The Ophidia project: towards a High Performance Data Analytics and Machine Learning framework for climate change

Sandro Fiore, Ph.D. Advanced Scientific Computing Division **SOSC 2018 Second International PhD School Open Science Cloud** Perugia, September 19, 2018

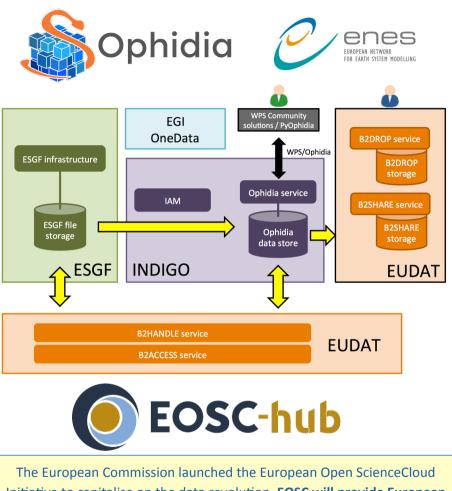
Outline

- EOSC, ECAS and EOSC-hub
- Ophidia
 - Architecture 1.0
 - Storage model
 - Primitives
 - Data and metadata operators
 - Architecture 2.0
 - Workflow support
 - Some real use cases
 - PyOphidia
 - Native I/O server for in-memory analytics
- ECASLab in the context of EOSC-hub
 - Jupyter-Hub, Grafana, Workflow IDE
- Future work and conclusions
 - Looking forward
 - Website and more

EOSC, ECAS & Ophidia

The context: European Open Science Cloud

- The European Open Science Cloud (EOSC) is an ambitious program will offer a virtual environment with open and seamless services for storage, management, analysis and re-use of research data, across borders and scientifc disciplines by federating existing scientifc data infrastructures, currently dispersed across disciplines and Member States.
- ✓ This programme will deliver an Open Data Science Environment that federates existing scientific data infrastructures to offer European science and technology researchers and practitioners seamless access to services for storage, management, analysis and re-use of research data presently restricted by geographic borders and scientific disciplines.


✓ EOSC-hub is a key infrastructural project in the EOSC landscape

ENES Climate Analytics Service (ECAS)

- ✓ The ENES Climate Analytics Service (ECAS), is a Thematic Services in EOSChub to supports climate data analysis
- Enable server-side analytics workflows for Earth system researchers and beyond
- Induce cultural change: No more "download and process at home"
- ✓ Involved institutions: CMCC and DKRZ

ECAS builds on top of the **Ophidia big data analytics framework** integrating components from INDIGO-DataCloud, EUDAT and EGI

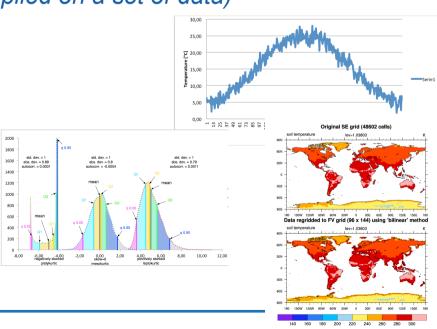
Initiative to capitalise on the data revolution. **EOSC will provide European** science, industry and public authorities with world-class digital infrastructure that bring state of the art computing and data storage capacity to the fingertips of any scientists and engineer in the <u>EU</u>.

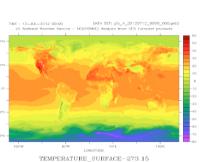
EOSC-hub receives funding from the EU's Horizon 2020 research and innovation programme under grant agreement No. 777536.

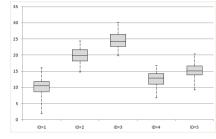
Ophidia: a scientific big data analytics framework

Ophidia (<u>http://ophidia.cmcc.it</u>) is a CMCC Foundation research project addressing fast and big data challenges for eScience

It provides support for declarative, parallel, server-side data analysis exploiting parallel computing techniques and database approaches

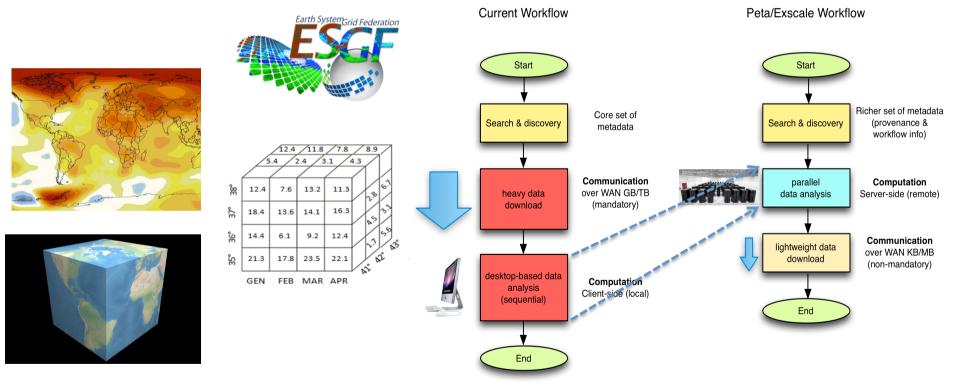

It provides end-to-end mechanisms to support complex experiments and large processing workflows on scientific datacubes




Data analytics requirements for Ophidia

Requirements and needs focus on:

- Time series analysis
- Data subsetting
- Model intercomparison
- Multimodel means
- ✤ Massive data reduction
- Data transformation (through array-based primitives)
- Param. Sweep experiments (same task applied on a set of data)
- Climate change signal
- Maps generation
- Ensemble analysis
- Data analytics worflow supportBut also...
- ✤ Performance
- ✤ re-usability
- extensibility



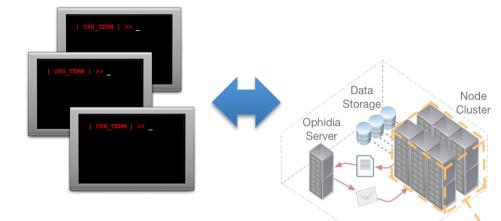
Ophidia in a nutshell

- ✓ Big data stack for scientific data analysis
- ✓ Features: time series analysis (array-based analysis), data subsetting (by value/index), data aggregation, model intercomparison, OLAP, etc.
- ✓ Use of parallel operators and parallel I/O
- ✓ Support for complex workflows / operational chains
- Extensible: simple API to support framework extensions like new operators and array-based primitives
 - ✓ currently 50+ operators and 100+ primitives provided
- ✓ Multiple interfaces available (WS-I, GSI/VOMS, OGC-WPS).
- ✓ Programmatic access via C and Python APIs
- ✓ Support for both batch & interactive data analysis

Big data and HPC convergence as a paradigm shift to largescale data analysis experiments

- Volume, variety, velocity are key challenges for big data in general and eScience contexts too
- High Performance Data Analytics solutions are becoming key to manage data analysis at scale
- In-memory analytics can help reducing time to solution
- Workflow management has to orchestrate millions of analytics jobs

S. Fiore, A. D'Anca, C. Palazzo, I. Foster, D. N. Williams, G. Aloisio, "**Ophidia: toward bigdata analytics for eScience**", ICCS2013 Conference, Procedia Elsevier, Barcelona, June 5-7, 2013

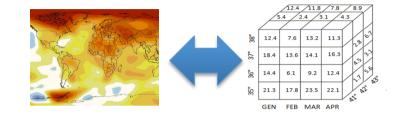

Server-side paradigm and the datacube abstraction

Svstem

metadata of the

datacube (size,

distribution, etc.)



Oph_Term: a terlminal-like commands interpreter serving as a client for the Ophidia framework

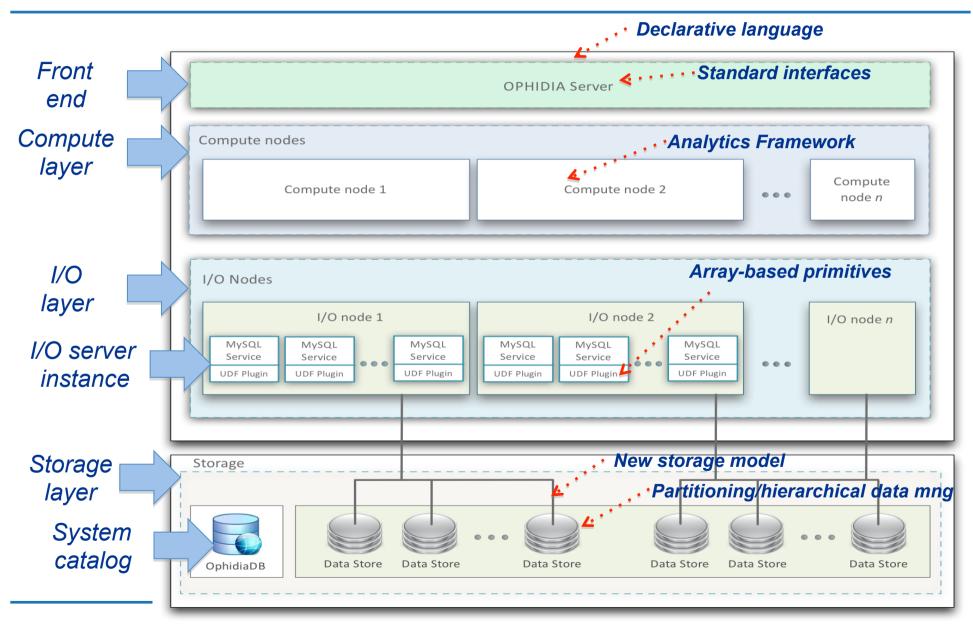
Ophidia framework: declarative, parallel server-side processing

Through the **oph_term** the user can send commands to the Ophidia framework to manipulate datasets

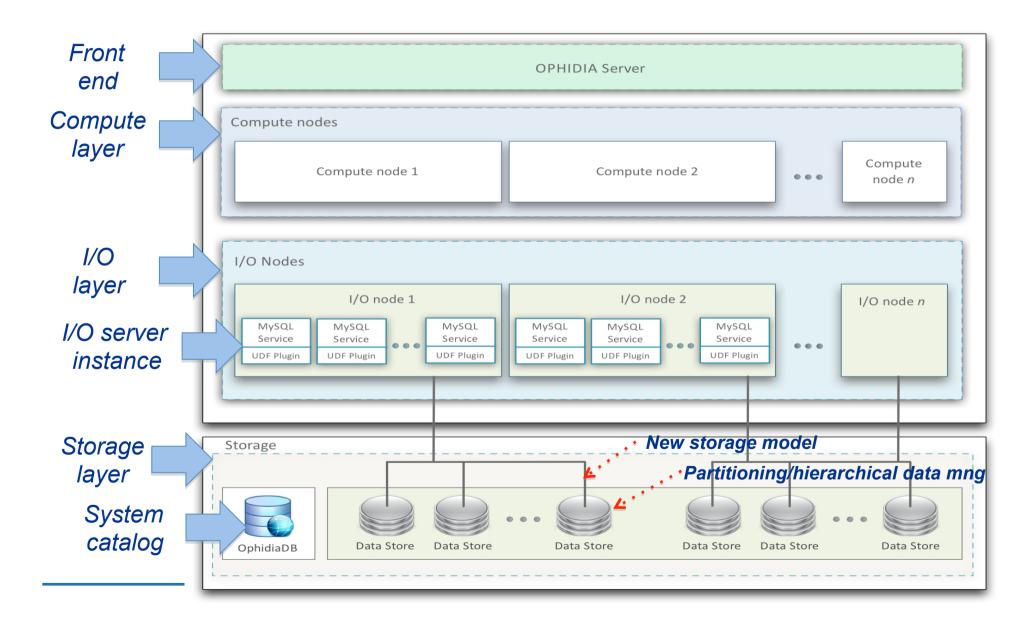
Three interaction modes: **Operators, Workflows, Python Apps**

<Abstract>> MD_Metadata + fileidentifier [0.1]: CharacterString + language [0.1]: CharacterString + characterString + parentidentifier [0.1]: Character + hierarchyLevel [0.1]: MD_ Scc + hierarchyLevel [0.1]: MD_ Scc + hierarchyLevel [0.1]: Character + oratat [1.1]: CL_ ResponsibleF + dateStandardVame [0.1] + metadataStandardVareion [0...] + datasetURI [0.1]: CharacterStr + locate [0.1]: CharacterStr + locate [0.1]: PT_Locale

