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๏ Big-data in real time 

๏ “data scouting” with trigger-level analysis 

๏ Big-Data tools and High-Energy physics (HEP) workflows 

๏ HPC centres & HEP computing workflows 

๏ opportunistic processing 

๏ distributed training for Machine Learning

In this talk
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I am replacing M. Zanetti here. I am trying to follow his initial idea about this talk, but with 
some personal point of view. 
Not sure this matches 100% what this talk was about and your expectations. 
I hope this will be useful nevertheless.



https://www.youtube.com/watch?v=jDC3-QSiLB4

https://www.youtube.com/watch?v=jDC3-QSiLB4


•40 MHz in / 100 KHz out

•~ 500 KB / event

•Processing time: ~10 μs

•Based on coarse local reconstructions

•FPGAs / Hardware implemented
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•100 KHz in / 1 KHz out

•~ 500 KB / event

•Processing time: ~30 ms

•Based on simplified global reconstructions

•Software implemented on CPUs
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•1 KHz in / 1.2 kHz out

•~ 1 MB / 200 kB / 30 kB per event

•Processing time: ~20 s

•Based on accurate global reconstructions

•Software implemented on CPUs
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•Up to ~ 500 Hz In / 100-1000 events 
out

•<30 KB per event

•Processing time irrelevant

•User-written code + centrally 
produced selection algorithms
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HEP, Big Data & Real 
Time Processing



๏ Too many data, too large data ! need to filter online 

๏ Filters based on pheno bias: we might be loosing good events

The Trigger Problem
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High-Level  

Trigger
L1 

trig
ger

1 KHz  
1 MB/evt

40 MHz

100 KHz

‣ L1 trigger: local, hardware based, on FPGA, @experiment site 

‣ HLT: local/global, software based, on CPU, @experiment site 

‣ Offline: global, software based, on CPU, @CERN T0 

‣ Analysis: user-specific applications running on the grid
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Real-time new physics search with large datasets 

๏ Run reconstruction in the trigger farm 

๏ Avoid resource limitations: write less information (a few 
floats) for more events  

๏ Probes unexplored territory, previously left behind  

Problem: practical (so far) only for specific topologies

High-Level  

Trigger farm

full event

L1 trig
ger

Scouting

1 KHz  
1 MB/evt

1/300 the 
events size 

x6 more events 

40 MHz

100 KHz

Doing more with less



๏ In Run I, dijet search was the first BSM analysis published by CMS 

๏ Quick improved results from Tevatron in a wide range of mass spectra 

๏ Quickly forced to reduce mass range under investigation, due to 
increasing trigger rates vs limited resources 

๏ Scouting was introduced to recover the lost territory (500 to 1100 GeV) 

Why did we do this?

energy E is defined as the scalar sum of the calorimeter
tower energies inside the jet. The jet momentum ~p is
the corresponding vector sum of the tower energies using
the tower directions. The E and ~p of a reconstructed jet are
corrected as a function of pT and ! for the nonlinearity
and inhomogeneity of the calorimeter response. The cor-
rection is between 43% and 15% for jets with corrected pT

between 0.1 and 1.0 TeV in the region j!j< 1:3. The jet
energy corrections were determined and validated using
simulations, test beam data, and collision data [12].

The dijet system is composed of the two jets with the
highest pT in an event (leading jets). We require that the
pseudorapidity separation of the two leading jets, !! ¼
!1 " !2, satisfies j!!j< 1:3, and that both jets be in the
region j!j< 2:5. These ! cuts maximize the search sensi-
tivity for isotropic decays of dijet resonances in the pres-
ence of QCD background. The dijet mass is given by

m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 þ E2Þ2 " ð ~p1 þ ~p2Þ2

p
. We select events with

m> 220 GeV without any requirements on jet pT .
To remove possible instrumental and noncollision back-

grounds in the selected sample, the following selections are
made. Events are required to have a reconstructed primary
vertex within jzj< 24 cm. For jets, at least 1% of the jet
energy must be detected in the ECAL, at most 98% can be
measured in a single photodetection device of the HCAL
readout, and at most 90% can be measured in a single cell.
These criteria, which are fully efficient for dijets, remove
0.1% of the events passing the pseudorapidity constraints
and the dijet mass threshold.

