668 layers have
been labeled as good and 612 as bad. The 9,75% fault
rate is representative of the real situation. With this ra-
tio, both anomaly and outlier detection approach can
be considered. Out of this sample 1134 of good and
123 of bad, corresponding to 20% of the labeled layers,
were reserved to compose the test set. The rest of the
samples were used for training and validation for the
semi-supervised and supervised methods.

The Isolation Forest and µ-SVM were cross-validated
using five consecutive, stratified dataset folds to search
for their corresponding optimal hyper-parameters. Sub-
sequently, the Isolation Forest was retrained using those
hyper-parameters on the full unlabeled dataset, while
µ-SVM was retrained using only negative class.

The architecture of the CNN model with one di-
mensional convolution layers used for this problem is
shown in figure 6. The hidden layers use rectified lin-
ear unit as activation while the final output layer uses
softmax function. We have not applied smoothing pre-
processing step, described in Section 2, allowing the
model to learn its filters. CNN [16] was trained us-
ing Adam [18] optimizer and early stopping mechanism
with patience set to 32 epochs. The model was imple-
mented in Keras [19], using TensorFlow [20] backend.

Fig. 6 Convolutional Neural Network model architecture
used to target local strategy.

Additionally we have weighted our samples to account
for class imbalance. The weight � for a sample in class
 2 {0, 1} is equal to:

� =
|S|

2 · |S |

S = S0 [ S1

The DNN was primary used to benchmark the con-
volution kernels. Similarly to CNN it has one hidden
fully-connected layer with 8 units using rectified linear
unit as activation and a softmax function on the output
layer.

5 Detecting unusual behavior within a chamber

5.1 Motivation

This section presents an experiment focusing on the
extended local approach based on the assumption that
the occupancy pattern within a chamber depends on
the layer information. This strategy aims, for example,
at detecting voltage related problems when a hit oc-
cupancy decreases uniformly in a specific part of the
subdetector e.g. a layer or a group of layers.

5.2 Dataset and methods

As a preliminary step, the chamber occupancy data
in the input dataset were evaluated by the convolu-
tional model presented in Section 4. All chambers with
any layer labeled as faulty were discarded from train-
ing. For simplicity, due to a lack of the middle group
of four layers, chambers located in station 4 were dis-
carded as well. The above changes e↵ectively narrowed
the training dataset to 8452 matrices. The samples were
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A

B

Fig. 7 Example of impact of layer voltage on hit counting.
(A) Operating at 3200 V. (B) Operating at 3450 V. Both
examples should be regarded as anomalies.

composed by concatenating smoothed and standardized
layers within the same chamber C̃ creating matrices of
shape 12⇥46. The hit occupancy within one layer were
normalized using min-max scaler:

Ĉ =
C̃ �min(C̃)

max(C̃)�min(C̃)

This normalized values to [0, 1] range and retained re-
lations between the layers.

In order to evaluate the model, we use a subset of
the data (runs 304737, 304738, 304739, 304740) during
which layer 9 were operating at a di↵erent voltage in
a fraction of the chambers, see figure 7. During runs
304737, 304738, 304739, 304740 at 3450 V, and dur-
ing run 302634 at 3200 V. Due to the physics of gas
ionization by radiation, this results in an absolute dif-
ference in hit counting, which globally a↵ects the de-
tector. As we pointed out in Section 4 a local model
was not trained to detect such behavior as it regards
only 6% of those layers as faulty. The part of the test
set regarded as good chambers is corresponding to a
run 304736 where voltage problem was not present. Fi-
nally, we discard all chambers from good subset having
at least one layer problem according to our local algo-
rithm and finally we visually inspected them to seed
out any type II errors from the test set.

As the cost of labeling samples increases with re-
spect to local approach, we compared only semi-supervised
deep learning methods, including:

– simple bottleneck auto-encoder,
– convolutional auto-encoder,
– denoising auto-encoder,
– auto-encoder with sparsity regularization in hidden

layers.