User metadata information

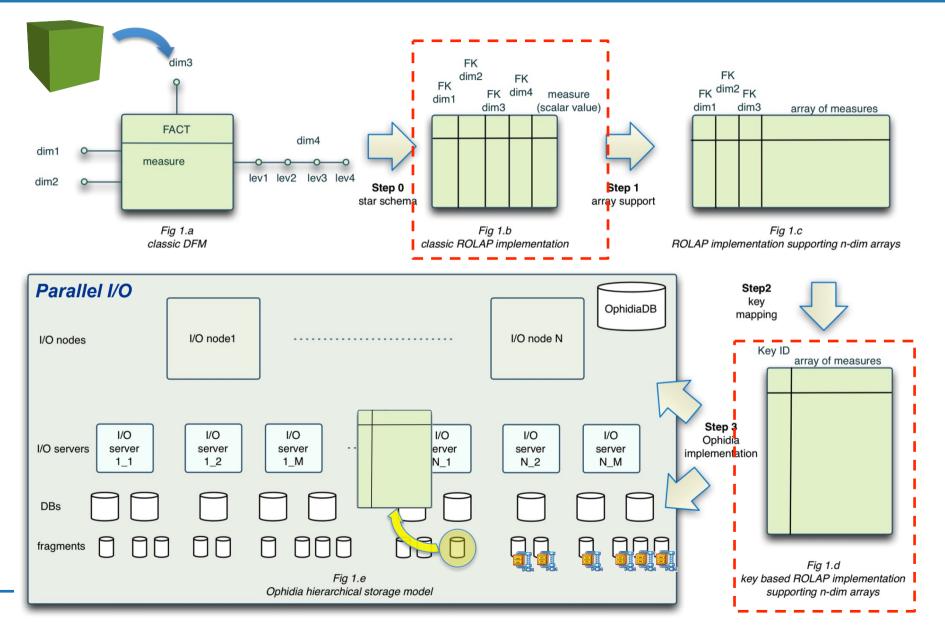


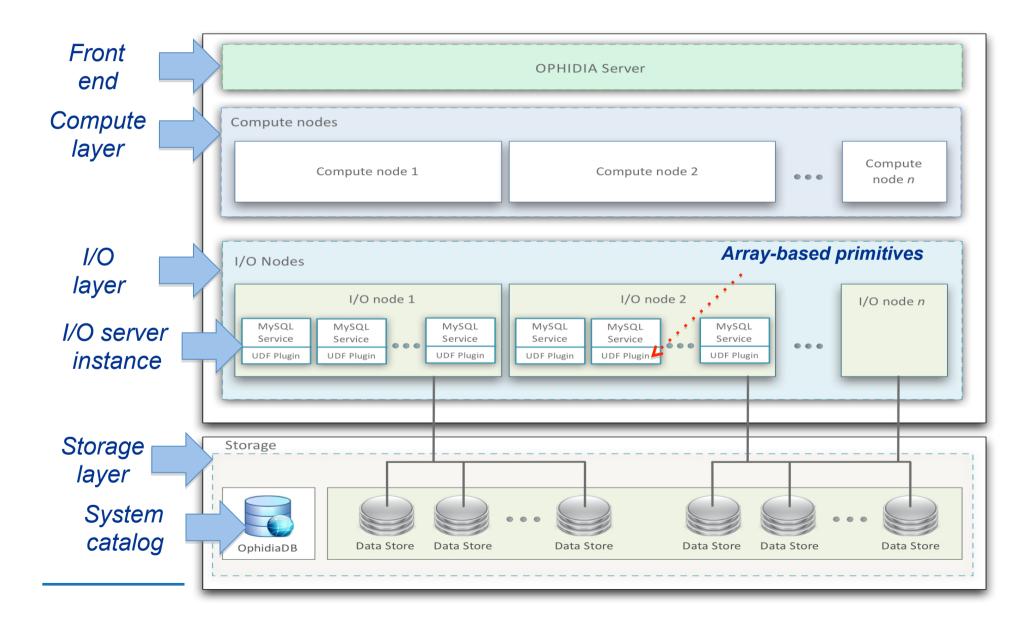
Metadata provenance


C

Ophidia architecture 1.0 Storage model, primitive & operators

Ophidia Architecture (sw stack view)


Storage model and chunks distribution


Ophidia storage model

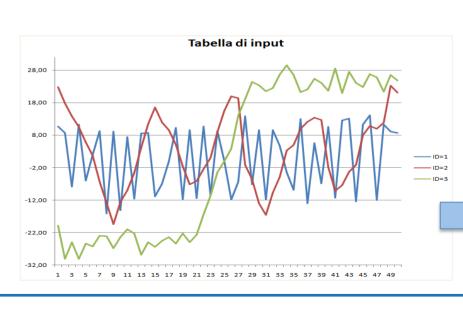
- The Ophidia storage model is a two-step based evolution of the star schema to support scientific data management
- It relies on *implicit* (array-based) and *explicit* (tuple-based) *dimensions* for specific representations of data
- The first step includes the **support for array**-based data
- The second step includes a **key mapping** related to a set of foreign keys
- The second step makes the Ophidia storage model and implementation independent of the number of dimensions!

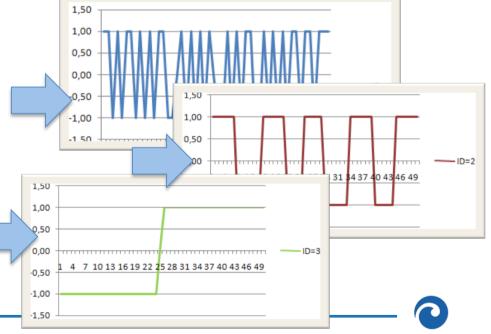
Storage model (dimension-independent) & implementation Array-based support and hierarchical storage

Array-based primitives

Array based primitives (about 100)

- Ophidia provides a **wide set of array-based primitives** to perform data summarization, sub-setting, predicates evaluation, statistical analysis, compression, etc.
- *Primitives come as plugins and are applied on a single datacube chunk (fragment)*
- They are provided both for **byte**-oriented and **bit**-oriented arrays
- Primitives can be nested to get more complex functionalities
- Compression is a primitive too!
- New primitives can be easily integrated as additional plugins


Array based primitives: OPH_MATH ("SIGN")


oph_math(measure, "OPH_SIGN", "OPH_DOUBLE")

					1		(incuse	ure,"OPH
			TABELI	A INPUT	3 x 50			
ID	MEASURE	:						
1	10,73	8,66	-7,83	11,2	-6,02	1,95		8,70
2	22,85	17,84	13,82	10,57	5,81	1,71		21,13
3	-19,89	-30,17	-24,95	-30,07	-25,4	-26,31		24,82

Single chunk or fragment (input)

Single chunk or fragment (output)

Array-based primitives: OPH_MATH support

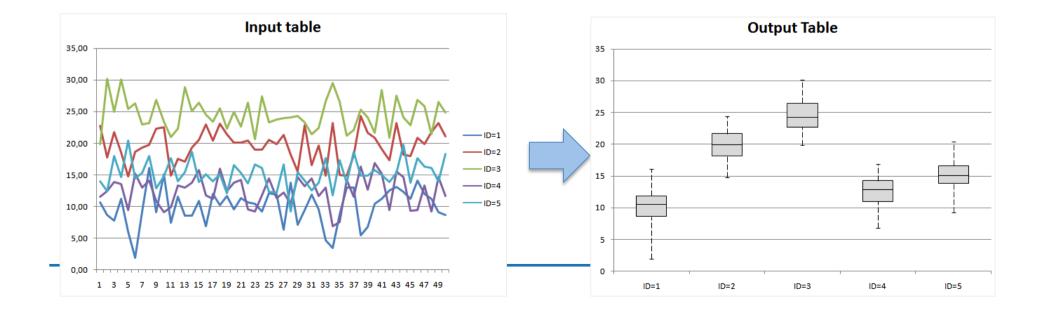
SQL query Ophidia math plugin

OPH_MATH_FUNCTION MACROS

OPH_MATH_FUNCTION can be one of the macros in the table below

OPH_MATH_ABS	OPH_MATH_DEGREES	OPH_MATH_RAND
OPH_MATH_ACOS	OPH_MATH_EXP	OPH_MATH_ROUND
OPH_MATH_ASIN	OPH_MATH_FLOOR	OPH_MATH_SIN
OPH_MATH_ATAN	OPH_MATH_LN	OPH_MATH_SIGN
OPH_MATH_CEIL	OPH_MATH_LOG10	OPH_MATH_SQRT
OPH_MATH_COS	OPH_MATH_LOG2	OPH_MATH_TAN
OPH_MATH_COT	OPH_MATH_RADIANS	

Array based primitives: OPH_BOXPLOT


oph_boxplot(measure, "OPH_DOUBLE")

	INPUTTABLE 5 tuples x 50 elements								
ID	ID MEASURE								
1	10,73	8,66	7,83	11,20	6,02	1,95	9,25	16,11	 8,70
2	22,85	17,84	21,82	18,57	14,81	18,71	19,31	19,83	 21,13
3	19,89	30,17	24,95	30,07	25,40	26,31	22,95	23,18	 24,82
4	11,60	12,49	13,91	13,53	9,48	15,27	13,05	14,17	 11,66
5	13,94	12,43	17,95	14,70	20,41	14,46	15,37	18,00	 18,30

Single chunk or fragment (input)

Single chunk or fragment (output)

OUTP	OUTPUT TABLE 5 tuples x 5 elements (summary)								
ID	MEASURE								
1	1,95	8,64	10,47	11,87	16,11				
2	14,81	18,14	19,93	21,66	24,35				
3	19,89	22,74	24,24	26,45	30,17				
4	6,87	10,99	12,85	14,28	16,93				
5	9,23	13,87	15,05	16,61	20,41				

Array based primitives: nesting feature

Single chunk or fragment (output)

8,64 10,47 11,87 16,11

18,14 19,93 21,66 24,35

22,74 24,24 26,45 30,17

10,99 12,85 14,28 16,93

13,87 15,05 16,61 20,41

OUTPUT TABLE 5 tuples x 5 elements (summary)

MEASURE

1,95

14,81

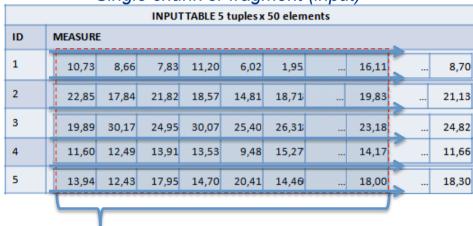
19,89

6,87

9.23

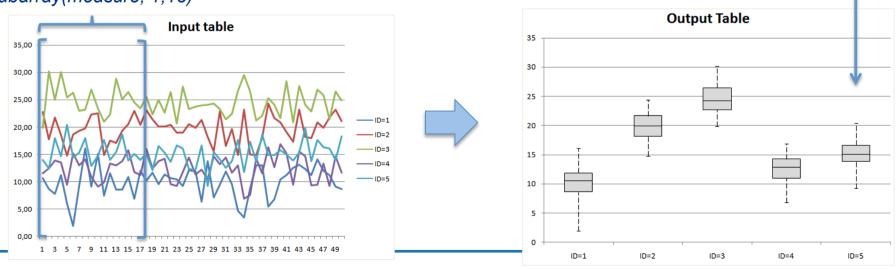
ID

1


2

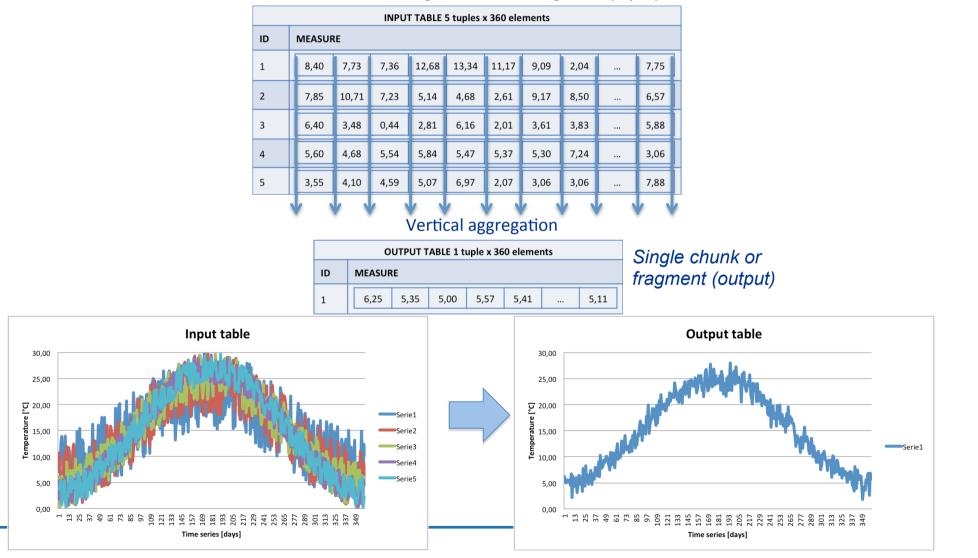
3

4


5

oph_boxplot(oph_subarray(oph_uncompress(measure), 1,18), "OPH_DOUBLE")

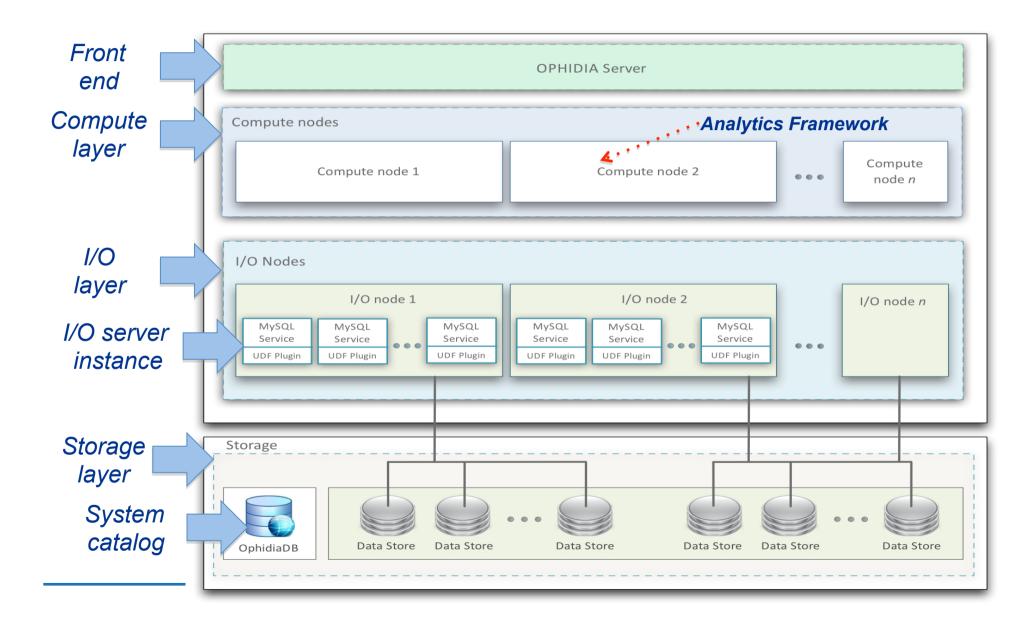
Single chunk or fragment (input)


subarray(measure, 1,18)

Array based primitives: oph_aggregate

oph_aggregate(measure,"oph_avg")

Single chunk or fragment (input)