Figure 1 presents the inclusive dijet mass distribution for
pp ! 2 leading jets þ X, where X can be anything, in-
cluding additional jets. We plot the measured differential
cross section versus dijet mass in bins approximately equal
to the dijet mass resolution. The data are compared to a
QCD prediction from PYTHIA [13], which includes a full
GEANT simulation [14] of the CMS detector and the jet
energy corrections. The prediction uses a renormalization
scale " ¼ pT and CTEQ6L1 parton distribution functions
[15]. The PYTHIA prediction agrees with the data within the
jet energy scale uncertainty, which is the dominant system-
atic uncertainty. To test the smoothness of our measured
cross section as a function of dijet mass, we fit the data with
the parametrization

d#

dm
¼ P0ð1"m=

ffiffiffi
s

p ÞP1

ðm=
ffiffiffi
s

p ÞP2þ P3 lnðm=
ffiffi
s

p Þ ; (1)

with four free parameters P0, P1, P2 and P3. This func-
tional form has been used by prior searches to describe
both data and QCD predictions [16,17]. In Fig. 1 we show
both the data and the fit, which has a $2 ¼ 32 for 31
degrees of freedom. In Fig. 2 we show the ratio between
the data and the fit. The data are well described by the
smooth parametrization.

We search for narrow resonances, for which the natural
resonance width is negligible compared to the CMS dijet

mass resolution. Figures 1 and 2 present the predicted dijet
mass distribution for string resonances and excited quarks
using the PYTHIA Monte Carlo and the CMS detector
simulation. The predicted mass distributions exhibit a
Gaussian core from jet energy resolution and a tail toward
lowmasses from QCD radiation. This can be seen in Fig. 3,
which shows examples of the predicted dijet mass distri-
bution of resonances from three different parton pairings:
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FIG. 1 (color online). Dijet mass spectrum (points) compared
to a smooth fit (solid) and to predictions [13] including detector
simulation of QCD (short-dashed), excited quark signals (dot-
dashed), and string resonance signals (long-dashed). The errors
are statistical only. The shaded band shows the effect of a 10%
systematic uncertainty in the jet energy scale (JES).
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FIG. 2 (color online). Ratio (points) between the dijet mass
data and the smooth fit, compared to the simulated ratios
for excited quark signals (dot-dashed) and string resonance
signals (long-dashed) in the CMS detector. The errors are
statistical only.

PRL 105, 211801 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

19 NOVEMBER 2010

211801-2

3 pb-1 @7 TeV in 2010 1 fb-1 @7 TeV in 2011
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The first attempt



The first attempt



What we accomplished

 14

๏ Recovered 
sensitivity to 500 
GeV resonances 

๏ Reached limitation 
of L1 seed-> need to 
improve our hardware 
trigger (more on 
this later) 

๏ Now extending the 
method to more final 
states (collected x3 
more data than the 
rest of CMS in 2017)



What we accomplished
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๏ Kept sensitivity 
to 500-1500 GeV 
resonances 

๏ Current 
limitation is L1 
efficiency 

๏ Can probe lower 
couplings by 
collecting more 
data



An established approach
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EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-EP/2016-090
2018/05/15

CMS-EXO-14-005

Search for narrow resonances in dijet final states atp
s = 8 TeV with the novel CMS technique of data scouting

The CMS Collaboration⇤

Abstract

A search for narrow resonances decaying into dijet final states is performed on data
from proton-proton collisions at a center-of-mass energy of 8 TeV, corresponding to an
integrated luminosity of 18.8 fb�1. The data were collected with the CMS detector us-
ing a novel technique called data scouting, in which the information associated with
these selected events is much reduced, permitting collection of larger data samples.
This technique enables CMS to record events containing jets at a rate of 1 kHz, by
collecting the data from the high-level-trigger system. In this way, the sensitivity to
low-mass resonances is increased significantly, allowing previously inaccessible cou-
plings of new resonances to quarks and gluons to be probed. The resulting dijet mass
distribution yields no evidence of narrow resonances. Upper limits are presented
on the resonance cross sections as a function of mass, and compared with a variety
of models predicting narrow resonances. The limits are translated into upper limits
on the coupling of a leptophobic resonance Z0

B to quarks, improving on the results
obtained by previous experiments for the mass range from 500 to 800 GeV.