Similarly to local approach we trained the auto-encoders
using Adam optimizer and early stopping mechanism

A

B

Fig. 8 Simple, denoising, sparse (A) and convolutional (B)
auto-encoder models architecture used to target contextual
strategy.

with the patience set to 32 epochs. Again, the imple-
mentation was prepared using Keras library with Ten-
sorFlow backend. The architecture of the model is shown
in figure 8. A simple, denoising and sparse auto-encoders
share similar architecture with parametric rectified lin-
ear unit as activations, while the convolutional auto-
encoder had a dedicated architecture. All models was
instructed to minimize the mean squared error ✏ be-
tween original, x, and reconstructed, ẍ, samples:

✏ =
1

k

X

k

X

i,j

(xk
i,j � ẍk

i,j)
2

6 Detecting unusual behavior using global

information

6.1 Motivation

This section presents a concept focusing on the global

approach based on the assumption that the occupancy
pattern depends on the chamber position in the detec-
tor, given the cylindrical symmetry of the LHC physics.
For instance the expected hit occupancy of chambers in
wheel 0 (closer to the collision point) will be lower than
chambers in the outer wheels (sitting far from the col-
lision point and protected by more material), whereas
chambers in wheels �2 and +2 are expected to show
similarities, due to the detector and collider symmetry.

A. Pol et al., to appear soon
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Additionally, the experts expect chambers to behave
alike in the context of whole subdetector across di↵er-
ent runs.

The problem is clearly contextual, in the sense that
important explanatory attributes are not part of the
basic data features. Conditional anomaly detection [21]
has been proposed to deal with such situations when
the relevance of external attributes is unknown: for in-
stance, if a set of environmental or technical attributes
were monitored that could impact the behavior of the
detector components. In our case, the spatial position
of the chambers are both our only external attribute,
and their impact is assured. Thus, we are back to a
point anomalies problem.

6.2 Methods

In this approach we have used auto-encoder setup equiv-
alent to a simple bottleneck auto-encoder presented in
Section 5 with the change of the size of a latent layer,
which was decreased to 3 units for visualization pur-
poses.

Global faults were not tracked before by DT experts.
Hence, we are left only with unsupervised methods.

7 Results and Discussion

7.1 Local approach

The performance of the trained models on a held out
test dataset can be seen in figure 9. Due to the simplic-
ity of the model, the training converges to a satisfac-
tory result, despite the small size of the training sam-
ple. As shown in the score distribution of figure 10, the
proposed architecture separates anomalous from nor-
mal layers significantly. Model’s working point was cho-
sen at 0.5 not favoring specificity nor sensibility. When
the cost of type 1 and type 2 errors is defined, the
acceptable range of the working point could be any-
where in [0.1, 0.9] range. Compared to statistical, im-
age processing or other machine learning based solu-
tions, supervised deep learning clearly outperforms the
rest. Although the Area Under Curve (AUC) of the
fully-connected deep neural network is comparable to
the one of CNN, requiring maximum specificity and
sensibility makes it a favorable solution. The relatively
good performance of the basic and unsupervised vari-
ance method, compared to the poor results of the filter,
and the near optimal performance of the DNN, show
that the features to learn are not simple contrasts, al-
though the superior performance of the CNN demon-
strate that the initial edge detection layer is useful.

Fig. 9 ROC and AUC of respective algorithms used in local
approach

Fig. 10 Distribution of scores in local approach

The limited performance of Isolation Forest is likely
to come from the violation of its fundamental assump-
tion, that faults are rare (remember that the fault rate
is in the order of 10%) and similar (masking). The infe-
rior performance of the typical semi-supervised method
(SVM) illustrates the well-known smoothness versus lo-
cality argument for deep learning [13,12]: the di�culty
to model the highly varying decision surfaces produced
by complex dependencies involving many factors.