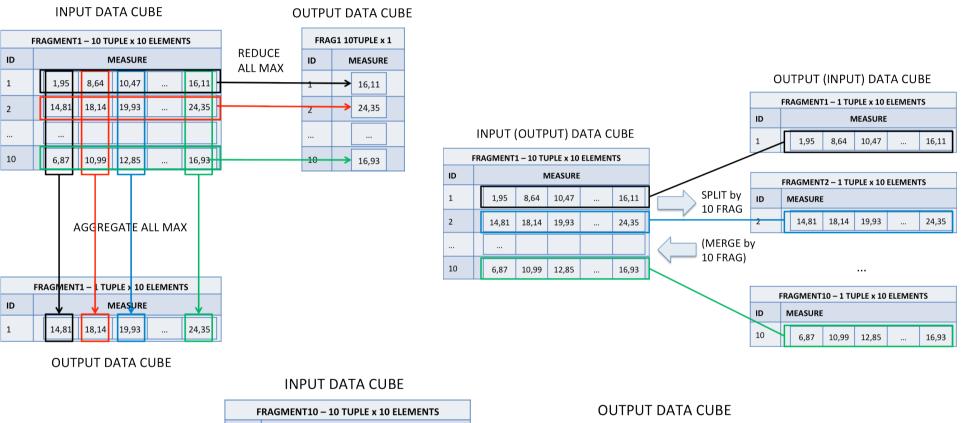

Clustering Primitive

oph_ccluster_kcluster

User Guides	Description
Terminal Usage	-
PyOphidia	Behaviour
Operators Manual	It computes clusters from input data through the use of k-means or k-medians algorithms.
Primitives Manual	Parameters
Core Array	• input measure type: Ophidia typing. Supported types are: 'oph_double'; 'oph_float'; 'oph_long'; 'oph_int'; 'oph_short'; 'oph_byte
Selection	• output measure type: Ophidia typing. Supported types are: 'oph_double'; 'oph_float'; 'oph_long'; 'oph_int'; 'oph_short';
Arithmetic	`oph_byte'.
Statistical	measure: input measures.
Transformation	• k: number of requested clusters.
Numerical Analysis	method: clustering algorithm. Supported algorithms are:
Mining	 'KMEANS' (default);
oph_ccluster_kcluster	∘ 'KMEDIANS'.
Miscellaneous	level: type of output. Supported outputs are:
Virtual File System	 'CENTROIDS': only centroid values for each cluster (spatial information is lost) (output is oph_double);
Massive Operations	 'LABELS': returns an integer between 0 and k-1 for each point according to found clusters (output is oph_int);
Workflows Usage	 `ALL' (default): returns the centroid value of the corresponding cluster for each point (output is oph_double).
Session Management	 npass: number of iterations for the EM algorithm. At each iteration means or medians are computed and there is a new cluster
Time management	assignment. With more iterations, results are more accurate. Default value is 1.
Examples	
Appendix	Return type
	Binary-array.
	Examples
	Group data into 2 clusters, with 10 EM iterations, and return the centroid value for each input point.
	oph_ccluster_kcluster('OPH_DOUBLE','OPH_DOUBLE',measure,2,'KMEANS',10,'ALL')

Adding a new data mining primitive can ben done in several cases by basically developing a new primitive...

Analytics framework and operators


The analytics framework: datacube operators

Data Operator	Description
OPH_CONCATNC	Concatenates a NetCDF file to a data cube.
OPH_DELETE	Deletes a data cube.
OPH_DUPLICATE	Duplicates a data cube.
OPH_EXPLORECUBE	Shows the content of a data cube.
OPH_EXPORTNC	Exports a whole data cube into a single NetCDF file.
OPH_IMPORTNC	Creates new a data cube importing data from a NetCDF file.
OPH_INTERCOMPARISON	Generates the difference value-by-value between two homogeneous data cubes.
OPH_INTERCUBE	It executes an operation between two data cubes and returns a new data cube as result of the specified operation applied element by element.
OPH_MERGECUBES	Merges the measures of n input data cubes creating a new data cube with the union of the n measures.
OPH_PUBLISH	Generates web pages representing the data stored in the fragments.
OPH_RANDCUBE	Creates a new data cube with random data.
OPH_REDUCE	Applies a data reduction operation along one or more implicit dimensions.
OPH_SCRIPT	Executes a bash script.
OPH_SUBSET	Extracts a subset from a data cube using the values of the dimensions.

Metadata Operator	Description
OPH_CUBEELEMENTS	Computes and displays the total number of elements contained in a data cube.
OPH_CUBEIO	Shows the provenance of a data cube.
OPH_CUBESCHEMA	Displays the metadata and dimension information associated to a data cube.
OPH_CUBESIZE	Computes and displays the total size (on disk) of a data cube.
OPH_FIND	Finds a data cube.
OPH_LIST	Displays the list of data cubes and containers available.
OPH_LOGGINGBK	Shows session and job information.
OPH_MAN	Shows a description about an operator or primitive.
OPH_METADATA	Manages metadata information.
OPH_OPERATORS_LIST	Displays the list of available operators.

About 50 operators for data and metadata processing

The analytics framework: "datacube" operators

F	FRAGMENT10 – 10 TUPLE x 10 ELEMENTS										
ID		MEASURE									
1	1,95	8,64	10,47		16,11						
2	14,81	18,14	19,93		24,35						
10	6,87	10,99	12,85		16,93						

SUBSET	I	FR	AGMENT	10 – 2 TU	IPLE x 10	ELEMEN	TS
Filter 1:2	ID			N	IEASURE		
	1		1,95	8,64	10,47		16,11
	2		14,81	18,14	19,93		24,35

The analytics framework: "data" operators

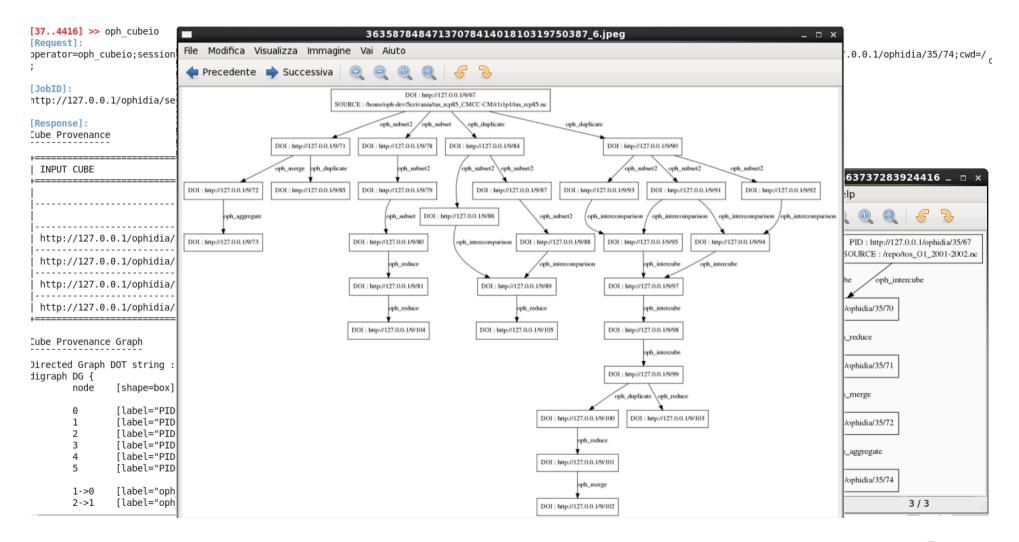
[37..4416] >> oph_explorecube cube=http://127.0.0.1/ophidia/35/67;subset_dims=lat|lon|time;subset_filter=39:42|15:19|1:275;show_time=yes; [Request]:

operator=oph_explorecube;cube=http://127.0.0.1/ophidia/35/67;subset_dims=lat|lon|time;subset_filter=39:42|15:19|1:275;show_time=yes;sessionid=http://127.0.0.1/ophidia/sessions/3
74383780832141666641463737283924416/experiment;exec_mode=sync;ncores=1;cwd=/;

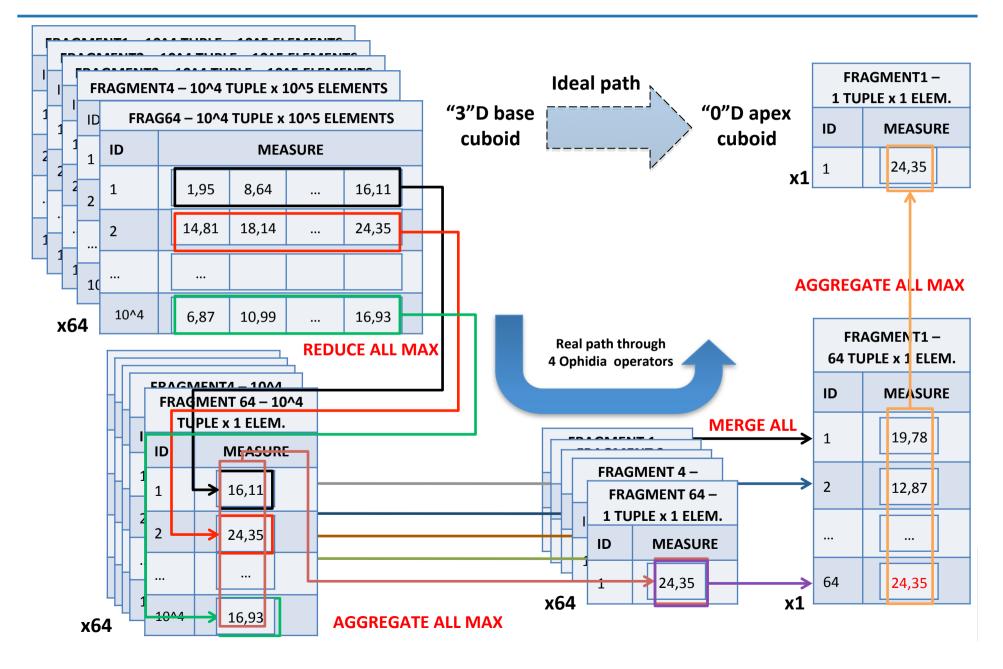
[JobID]:

http://127.0.0.1/ophidia/sessions/374383780832141666641463737283924416/experiment?106#224

[Response]:

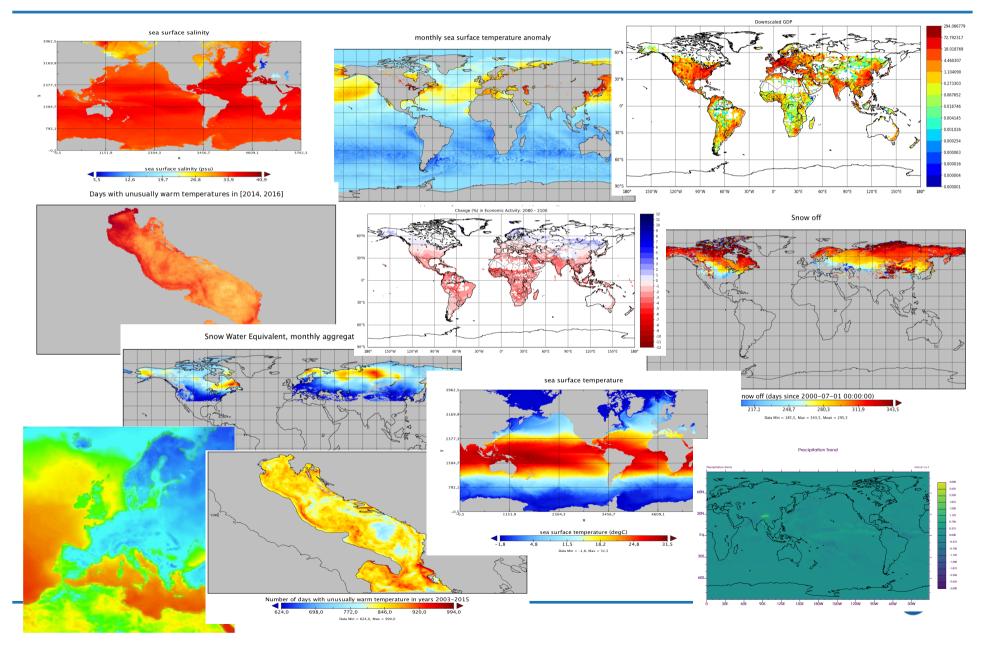

tos

+======+ lat	+ lon	tos
39.500000	15.000000	1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20
39.500000	17.000000	287.3930664062, 286.8287048340, 286.5860595703, 286.9228210449, 288.5254516602, 292.3968200684, 295.8656921387, 297.2062072754, 295.7126464844
39.500000	19.000000	287.6926879883, 287.0508117676, 286.7896118164, 287.0781555176, 288.6802062988, 292.6882629395, 296.4769287109, 297.6632385254, 296.3418273926
40.500000	15.000000	1.00000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.000000002e+20, 1.00000000000000000000000000000000000
40.500000	17.000000	287.1098632812, 286.5683593750, 286.2949829102, 286.5216674805, 288.0316772461, 291.7698974609, 295.4139709473, 296.8489685059, 295.4132995605
40.500000	19.000000	287.4010009766, 286.7818298340, 286.4914245605, 286.7260742188, 288.3006286621, 292.1842346191, 296.0237731934, 297.2694702148, 295.9751892090
41.500000	15.000000	1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20, 1.00000002e+20
41.500000	17.000000	286.5835876465, 286.0175781250, 285.7146911621, 285.9142761230, 287.4476623535, 291.1032104492, 294.7090454102, 296.0852355957, 294.7053222656
41.500000	19.000000	286.9717712402, 286.3946838379, 286.0617675781, 286.1446228027, 287.6101989746, 291.2955017090, 295.2700195312, 296.5146179199, 295.3194274902


Summary

Selected 9 rows out of 9

The analytics framework: "metadata" operators

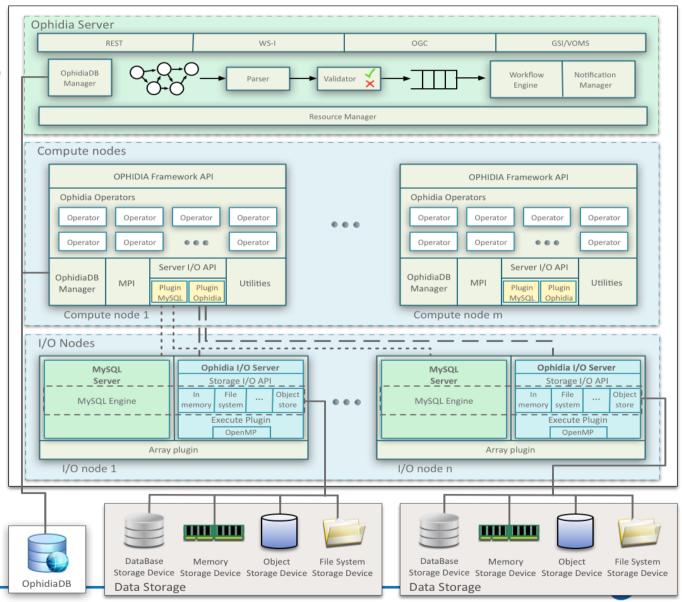

Pipelining analytics operators to reduce data

Ophidia architecture 2.0

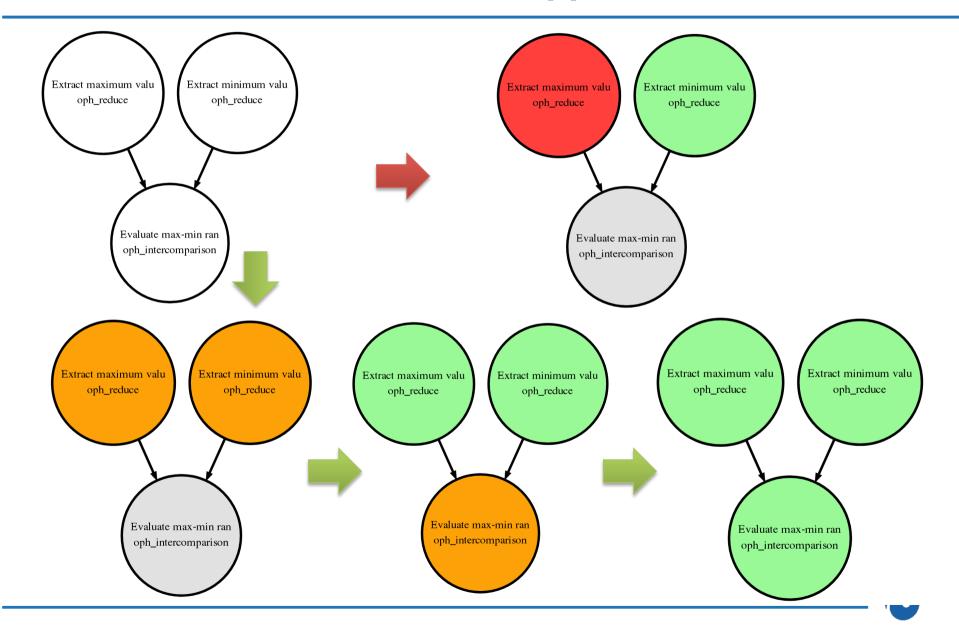
Workflows management, python applications, in-memory analytics

Efficient support for advanced analytics experiments

Architecture 2.0

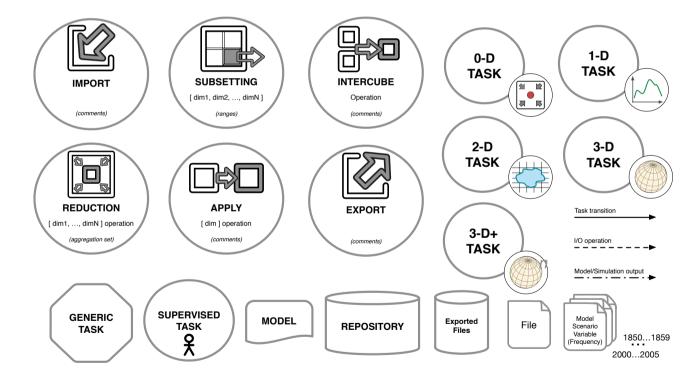

Workflow support on the server side

Separation of concerns between framework and I/O components


Support different I/O servers

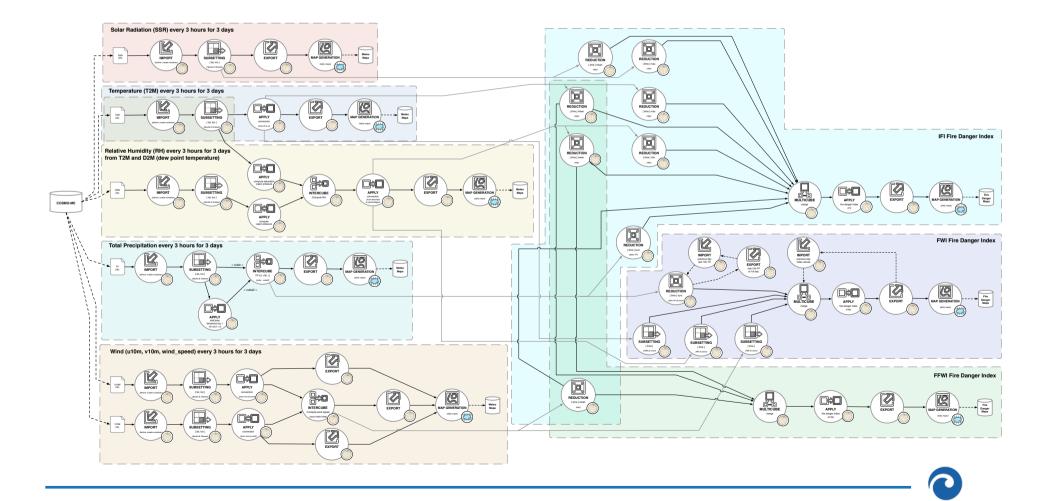
Native I/O server with parallel execution engine

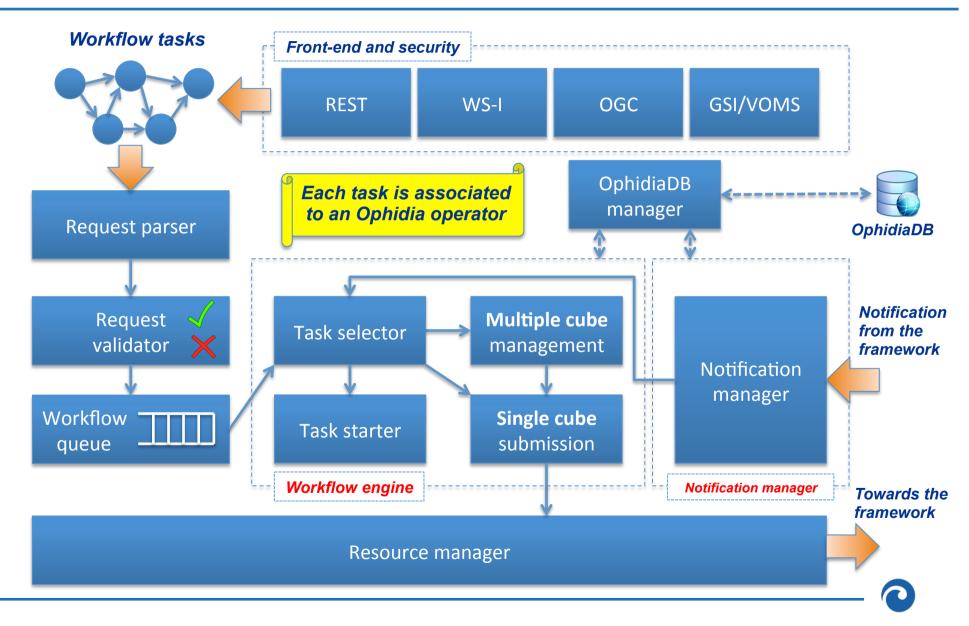
Multiple storage systems supported



Workflow support

From a user experiment to a scientific workflow


- ✓ A Data Analytics Workflow Modelling Language (DAWML) has been defined
- ✓ **Extensible** schema jointly defined with application-domain scientists
- ✓ The schema allows the definition of abstract workflows


C. Palazzo, A. Mariello, S. Fiore, A. D'Anca, D. Elia, Dean N. Williams, G. Aloisio, "A workflow-enabled big data analytics software stack for escience", HPCS 2015: 545-552

Workflow example II: fire danger analysis

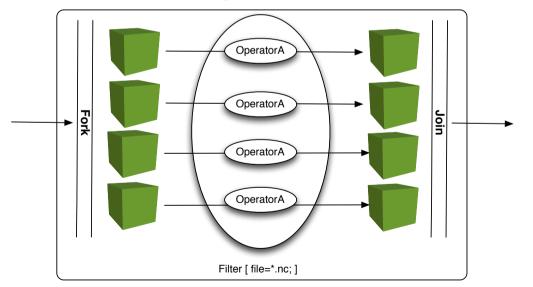
OFIDIA main objective is to build a **cross-border operational fire danger prevention infrastructure** that advances the ability of regional stakeholders across Apulia and Ioannina Regions to **detect** and **fight forest wildfires**

Architecture 2.0: Ophidia Server & Workflow support

Single Cube Task

Execution of a data/metadata operator through a single declarative statement oph-dev@ophidiadevel: _ 0 × Single Cube Task File Modifica Visualizza Cerca Terminale Aiuto [OPH_TERN] >> oph_cubeio cube=http://127.0.0.1/1/7;branch=children; [request]: operator=oph_cubeio;cube=http://127.0.0.1/1/7;branch=children;sessionid=http://127.0.0.1/sessions/3628619837327544763014 06839363774752/document;exec_mode=interactive;cwd=/home/oph-dev; http://127.0.0.1/sessions/362861983732754476301400839363774752/document#8 ■ 362861983732754476301400839363774752_8.j _ □ × **OperatorA** [Response]: Cube Provenance le Modifica Visualizza Immagine Data 🜪 Precedente 🌩 Successiva 🛛 🍳 🍭 🍕 🧹 🤟 INPUT CUBE | OPERATION | OUTPUT CUBE DOI: http://127.0.0.1/1/7 ROOT http://127.0.0. http://127.0.0.1/1/7 oph_duplicate http://127.0.0.1 oph duplicate oph duplicate http://127.0.0.1/1/8 | oph_duplicate | http://127.0.0.1 http://127.0.0.1/1/7 | oph_duplicate | http://127.0.0.1/ DOI : http://127.0.0.1/1/8 DOI : http://127.0.0.1/1/18 Cube Provenance Graph Metadata OperatorB Directed Graph DOT string digraph DG { oph_duplicate Metadata info [shape=box] node [label="DOI : http://127.0.0.1/1/7\n"] [label="DOI : http://127.0.0.1/1/8\n"] [label="DOI : http://127.0.0.1/1/19\n" [label="DOI : http://127.0.0.1/1/18\n" DOI: http://127.0.0.1/1/19 467 × 304 pixels 19,4 kB 100% 7/7 [label="oph_duplicate"] [label="oph_duplicate"] [label="oph_duplicate"] 0->1 0->3 1->2 Tmage File : 362861983732754476301400839363774752_8.jpeg [OPH_TERM] >> [] oph cubeio cube=DOI;branch=children [OPH TERM 1 >> oph list level=3 (Request): operator=oph_list;level=3;sessionid=http://127.0.0.1/sessions/234869914730886934241401627750528397/document;exec_mode=interactive;cwd=/home/oph-dev [OPH_TERN] >> oph_explorecube cube=http://127.0.0.1/9/67;limit_filter=10;show_id=yes;show_index=yes;subset_dims=time;subset_filter=281:282; http://127.0.0.1/sessions/234869914730886934241401627750528397/document#6 [nequest]: operator=oph_explorecube;cube=http://127.0.0.1/9/67;limit_filter=10;show_id=yes;show_index=yes;subset_dims=time;subset_filter=281:282;session Ophidia Filesystem 32525683838441401638378235930/document:exec mode=interactive:cwd=/home/oph-dev T | PATH MEASURE | LEVEL | SOURCE DATACUBE DOI http://127.0.0.1/sessions/195341832525683838441401638378235930/document#6 /home/oph-dev/cmip5 | http://127.0.0.1/9/58 | tas 0 /home/oph-dev/Scrivania/tas historical CMCC-CM/rlilp1/tas hist.nd [Response]: /home/oph-dev/cmip5 | http://127.0.0.1/9/59 | tas http://127.0.0.1/9/58 tas /home/oph-dev/cmip5 | http://127.0.0.1/9/60 | tas http://127.0.0.1/9/59 | INDEX OF lat | lon | INDEX OF lon | tas | ID | lat /home/oph-dev/cmip5 | http://127.0.0.1/9/61 | tas http://127.0.0.1/9/60 /home/oph-dev/cmip5 | http://127.0.0.1/9/62 | tas http://127.0.0.1/9/61 1 1 -89.427084 | 1 0.000000 | 1 224.7158966064 /home/oph-dev/cmip5 | http://127.0.0.1/9/63 | tas http://127.0.0.1/9/58 0.750000 224.7295684814 -89.427084 /home/oph-dev/cmip5 | http://127.0.0.1/9/64 | tas http://127.0.0.1/9/63 -89.427084 1 1.500000 3 224.7412872314 /home/oph-dev/cmip5 | http://127.0.0.1/9/65 | tas http://127.0.0.1/9/64 -89.427084 1 2.250000 4 224.7490997314 /home/oph-dev/cmip5 | http://127.0.0.1/9/66 | tas http://127.0.0.1/9/65 -89.427084 1 3.000000 5 224.7569122314 /home/oph-dev/cmip5 | http://127.0.0.1/9/67 | tas /home/oph-dev/Scrivania/tas rcp85 CMCC-CM/rlilp1/tas rcp85.nc -89.427084 1 3.750000 6 224.7666778564 /home/oph-dev/cmip5 | http://127.0.0.1/9/68 | tas http://127.0.0.1/9/58 /home/onh-dev/cmin5 | http://127 8 8 1/9/69 | tas http://127.8.8.1/9/68 -89.427084 1 4.500000 224.7744903564 2 /home/oph-dev/cmip5 | http://127.0.0.1/9/70 | tas http://127.0.0.1/9/69 8 -89.427084 1 5.250000 8 224.7842559814 /home/oph-dev/cmip5 | http://127.0.0.1/9/71 | tas http://127.0.0.1/9/67 ·89.427084 1 6.000000 9 224.7940216064 /home/oph-dev/cmip5 | http://127.0.0.1/9/72 tas http://127.0.0.1/9/71 6.750000 10 -89.427084 1 224.8018341064 10 İ /home/oph-dev/cmip5 | http://127.0.0.1/9/73 tas http://127.0.0.1/9/72 /home/oph-dev/cmip5 | http://127.0.0.1/9/74 | tas http://127.0.0.1/9/58 Summary Selected 10 rows out of 115200

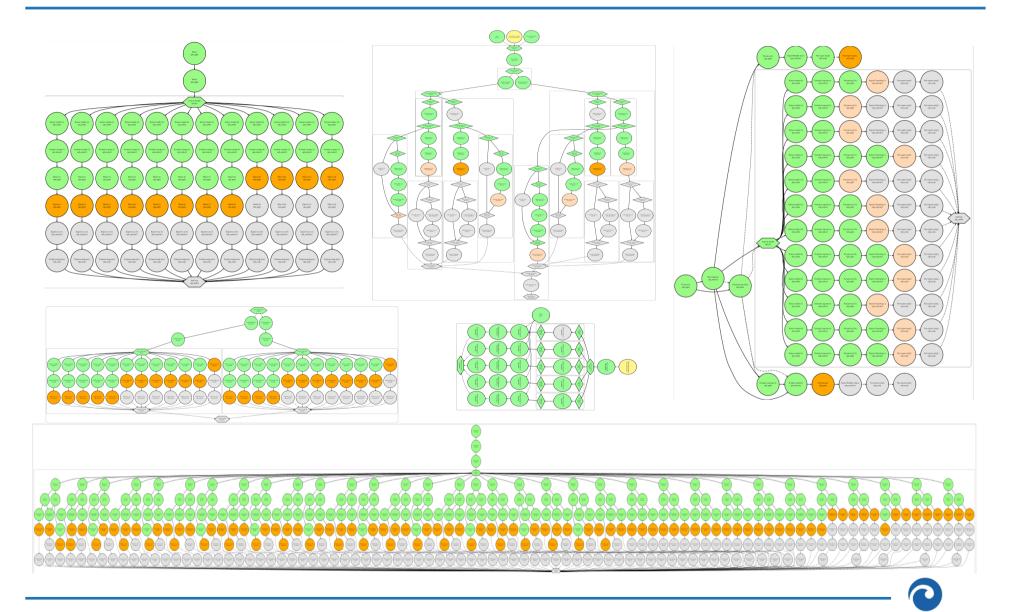
oph list level=3


oph explorecube cube=DOI.