The algorithm currently implemented in DQM sys-
tem targets a specific failure scenario and evaluates
samples per chamber, unlike our per layer approach.
Although it quantifies severity of the fault, it does not
identify specific layers with problems. Based on the la-
beled data we were able to construct a per-chamber
score to benchmark the algorithm i.e. if it indicates
there is at least one faulty layer in a chamber. While the
algorithm’s specificity was 91%, its sensitivity was only
26%. This appalling hit rate is not surprising as the test
was only targeting identification of dead regions.

Another drawback of the DQM algorithm is its per-
formance in low statistics region i.e. beginning of the
run. As seen in figure 11, convolutional model gradu-
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Fig. 11 Stability of proposed model and the algorithm cur-
rently implemented in production. The three lines correspond
to results based on data from runs 306777, 306793, 306794.

ally adds alarms until reaching stability. The produc-
tion test is doing the opposite, generating a substantial
fraction of false alarms in the early stages of the run.

7.2 Extended local approach

To judge the performance of the auto-encoders, we have
used model’s mean squared error between original sam-
ple and its reconstruction in layer 9 of each chamber
in the test set (see figure 12) as an anomaly indica-
tion. Additionally this error could be quantified with
the severity of the problem as shown in figure 13. Fig-
ure 12 shows good performance of all models, especially
sparse auto-encoder. Although the AUC is not as high
as in local approach it is exclusively because of cham-
bers with layers operating at 3450 V which are di�-
cult to spot using only the occupancy data even with a
visual inspection. The chambers with layers operating
at lower voltage are having clear error separation from
good chambers as seen in figure 13.

As part of the experimental setup we accounted this
approach could cover the local anomalies as well. How-
ever, all the models were not able to find those kind of
anomalies better than a random guess, indicating that
we can get best results when applying both models in
a pipeline.

7.3 Global approach

Global approach is able to spot unusual behavior of
DT chambers taking into account the geographical con-
strains and paves the way to more flexible assessment
by scoring per detector region.

Figure 14 shows an example of latent representa-
tion of the chamber data clustering depending on the
chamber position in the detector. Additionally, while

Fig. 12 ROC and AUC of respective auto-encoders used in
contextual approach

Fig. 13 Mean squared error distribution for auto-encoder
with sparsity regularization.

Fig. 14 Latent representation of the chamber-level data. The
samples cluster according to position in the detector. Here
depending on the station, which correspondns to a distance
to collision point.

investigating latent representation for only one cham-
ber across di↵erent runs in figure 15, the latent rep-
resentation tends to cluster depending on the number
of problematic layers. We believe that this method will
help experts detecting previously unknown failure sce-
narios and with maintaining the list of transient issues.

A. Pol et al., to appear soon



๏ Autoencoder-based 1-class approach 
generalises to later stages of quality 
assessment 

๏ after reconstruction of the events, 
event reconstruction allows a global 
assessment (w.g., looking at 
electrons, muons, etc rather than 
hits in the detector) 

๏ A global autoencoder can spot all 
these features 

๏ Monitoring individual contributions 
to loss function (e.g., MSE) one can 
track the problem back to a specific 
physics object/detector component

Data Quality Certification
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After adding L2 kernel regularizer to the AE

ROC_AUC increased from ~0.9735 to ~0.9782 and this plot also shows 
we are going the right direction 20

Normal lumisection example (good classified as good)

Note the scale! Maximum of ~3 versus 70-100 for upcoming problems. 
22

F. Široký  et al., to appear sooner or later



HL4ML: FPGA details
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STUDY DETAILS

Xilinx Vivado 2017.2 
Results are slightly different in other versions of Vivado 

e.g. 2016.4 optimization is less performant for Xilinx ultrascale FPGAs 

Clock frequency: 200 MHz 
Latency results can vary (~10%) with different clock choices 

FPGA: Xilinx Kintex Ultrascale (XCKU115-FLVB2104) 
Results are slightly different in other FPGAs  

e.g. Virtex-7 FPGAs are slightly differently optimized 

25



๏ Neural network can model non linear functions 

๏ the more complex is the network, the more functions it can approximate 

๏ Neural network are faster to evaluate (inference) than typical reco 
algorithm.  