Multiple cubes task

Execution of the **same data operator** over a **group of data cubes** through a **single declarative statement**

Multiple cubes tasks can be used:

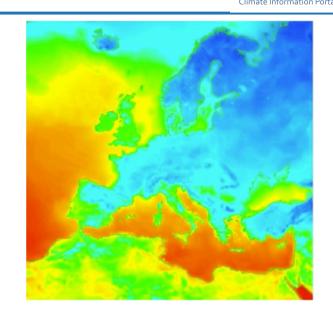

- to import a large number of datasets into the Ophidia platform
- to process a large set of data cubes with similar properties

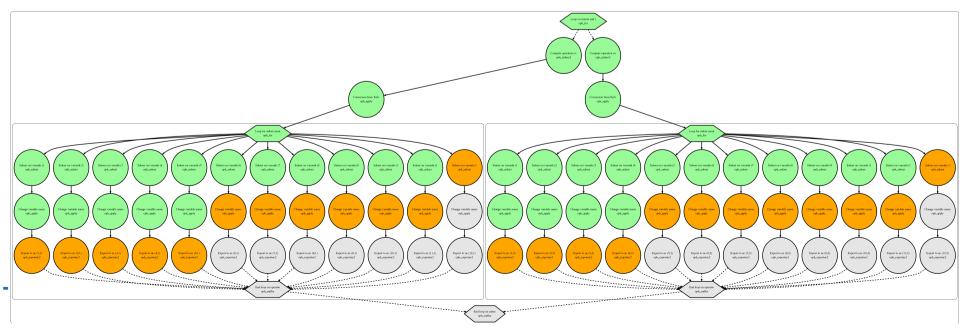
Multiple Cubes Task

Data cubes to be processed by a multiple cubes operator can be selected by applying a set of **filters**

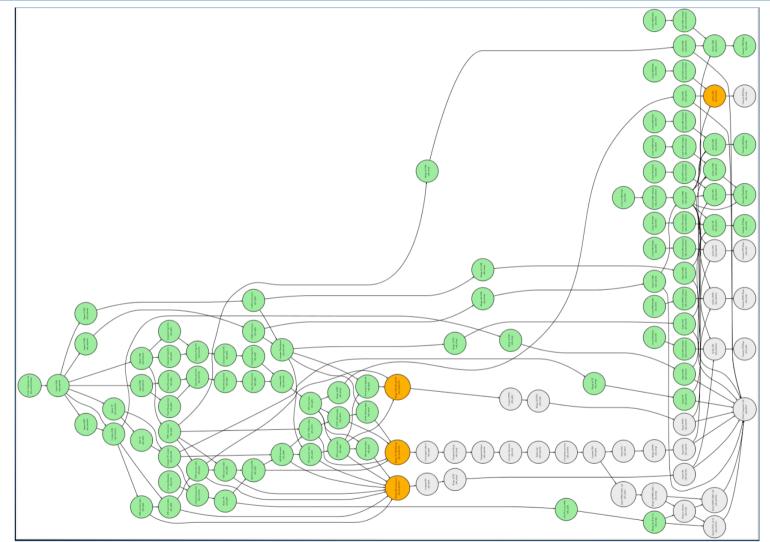
Analytics workflows support and interfaces

Analytics workflows support and interfaces


Workflow Management


This group includes a number of flow control operators that could be used within an Ophidia workflow to implement complex data processing in batch mode. In particular, they implement several advanced features: setting of run-time variables, iterative and parallel interface, selection interface, interactive workflows, interleaving workflows, etc.

NAME	DESCRIPTION
OPH_ELSE	Start the last sub-block of a selection block "if".
OPH_ELSEIF	Start a new sub-block of a selection block "if".
OPH_ENDFOR	Close a loop "for".
OPH_ENDIF	Close a selection block "if".
OPH_FOR	Implement a loop "for".
OPH_IF	Open a "if" selection block.
OPH_INPUT	It sends commands or data to an interactive task.
OPH_SET	Set a parameter in the workflow environment.
OPH_WAIT	Wait until an event occurs.


Workflow I: climate indicators processing

- In the CLIPC project, processing chains for data analysis are being implemented with Ophidia to compute **climate indicators**
- First set of indicators includes: TNn, TNx, TXn, TXx
 - Input files: 12GBs (TasMin & TasMax)
 - *TNx* = *max* of the min temperatures
 - *TXx* = *max* of the max temperatures
- Parallel approach
 - Inter-parallelism & Intra-parallelism

Workflow example II: fire danger analysis Runtime Execution

https://www.youtube.com/watch?v=vxbYF1Zhpuc&feature=youtu.be

•

•

2016 IEEE International Conference on Big Data (Big Data)

Distributed and cloud-based multi-model analytics experiments on large volumes of climate change data in the Earth System Grid Federation eco-system

S. Fiore¹, M. Plóciennik², C. Doutriaux³, C. Palazzo¹, J. Boutte³, T. Żok², D. Elia¹, M. Owsiak², A. D'Anca¹, Z. Shaheen³, R. Bruno⁴, M. Fargetta⁴, M. Caballer⁵, G. Moltó⁵, I. Blanquer⁵, R. Barbera⁴⁶, M. David⁷, G. Donvito⁴, D. N. Williams³, V. Anantharaj⁸, D. Salomoni⁴, and G. Aloisio^{1,9}

> ¹Euro-Mediterranean Center on Climate Change Foundation (CMCC), Italy ²Poznan Supercomputing and Networking Center (PSNC), Poland ¹Lawrence Livermore National Laboratory (LLNL), California, USA ⁴Italian National Institute of Nuclear Physics (INFN), Italy ⁹Universitat Politècnica de València (UPV), Spain ⁶ University of Catania, Italy ⁹Laboratório de Instrumentação e Física Experimental de Particulas (LIP), Portugal ⁸Oak Ridge National Laboratory (ORNL), Tennessee, USA ⁹University of Salento, Italy

Abstract-A case study on climate models intercomparison data analysis addressing several classes of multi-model experiments is being implemented in the context of the EU H2020 INDIGO-DataCloud project. Such experiments require the availability of large amount of data (multi-terabyte order) related to the output of several climate models simulations as well as the exploitation of scientific data management tools for large-scale data analytics. More specifically, the paper discusses in detail a use case on precipitation trend analysis in terms of requirements, architectural design solution, and infrastructural implementation. The experiment has been tested and validated on CMIP5 datasets, in the context of a large scale distributed testbed across EU and US involving three ESGF sites (LLNL, ORNL, and CMCC) and one central orchestrator site (PSNC)

Keywords-big analytics, workflow management, cloud computing, ESGF, INDIGO-DataCloud.

I. INTRODUCTION

The increased models resolution in the development of comprehensive Earth System Models is rapidly leading to very large climate simulations output that pose significant scientific data management challenges in terms of data sharing, processing, analysis, visualization, preservation, curation, and archiving [1–3].

In this domain, large scale global experiments for climate model intercomparison (CMIP) have led to the development of the Earth System Grid Federation (ESGF [4-5]), a federated data infrastructure involving a large set of data providers/modelling centers around the globe, which includes the European contribution - regarding the ENES [6] community - through the IS-ENES project.

From an infrastructural standpoint, ESGF provides a production-level support for search & discovery, browsing and access to climate simulation data and observational data products. ESGF has been serving the Coupled Model Intercomparison Project Phase 5 (CMIP5) experiment, providing access to 2.5PB of data for the Intergovernmental Panel on Climate Change (IPCC) [7] Assessment Reports 5 [8], based on consistent metadata catalogues. More precisely, the Coupled Model Intercomparison Project (CMIP) has been established by the Working Group on Coupled Modelling [9] (WGCM) under the World Climate Research Programme [10] (WCRP).

It provides a community-based infrastructure in support of climate model diagnosis, validation, intercomparison, documentation and data access. This framework enables a diverse community of scientists to analyse General Circulation Models (GCMs) in a systematic fashion, a process that serves to facilitate models improvement.

CMIP5 has promoted a standard set of model simulations in order to:

 evaluate how realistic the models are in simulating the recent past;


- provide projections of future climate change on two time scales, near term (out to about 2035) and long term (out to 2100 and beyond); and
- understand some of the factors responsible for differences in model projections, including quantifying some key feedbacks such as those involving clouds and the carbon cycle. In such a context, running a multi-model data analysis

in such a compet, tumme, as in mut-model case analysis experiment is very challenging, as it requires the availability of large amount of data (multi-terabyte order) related to multiple climate models simulations as well as scientific data management tools for large-scale data analytics.

The remainder of this work is organized as it follows. Section II provides the current workflow for the multi-model climate data analysis in the CMIP context, whereas Section III presents the paradigm shift needed to address such large-

Big Data Challenges, Research, and Technologies in the Earth and Planetary Sciences

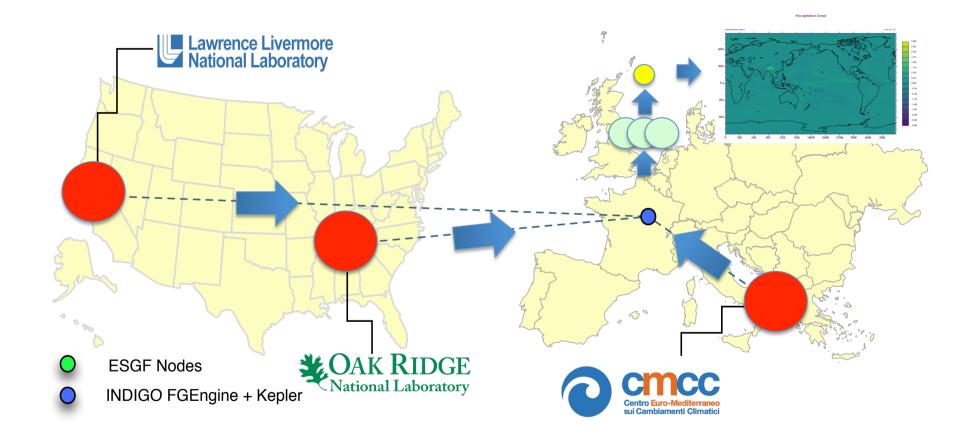
A workshop to be held Monday December 5th at the 2016 IEEE International Big Data Conference

- A first experiment across sites was demonstrated at the 1st INDIGO Review, November 2016 in Bologna
- Strong synergy with the ESGF CWT Roadmap
- International collaboration across the Atlantic

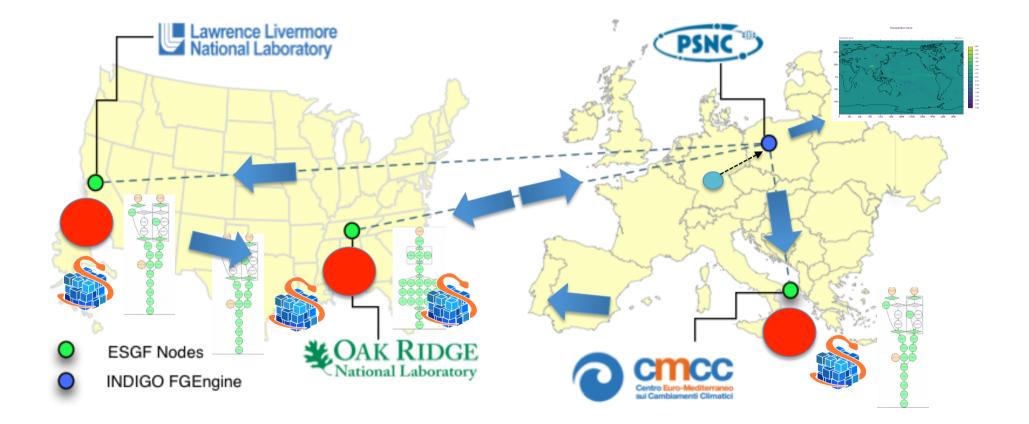
S. Fiore, M. Plóciennik, et al.: Distributed and cloud-based multi-model analytics experiments on large volumes of climate change data in the Earth System Grid Federation eco-system. BigData 2016: 2911-2918

978-1-4673-9005-7/16/\$31.00 ©2016 IEEE

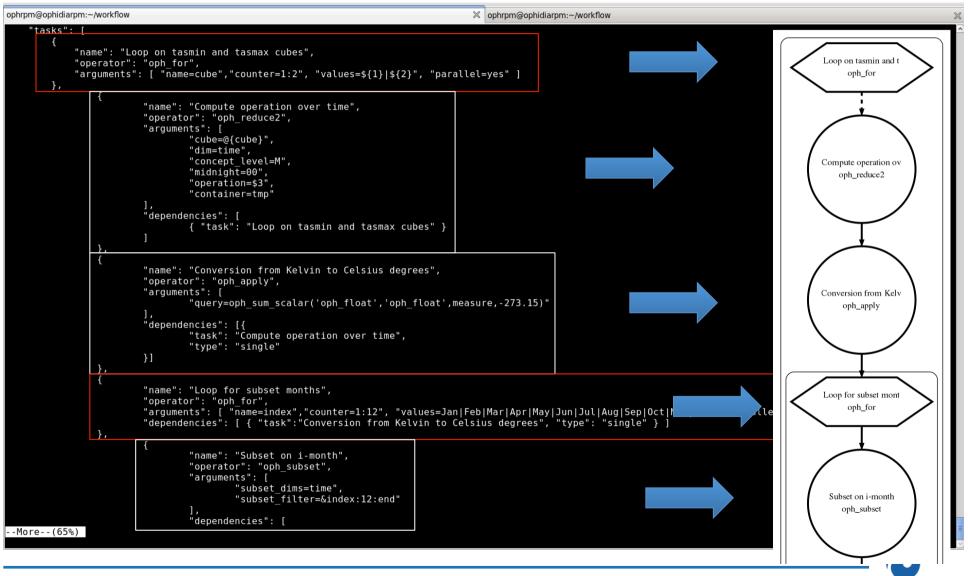
2911



Single model precipitation trend analysis



0



Behind the scene: workflow JSON representation

Youtube video: https://www.youtube.com/watch?v=PTZkw60YCNU

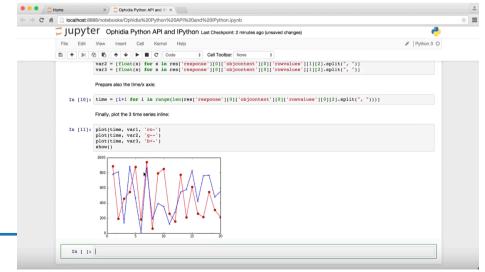
Workflow submission

phrpm@ophidiarpm:~/devel/oph-client/res	×	ophrpm@op	ohidiarpm:~,	/workflow			
876380] >> 876380] >> JobID1:	dia/29/2046 http://193	.204.199.	174/ophi	dia/30/2047 r	max		
tp://193.204.199.174/ophidia/sessions/376699238311302232	2511449455166146380/exp	eriment?24	47#3144				
76380] >> view 247 47] ./Tind_toop.json_http://193.204.199.174/ophidia/29/2 2511449455166146380/experiment?247#3144]	2046 http://193.204.199	.174/ophi	dia/30/2	047 max [http	p://193.204.199.174/ophidia/	sessio	ns/3766992383113
lesponse]: rkflow Status							
PH_STATUS_COMPLETED							
prkflow Progress							
NUMBER OF COMPLETED TASKS TOTAL NUMBER OF TASKS							
82 82 							
prkflow Task List							
OPH JOB ID	SESSION CODE	+======= WORKFL OW ID	+======= MARKE R ID	+======== PARENT MA RKER ID	+ TASK NAME 	+===== TYP E	EXIT STATUS
http://193.204.199.174/ophidia/sessions/37669923831130 2232511449455166146380/experiment?247#3145	37669923831130223251 1449455166146380	+======= 247 	+====== 3145 	+======== 3144 	Loop on tasmin and tasmax cubes	SIM PLE	OPH_STATUS_ COMPLETED
http://193.204.199.174/ophidia/sessions/37669923831130 2232511449455166146380/experiment?247#3146	37669923831130223251 1449455166146380	247	3146	3144	Compute operation over ti me (1)	SIM PLE	OPH_STATUS_ COMPLETED
http://193.204.199.174/ophidia/sessions/37669923831130 2232511449455166146380/experiment?247#3147	37669923831130223251 1449455166146380	247	3147	3144 	Compute operation over ti me (2)	SIM PLE	OPH_STATUS_ COMPLETED
http://193.204.199.174/ophidia/sessions/37669923831130 2232511449455166146380/experiment?247#3148	37669923831130223251 1449455166146380	247	3148	3144	Conversion from Kelvin to Celsius degrees (1)	SIM PLE	OPH_STATUS_ COMPLETED
					Conversion from Kelvin to	SIM	

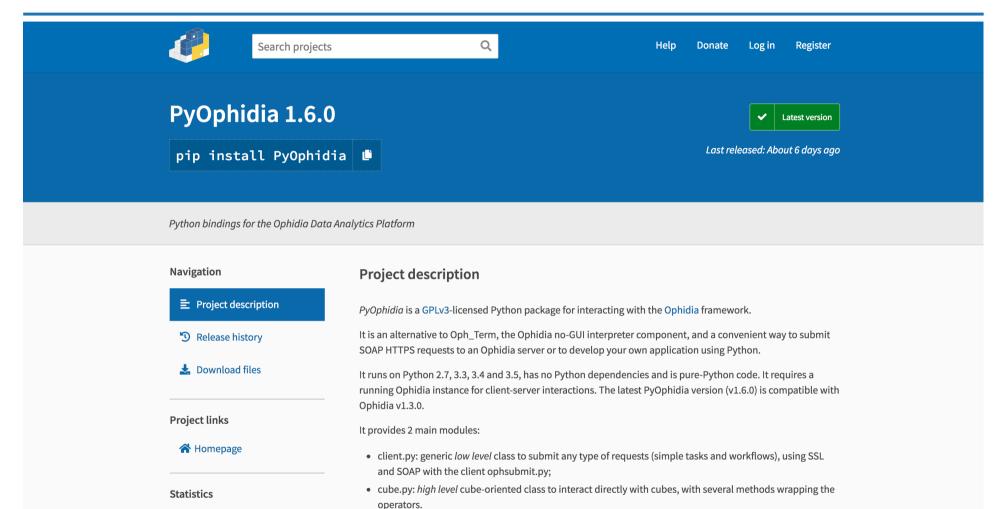
Programmatic access through the PyOphidia class

- PyOphidia provides a Python interface to submit commands to the Ophidia Server and to retrieve/deserialize the results
- ✓ Two classes implemented:
 - ✓ Client class: connect to the server, navigate into the ophidia file system, submit workflows, manage sessions, etc.
 - ✓ Cube class: manipulate cubes (reduce, subset, operations between cubes, intercomparison, etc.), get information on cubes (schema, dimensions, metadata, etc.)

class Cube():


"""Cube(container='-', cwd=None, exp_dim='auto', host_partition='auto', imp_dim='auto', measure=None, src_path=None, cdd=None, compressed='no', exp_concept_level='c', filesystem='auto', grid='-', imp_concept_level='c', import_metadata='no', check_compliance='no', offset=0, ioserver='mysql_table', ncores=1, ndb=1, ndrms=0, nhost=0, subset_dims='none', subset_filter='all', time_filter='yes' subset_type='index', exec_mode='sync', base_time='1900-01-01 00:00:00', calenda='standard', hierarchy='oph_base', leap_month=2, leap_year=0, month_lengths='31,28,31,30,31,30,31,31,30,31', run='yes', units='d', vocabulary='-', description='-', schedule=0, pid=None, check_grid='no', display=False) -> obj

Attributes: pid: cube PID


creation date: creation date of the cube measure: name of the variable imported into the cube measure_type: measure data type level: number of operations between the original imported cube and the actual cube nfragments: total number of fragments source_file: parent of the actual cube hostxcube: number of hosts associated with the cube dbmsxhost: number of DBMS instances on each host dbxdbms: number of databases for each DBMS fragxdb: number of fragments for each database rowsxfrag: number of rows for each fragment elementsxrow: number of elements for each row compressed: 'yes' for a compressed cube, 'no' otherwise size: size of the cube nelements: total number of elements dim_info: list of dict with information on each cube dimension

Class Attributes:

client: instance of class Client through which it is possible to submit all requests

PyOphidia release

View statistics for this project via

BigQuery

Libraries.io, or by using Google

Installation

https://pypi.org/project/PyOphidia/

PyOphidia applications: Jupyter notebooks

Import PyOphidia and connect to server instance

In []: from PyOphidia import cube, client
 cube.Cube.setclient(read env=True)

Import data and extract a single time series

```
In []: mycube = cube.Cube.importnc(src_path='/public/data/tos_01_2001-2002.nc',measure='tos',imp_dim='time',ncores=5)
mycube2 = mycube.subset2(subset_dims="lat|lon",subset_filter="0:1|0:1",ncores=5)
data = mycube2.export_array()
```

Plot time series

```
In [ ]: import matplotlib.pyplot as plt
y = data['measure'][0]['values'][0][:]
x = data['dimension'][2]['values'][:]
plt.figure(figsize=(11, 3), dpi=100)
plt.plot(x, y)
plt.ylabel(data['measure'][0]['name'] + " (degK)")
plt.xlabel("Days since 2001/01/01")
plt.title('Sea Surface Temperature (point 0.5, 1)')
plt.show()
```

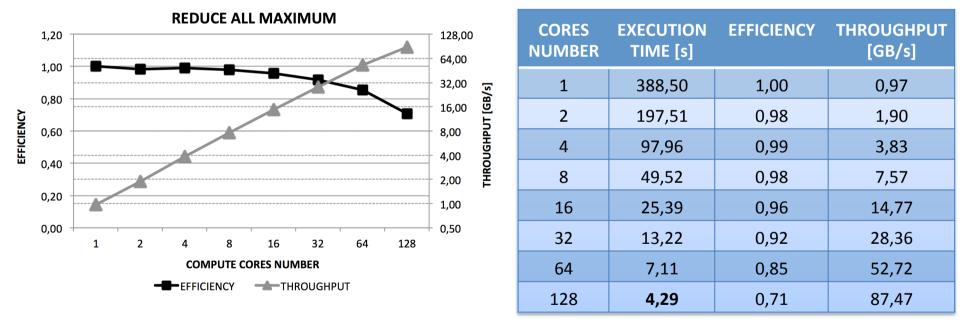
Convert from Kelvin to Celsius degrees

In []: mycube3 = mycube2.apply(query="oph_sum_scalar('OPH_FLOAT','OPH_FLOAT',measure,-273.15)",description="celsius")
data = mycube3.export_array()

Plot time series

```
In [ ]: y = data['measure'][0]['values'][0][:]
x = data['dimension'][2]['values'][:]
plt.figure(figsize=(11, 3), dpi=100)
plt.plot(x, y)
plt.ylabel(data['measure'][0]['name'] + " (degC)")
plt.xlabel("Days since 2001/01/01")
plt.title('Sea Surface Temperature (point 0.5, 1)')
plt.show()
```

Native Ophidia I/O server


The I/O server provides a native solution for the scientific domain applications. The requirements for the Ophidia I/O server are:

- run data analytics tasks in-memory taking advantage of the lower latency
- **binary array-oriented engine** to efficiently process scientific multidimensional data
- interact directly with the storage layer to **exploit data locality**
- exploit parallelism at the array-level
- NoSQL approach based on key-value store providing a declarative query language (SQL-like)
- guarantee extensibility and interoperability of the I/O server to support multiple storage back-ends

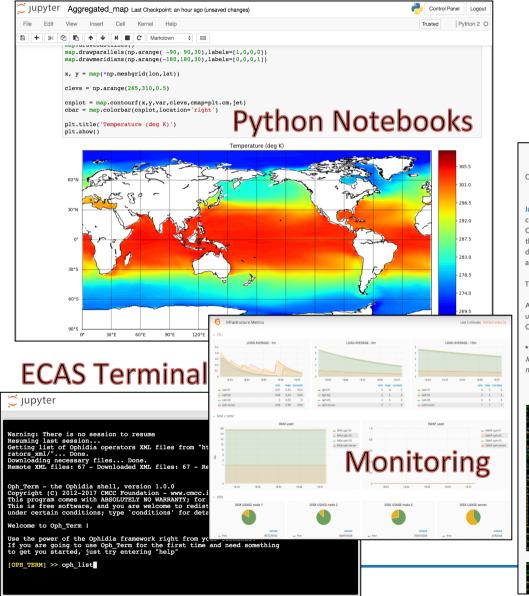
Experimental results (in-memory I/O server)

Execution time is measured by scaling up the number of parallel tasks Two metrics are evaluated:

- efficiency (speedup/computational resources)
- throughput (data processed/time unit)

3D dataset, 375GB, 2.1M time series, 24K elements each (50 Billions elements) 8 nodes, 16 cores each, 128 cores in total Max computation over time dimension, 2D result (map)

With 128 cores it is around 30x faster than MySQL I/O engine! Full benchmark is ongoing on the Athena Cluster at CMCC SCC


ECASLab in the EOSC-hub context

ECASLab: a user-oriented environment for data analysis and visualization

- ✓ ECASLab is an integrated scientific environment for scientific data management
- ✓ It provides a ready-to-use multi-node ECAS (ENES Climate Analytics Service) to perform data analytics on scientific datasets
- ✓ Currently setup at at CMCC (Italy) and DKRZ (Germany)
- ✓ It integrates data, analysis and visualization tools in a user-friendly environment accessible with light-weight clients (i.e. a desktop bash-like client and a web GUI)
- ✓ It exposes a JupyterHub service to create, execute and share Jupyter notebooks (Pythonbased) supporting live-code and visualization
- ✔ File system navigation, file editing, upload and download supported via web
- ✓ Released on May 2017, with an initial set of services:
 - ✓ Simple quick start & registration form available
 - ✓ JupyterHub, OPeNDAP/THREDDS/IDV, ECAS Terminal
 - Monitoring system based on Grafana
 - ✓ Besides PyOphidia Several Python libraries available for analysis & visualization
 - ✓ Workflow IDE (alpha release)

ECASLab in a nutshell

💭 Jupyter	Control Panel Logout
Files Running Clusters Select items to perform actions on them.	Files browsing
	Name 🛧 Last Modified 🛧
🖂 🗀 data	10 days ago
D notebooks	10 days ago
workflows	10 days ago

Quick Start

OphidiaLab provides two different ways to get access to its scientific eco-system: JupyterHub and Ophidia client.


Jupyter supports interactive data science and scientific computing.

OphidiaLab includes a JupyterHub installation and, thanks to the Jupyter Notebooks, scientists can create and share documents that contain live code, equations, visualizations and explanatory text.

The JupyterHub interface is available here*.

After you login, open "Quick Start.ipynb" notebook available under the *quickstartt* folder in your home to get started with OphidiaLab environment capabilities.

*Please note that for security reasons, the access to our JupyterHub instance is restricted to authorised users only and needs an additional step after the registration process.