๏ This is the speed up we need 

๏ Neural Networks (unlike other kind of ML algorithms) are very good with raw 
(non-preprocessed) data (the recorded hits in the event) 

๏ could use them directly on the detector inputs

Why Deep Learning

 63

(pT, η, φ, E)OFFLINE = 𝑓( (pT, η, φ, E)ONLINE ) 

(pT, η, φ, E)OFFLINE = 𝑔( Event hits ) 

One would have to 
learn 𝑓 and 𝑔 to 
evaluate them at 

trigger. Online 
processing is 

replaced by offline 
training



๏ Approach works in principle 

๏ Can identity easily 2 of the 3 models 

๏ With enough statistics, could see the third 

๏ Might not work in absolute 

๏ encoder based on physics motivate quantities which 
are not model-agnostic 

๏ Use deep:learning: train on raw data directly. To be 
be done next

Beyond the toy-model

 64
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Kinematic Bias?
๏ With 99% signal efficiency, bias on kinematic variables within the 
uncertainty of a trigger-efficiency measurement



TOPCLASS: do we kill New Physics?
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Figure 9: Selection efficiencies of different BSM models using 99% TPR working point as functions
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TOPCLASS: do we kill New Physics?

 (GeV)
T

Lepton p
20 40 60 80 100120140160180200

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

500

1000

1500

2000

 selectortt W+jets selector

OR selectors Total events

 (GeV)TS
0 100 200 300 400 500 600 700

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

 selectortt W+jets selector

OR selectors Total events

 (GeV)miss
TE

0 50 100 150 200 250

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

4000

 selectortt W+jets selector

OR selectors Total events

(a) A ! H
+
W

�

 (GeV)
T

Lepton p
0 50 100 150 200 250 300 350 400

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

 selectortt W+jets selector

OR selectors Total events

 (GeV)TS
0 500 1000 1500

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

500

1000

1500

2000

2500

 selectortt W+jets selector

OR selectors Total events

 (GeV)miss
TE

0 50 100 150 200 250 300 350 400 450

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

 selectortt W+jets selector

OR selectors Total events

(b) High-mass A ! H
+
W

�

 (GeV)
T

Lepton p
0 100 200 300 400 500 600

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

500

1000

1500

2000

2500

 selectortt W+jets selector

OR selectors Total events

 (GeV)TS
0 500 1000 1500 2000

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

500

1000

1500

2000

2500

 selectortt W+jets selector

OR selectors Total events

 (GeV)miss
TE

0 20 40 60 80 100

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

4000

5000

 selectortt W+jets selector

OR selectors Total events

(c) A ! 4`

 (GeV)
T

Lepton p
50 100 150 200

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

500

1000

1500

2000

 selectortt W+jets selector

OR selectors Total events

 (GeV)TS
0 50 100 150 200 250 300 350 400

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

 selectortt W+jets selector

OR selectors Total events

 (GeV)miss
TE

0 50 100 150 200 250

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

500

1000

1500

 selectortt W+jets selector

OR selectors Total events

(d) W 0

 (GeV)
T

Lepton p
0 100 200 300 400 500 600

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

 selectortt W+jets selector

OR selectors Total events

 (GeV)TS
0 200 400 600 800 1000 1200

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

4000

 selectortt W+jets selector

OR selectors Total events

 (GeV)miss
TE

0 20 40 60 80 100

Se
le

ct
io

n 
Ef

fic
ie

nc
y 

(T
PR

)

0

0.2

0.4

0.6

0.8

1

0

1000

2000

3000

 selectortt W+jets selector

OR selectors Total events

(e) Z0

Figure 9: Selection efficiencies of different BSM models using 99% TPR working point as functions
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