QuickStart

The Ophidia Terminal is a robust, comprehensive, and userfriendly Ophidia client, developed with characteristics similar to the bash shell present in almost all Unix-like environments. Please have a look at the online available documentation to learn more about the basic functionalities of the Ophidia terminal as well as some advanced features useful for more skilled users.

Two short guides (basic, advanced) in pdf format are also available.

Several examples of real-world usage of the terminal are also available on the Ophidia website tutorial section. The latest client RPM for CentOS7 is available here. The related DEB package can be downloaded from here.

Once installed you can simply run:

/usr/local/ophidia/oph-terminal/bin/oph_term -H ophidialab.cmcc.it -u <username> -p <password> -P 11732

ECASLab: Jupyter user local folder

💭 Jupyter	Control Panel Logout
Files Running Clusters	
Select items to perform actions on them.	Upload New -
	Name ▲ Last Modified ▲
	7 months ago
	4 days ago
	9 months ago
notebooks	3 days ago
cuickstart	4 days ago
workflows	4 days ago
401947901415763327651512041204211913_9266.svg	5 minutes ago

ECASLab: Jupyter notebooks

e Edit	View Insert Cell Kernel Help	Not Trusted	Python 2 O
+ %			
	Import PyOphidia and connect to server instance		
In []:	<pre>from PyOphidia import cube, client cube.Cube.setclient(read_env=True)</pre>		
	Import data and extract a single time series		
In []:	<pre>mycube = cube.Cube.importnc(src_path='/public/data/tos_01_2001-2002.nc',measure='tos',imp mycube2 = mycube.subset2(subset_dims="lat lon",subset_filter="0:1 0:1",ncores=5) data = mycube2.export_array()</pre>	_dim='time',ncores	=5)
	Plot time series		
In []:	<pre>import matplotlib.pyplot as plt y = data['measure'][0]['values'][0][:] x = data['dimension'][2]['values'][:] plt.figure(figsize=(11, 3), dpi=100) plt.plot(x, y)</pre>		
	<pre>plt.ylabel(data['measure'][0]['name'] + " (degK)") plt.xlabel("Days since 2001/01/01") plt.title('Sea Surface Temperature (point 0.5, 1)') plt.show()</pre>		
	Convert from Kelvin to Celsius degrees		
In []:	<pre>mycube3 = mycube2.apply(query="oph_sum_scalar('OPH_FLOAT','OPH_FLOAT',measure,-273.15)",de data = mycube3.export_array()</pre>	escription="celsiv	s")
	Plot time series		
In []:	<pre>y = data['measure'][0]['values'][0][:] x = data['dimension'][2]['values'][:] plt.figure(figsize=(11, 3), dpi=100) plt.plot(x, y)</pre>		
	<pre>plt.ylabel(data['measure'][0]['name'] + " (degC)")</pre>		

ECASLab: ECAS Terminal (from Jupyter)

🔵 jupyter

Control Panel Logout

0

<pre>kecution time: 0.1 401913] >> oph_</pre>	1 seconds												
ph_aggregate	oph dupl	icate	oph if		an	h manac	ge_session	oph rol	מוו				
ph_aggregate2	oph_else		oph impo	ortfits		h merge		oph_scr:					
h_apply h_cancel	oph_else	if	oph_impc		00	h merge	ecubes	oph sea	rch				
h_cancel	oph_endf	or	oph_impc	ortnc2	op	h_merge	ecubes2 lata	oph_ser	vice				
h_cluster h_concatnc	oph_endi oph_expl	.t	oph_impc		op	h_metac	lata container	oph_set					
h_containerschema	oph_expl	orecube	oph_impc oph_impc		op	h opera	ators list	oph_show oph_spl:	wgria i+				
h createcontainer	oph_expo		oph impo			h permu		oph sub	set				
hcubeelements	oph_evpo	rtna	oph_inpu	ıt	00	h primi	itives list	oph_sub	set2				
h_cubeio	oph_expo oph_fold	rtnc2	oph_inst		op	h_publi	ish	oph_tas	ks				
h_cubeschema h_cubesize	oph_fold oph_for	er	oph_inte oph_list	ercube		h_rando h_reduc		oph_unpi oph_wait	lblish				
h delete	oph_fs		oph log			h reduc		Opin_war	5				
h_deletecontainer	oph get	config	oph logg				precontainer						
h drilldown	oph_hier	archy	oph_man			h_resum							
oh_drilldown 01913] >> oph_c oh_cubeelements_o	ube												
on_cubeelements o	ph_cubeio	oph_cub	eschema	oph_cub	pesize								
<pre>01913] >> oph_c lequest]:</pre>	ubeschema												
erator=oph cubesc	hema:sessio	nid=https://o	ohidialab	.cmcc.it/	/ophidia	/sessio	ons/401947901	41576332	7651512041	204211	.913/e	xperiment	exec m
le=sync;cube=https	://ophidial	ab.cmcc.it/op	hidia/201	L7/260995;	;cwd=/;c	dd=/hon	me/sfiore;hos	st_partit:	ion=test;				
tps://ophidialab.	-	idia/sessions	/40194790)141576332	27651512	0412042	211913/experi	ment?241;	#9269				
tesponse]: tacube Informatio	-	idia/sessions	+)141576332	+ M	EASUR	MEASURE TYP	-+	NUMBER OF	F FRAG	====+ :Men	SOURCE F	===+ IL
tps://ophidialab.	-	idia/sessions	+		+	EASUR	-		+==========	F FRAG	====+ #MEN	SOURCE F	===+ IL ===+
tps://ophidialab. Response]: Racube Informatio	n 		CREAT		+ M E	EASUR	MEASURE TYP	-+	NUMBER OF	F FRAG	+ Men +		IL
<pre>ttps://ophidialab. tesponse]: ttacube Informatio PID https://ophidiala 0995</pre>	n b.cmcc.it/o	phidia/2017/2	CREAT	TION DATE	+ M E	EASUR	MEASURE TYP E		NUMBER OI	F FRAG	+		IL +
tps://ophidialab. esponse]: tacube Informatio PID https://ophidiala 0995 tacube Additional	n b.cmcc.it/o Informatio	phidia/2017/2	6 2018- 30	-10N DATE -06-25 03:	:15: t	EASUR OS	MEASURE TYP B FLOAT		NUMBER OF TS 1	 		E 	
tps://ophidialab. esponse]: tacube Informatio PID https://ophidiala 0995 tacube Additional	n b.cmcc.it/o	phidia/2017/2	6 2018- 30	PION DATE -06-25 03: ENTS x DA	+ M E	EASUR	MEASURE TYP E		NUMBER OI	++ UN IT		E E E E E E E E E E	
ttps://ophidialab. tesponse]: ttacube Informatio PID https://ophidiala 0995 ttacube Additional DESCRIP HOST x TION CUBE	n b.cmcc.it/o Informatio	phidia/2017/2	CREAT 6 2018- 30	PION DATE -06-25 03: ENTS x DA	15: t ROWS	EASUR	MEASURE TYP E FLOAT ELEMENTS	LEVE L 2 COMPRES SED	NUMBER OI TS 1	 ++ UN	-====	E E E E E E E E E E	===+ IL ===+ + + +
ttps://ophidialab. tesponse]: ttacube Informatio PID https://ophidiala 0995 ttacube Additional DESCRIP HOST x TION CUBE	n b.cmcc.it/o Informatio	phidia/2017/2	CREAT CREAT 6 2018- 30 FRACME TABASE	PION DATE -06-25 03: ENTS x DA	M B S 15: t 15: t ROWS : GMENT	EASUR	MEASURE TYP B FLOAT ELEMENTS x ROW	LEVE L 2 COMPRES	NUMBER OI TS 1	 ++ UN	NUMB	E E E E E E E E E E	
tps://ophidialab. esponse]: tacube Informatio PID https://ophidiala 0995 tacube Additional DESCRIP HOST x CUBE celsius 1	n b.cmcc.it/o Informatio	phidia/2017/2	CREAT CREAT 6 2018- 30 FRACME TABASE	PION DATE -06-25 03: ENTS x DA	M B S 15: t 15: t ROWS : GMENT	EASUR	MEASURE TYP B FLOAT ELEMENTS x ROW	LEVE L 2 COMPRES SED	NUMBER OI TS 1	 ++ UN	NUMB	E E E E E E E E E E	
tps://ophidialab. esponse]: tacube Informatio PID https://ophidiala 0995 tacube Additional DESCRIP HOST x TION CUBE celsius 1 mension Informati	n b.cmcc.it/o Informatio	phidia/2017/2	CREAT CREAT CREAT 30 FRAGME TABASE 1 1	-06-25 03: ENTS x DA	M E 15: t GMENT 1 1	EASUR OS X FRA	MEASURE TYP E FLOAT ELEMENTS x ROW 24	LEVE L 2 COMPRES SED	NUMBER OI TS 1	 ++ UN	NUMB	E E E E E E E E E E	===+ IL ===+ + +
tps://ophidialab. esponse]: tacube Informatio PID https://ophidiala 0995 tacube Additional DESCRIP HOST x TION CUBE celsius 1 mension Informati	n b.cmcc.it/o Informatio DBMS x 1 1 1 1 1 1 1 1 1 1	phidia/2017/2	CREAT CREAT 6 2018- 30 FRACME TABASE	COG-25 03:		EASUR OS X FRA	MEASURE TYP B FLOAT ELEMENTS x ROW	LEVE L 2 COMPRES SED	NUMBER OI TS 1	 ++ UN	NUMB	E E E E E E E E E E	+ +
tps://ophidialab. esponse]: tacube Informatio PID https://ophidiala 0995 tacube Additional DESCRIP HOST x CUBE celsius 1 mension Informati NAME TYPE S lat double 1	n b.cmcc.it/o Informatio	phidia/2017/2	CREAT CREAT CREAT 30 FRAGME TABASE 1 1	-06-25 03: -06-25 03: -06-25 03: -03: -03: -03: -03: -03: -03: -03: -	M E 15: t ROWS GMENT 1 LEVEL	EASUR OS X FRA	MEASURE TYP E FLOAT ELEMENTS x ROW 24	LEVE L 2 COMPRES SED	NUMBER OI TS 1	 ++ UN	NUMB	E E E E E E E E E E	
https://ophidiala 0995 atacube Additional DESCRIP HOST x TION CUBE celsius 1 imension Informati	h.cmcc.it/o	phidia/2017/2	CREAT CREAT CREAT 30 FRAGME TABASE 1 1	CION DATE -06-25 03: MTS x DA 		EASUR OS X FRA	MEASURE TYP E FLOAT ELEMENTS x ROW 24	LEVE L 2 COMPRES SED	NUMBER OI TS 1	 ++ UN	NUMB	E E E E E E E E E E	

ECASLab: Grafana monitoring interface

18:49:30 18:50:00

min max current

✓ Based on grafana

Application Metrics

Row title

Row title

- pendir

- running

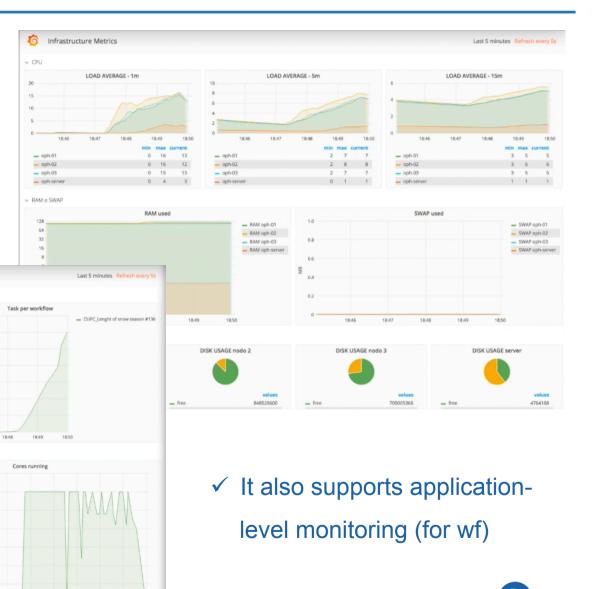
- ✓ It provides real-time monitoring of the ECAS cluster
- ✓ Used internally by admins

- CLIPC_Lenght of snow season #136

18:49:30 18:50:0

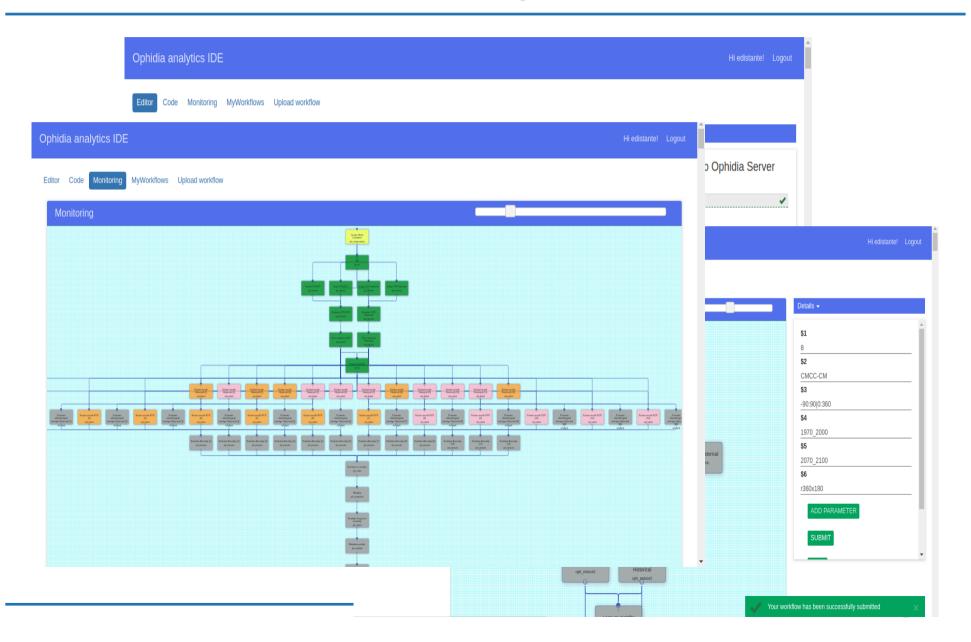
0 40 0

18:45:30 18:46:00 18:46:30

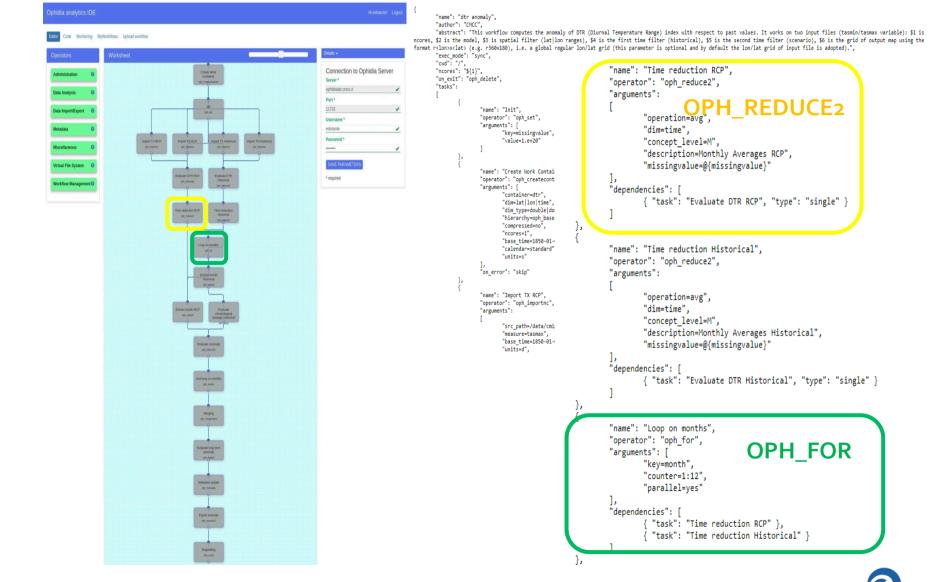

49:00 min max current 0 92

Workflows progress ratio

18:48

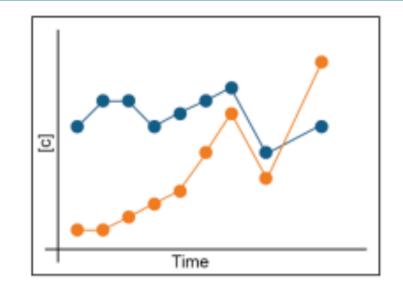

18:46:30 18:47:00 18:40

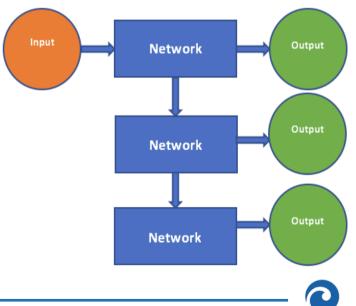
Tasks



Looking forward Workflow IDE and Server-side machine learning

ECASLab and the analytics workflow IDE



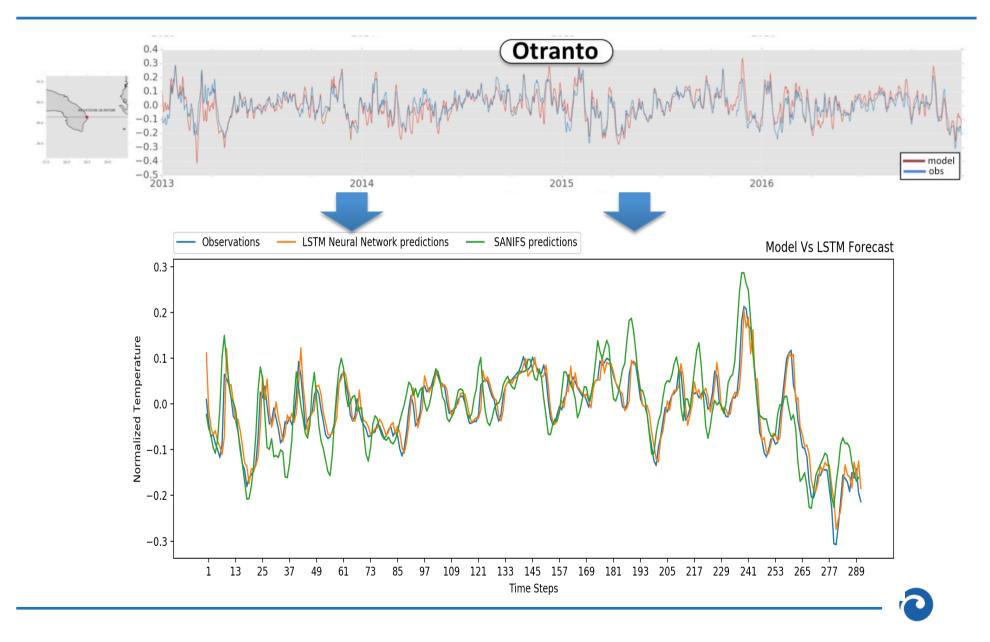

Easy and automated generation of JSON code

Long Short-Term Memory Network for Time Series Prediction

- We modeled the time series as a supervised learning problem, that is, as a sequence of inputs and outputs.
- At each stage, the network receives as input the *n* values in the past from a time *t*. The output is *h* nodes representing the values in the future.
- The goal of the network is to learn the mapping from the input to the output.
- Hopefully, the LSTM is able to capture some kind of temporal dependence in order to get better predictions.

Ophidia Primitives For LSTM: Training

- The algorithm has been divided in two phases: one for training and one for test/prediction.
- The primitive for the **training** task:


```
oph_lstm(input_OPH_TYPE, output_OPH_TYPE, measure,
dim_in, dim_out, n_h_layers, n_h_neurons, [dropout],
[learning_rate], [unrolled_len], [minibatch_size],
[max_epoch])
```

- It can be run in a SQL statement or in the OPH_APPLY operator.
- After the training phase, the resulting neural network with updated parameters is saved as a binary array in a datacube. It can then be reused in the test phase.
- The primitive for the **test/prediction**:

```
oph_lstm_predict(input_OPH_TYPE, output_OPH_TYPE,
measure_a, measure_b, test)
```



LSTM for the SANIFS Use Case

Useful resources and final remarks

Ophidia documentation and social/multimedia content

Useful Resources

- Website: <u>https://ophidia.cmcc.it</u>
- Doc : http://ophidia.cmcc.it/documentation
- The Ophidia code is available on GitHub under GPLv3 license at <u>https://github.com/OphidiaBigData</u>
- RPMs are also available for CentOS6 at the following repo: <u>http://download.ophidia.cmcc.it/rpm</u>
- Youtube Channel
 <u>https://www.youtube.com/user/OphidiaBigData/</u>
- A Virtual Machine Image (OVA format) is also available at <u>https://download.ophidia.cmcc.it/vmi_desktop/</u> to get started in a few minutes with Ophidia

Publications

[11] S. Fiore, C. Palazzo, A. D'Anca, D. Elia, E. Londero, C. Knapic, S. Monna, N. M. Marcucci, F. Aguilar, M. Płóciennik, J. E. M. De Lucas, G. Aloisio, "Big Data Analytics on Large-Scale Scientific Datasets in the INDIGO-DataCloud Project". In Proceedings of the ACM International Conference on Computing Frontiers (CF '17), May 15-17, 2017, Siena, Italy, pp. 343-348

[10] A. D'Anca, C. Palazzo, D. Elia, S. Fiore, I. Bistinas, K. Böttcher, V. Bennett, G. Aloisio, "On the Use of In-memory Analytics Workflows to Compute eScience Indicators from Large Climate Datasets," 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID), Madrid, May 14-17, 2017, pp. 1035-1043.

[9] S. Fiore, M. Plóciennik, C. M. Doutriaux, C. Palazzo, J. Boutte, T. Zok, D. Elia, M. Owsiak, A. D'Anca, Z. Shaheen, R. Bruno, M. Fargetta, M. Caballer, G. Moltó, I. Blanquer, R. Barbera, M. David, G. Donvito, D. N. Williams, V. Anantharaj, D. Salomoni, G. Aloisio, "Distributed and cloud-based multi-model analytics experiments on large volumes of climate change data in the earth system grid federation eco-system". In Big Data (Big Data), 2016 IEEE International Conference on. IEEE, 2016. p. 2911-2918.

[8] M. Plociennik, S. Fiore, G. Donvito, M. Owsiak, M. Fargetta, R. Barbera, R. Bruno, E. Giorgio, D. N. Williams, and G. Aloisio, "Two-level Dynamic Workflow Orchestration in the INDIGO DataCloud for Large-scale, Climate Change Data Analytics Experiments", International Conference on Computational Science 2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA. Procedia Computer Science, vol. 80, 2016, pp. 722-733

[7] D. Elia, S. Fiore, A. D'Anca, C. Palazzo, I. Foster, D. N. Williams, G. Aloisio, "An in-memory based framework for scientific data analytics". In Proceedings of the ACM International Conference on Computing Frontiers (CF '16), May 16-19, 2016, Como, Italy, pp. 424-429

[6] C. Palazzo, A. Mariello, S. Fiore, A. D'Anca, D. Elia, D. N. Williams, G. Aloisio, "A Workflow-Enabled Big Data Analytics Software Stack for eScience", The Second International Symposium on Big Data Principles, Architectures & Applications (BDAA 2015), HPCS 2015, Amsterdam, The Netherlands, July 20-24, 2015, pp. 545-552

[5] S. Fiore, M. Mancini, D. Elia, P. Nassisi, F. V. Brasileiro, I. Blanquer, I. A. A. Rufino, A.C. Seijmonsbergen, C. O. Galvao, V. P. Canhos, A. Mariello, C. Palazzo, A. Nuzzo, A. D'Anca, G. Aloisio, "Big data analytics for climate change and biodiversity in the EUBrazilCC federated cloud infrastructure", Workshop on Analytics Platforms for the Cloud, In Proceedings of the 12th ACM International Conference on Computing Frontiers (CF '15), May 18th, 2015, Ischia, Italy. Article 52, 8 pages.

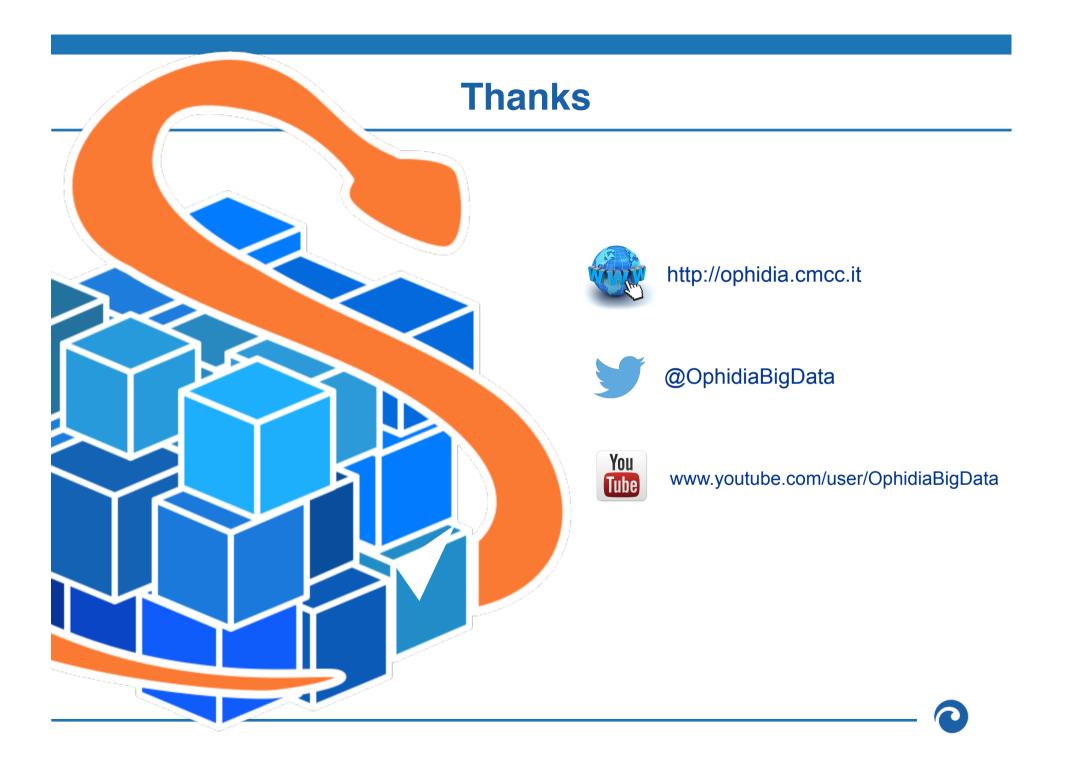
[4] S. Fiore, A. D'Anca, D. Elia, C. Palazzo, I. Foster, D. Williams, G. Aloisio, "Ophidia: A Full Software Stack for Scientific Data Analytics", proc. of the 2014 International Conference on High Performance Computing & Simulation (HPCS 2014), July 21 – 25, 2014, Bologna, Italy, pp. 343-350, ISBN: 978-1-4799-5311-0

[3] S. Fiore, C. Palazzo, A. D'Anca, I. T. Foster, D. N. Williams, G. Aloisio, "A big data analytics framework for scientific data management", IEEE BigData Conference 2013: 1-8

[2] S. Fiore, A. D'Anca, C. Palazzo, I. T. Foster, D. N. Williams, G. Aloisio, "Ophidia: Toward Big Data Analytics for eScience", ICCS 2013, June 5-7, 2013 Barcelona, Spain, ICCS, volume 18 of Procedia Computer Science, page 2376-2385. Elsevier, 2013

[1] G. Aloisio, S. Fiore, I. Foster, D. Williams, "Scientific big data analytics challenges at large scale", Big Data and Extreme-scale Computing (BDEC), April 30 to May 01, 2013, Charleston, South Carolina, USA (position paper).

Conclusions


- ECAS represents the community evolution of Ophidia and is a key thematic service in the context of the EOSC-hub
- ✓ OLAP approach for big data multidimensional data model
- ✓ Multiple use cases for data analysis in **different domains** have been implemented
- ✓ It provides access via CLI (end-users) and API (devel users)
- ✓ Programmatic access via C and Python APIs
- ✓ Several deployment scenarios tested in **cloud** and **HPC** environments
- ✓ Strong workflow support and in-memory analytics
- Programmable interface to develop machine learning algorithms
 Preliminary results on this topic are promising

Do you want to join?

That's an **open source** project aiming at becoming a **community effort**

Feel free to get in touch with us sandro.fiore@cmcc.it