Submitted to Physical Review Letters

c� 2018 CERN for the benefit of the CMS Collaboration. CC-BY-3.0 license

⇤See Appendix A for the list of collaboration members
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๏ LHCb & ALICE soon to start 
a detector & online-
infrastructure upgrade. 
Final goal is to  

๏ Read ALL collisions 

๏ Process them in real 
time 

๏ Align & calibrate 
detector at the same 
time 

๏ The ultimate extrapolation 
of the scouting paradigm: 
Can take more data -> 
increase detector 
precision

Next-step:Trigger-less
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HEP, Cloud & HPCs



๏ 170 centres in 42 countries, 
for central processing and 
analysis-related user jobs 

๏ 1M cores 

๏ 1 EB storage 

๏ >2M jobs & 3 PB moved /day

The WLCG Grid
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Computing 

2017 – a new record in peak performance 

CPU delivered Data stored 

~1M	Cores	

3PB/day	3PB/day	



๏ The evolving conditions of the 
machine are drifting the experiments 
to more prohibitive environments 
(luminosity comes with a cost) 

๏ More (& bigger) events to handle 

๏ More noise from pileup interactions 

๏ Increase in resources will not scale 
with needs 

๏ Flat (or decreasing?) budget 

๏ (Non linearly) increasing demand 

๏ Need to find better ways to do 
things

The challenge ahead

 20

Tracking 

• High luminosity means high pileup 
• Combinatorics of charged particle tracking become 

extremely challenging for GPDs 
• Generally sub-linear scaling for track reconstruction 

time with m 

• Impressive improvements for Run 2, but we need to go 
much further 

23



The challenge ahead
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๏ Event complexity, volume, and number will challenge the 
current paradigm 

๏ Assuming flat budget, we simply cannot keep doing things as 
we do now



๏ The growing complexity of LHC 
events is forcing us to look for 
more resources, particularly for 
the computation-heavy central 
reconstruction 

๏ CERN extended the T0 center by 
adding a site in Wigner 
(Hungary) 

๏ Similar approach used by T1s 
(e.g., CNAF T1 extended with 
CPUs in Bari) 

๏ Paradigm extended 
opportunistically to Cloud 
services and HPC sites

More CPU: Cloud

 22



More CPU: Cloud
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HEPCloud, a new paradigm for HEP facilities: CMS Amazon Web Services Investigation 7

Fig. 3 Number of running instances by AWS Region and
Availability Zone.

Fig. 4 Pilot lifetimes in hours. The left histogram represents
the entire distribution; the right histogram is zoomed in to
show the distribution for pilots with lifetimes under 20 hours.

of four months. The static strategy gave the most bal-
anced performance in terms of cost when averaged over
a variety of pricing conditions.

We devised a strategy of “portfolio diversification”
based on our observations of the spot market. To im-
prove the availability and stability of the system at
scale, we bid in more than 100 di↵erent spot markets,
representing nearly all the regions and zones then avail-
able in the US, as illustrated in Figure 3.

The mean lifetime for a provisioned resource was
37.6 hours, while the average job lifetime was 4.7 hours.
Figure 4 shows the distribution of provisioned resource
lifetimes. While the distribution is peaked in the lowest
bin, the tail is very long—some resources remained in
the pool for over 200 hours.

Over the course of the 3.2 million job run, 15.5%
of the jobs were preempted, as shown in Table 1. Pre-
emptions are made visible within HTCondor as the dis-
appearance of a provisioned resource. When a preemp-
tion is detected, the scheduler reschedules the job and
restarts it on a di↵erent available resource. The “num-
ber of job starts” is then strictly one less than the num-
ber of times a job was preempted.

There is also a time-dependence to the ability of ac-
quiring resources at scale. In general, during the busi-
ness day, AWS removes resources from the spot mar-
ket to fulfill their “reserved” and “on-demand” classes

Table 1 Preemption counts for CMS jobs

Number of times preempted Count Percentage of total
0 2736240 84.5%
1 403062 12.4%
> 1 101687 3.1%

Fig. 5 Count of CPU cores on AWS from February 1st (Mon-
day) to February 7th (Sunday), 2016. The plateau near 60,000
cores is limited by the local submission infrastructure. With
the exception of the large dip on February 4, the decreases
are purely due to the dynamics of the spot market.

of service. In the late evenings and on the weekends,
as the demands on those classes of service go down,
the supply of resources into the spot market increases.
This is clearly visible in Figure 5—there are peaks in
the early morning hours and on weekends, and valleys
during the day when resources were removed from pools
and machines were being more frequently preempted.

The default strategy used by the glideinWMS fron-
tend and factory was to attempt to distribute the load
evenly (on a number of core basis) across nearly all re-
gions, zones and instance types12. We found that some
region/zone/instance type combinations filled up very
quickly and the price quickly moved above our bid price,
causing quick preemption of those instance types. Over
time we ended up accumulating most of the instances
which were least likely to get preempted. The final in-
stance mix near the end of the steady-state is shown in
Table 213.

During the run, $211,985 was spent on AWS ser-
vices. 15,085,635 wallclock hours were consumed—giving
an average cost per wallclock hour of 1.4 cents. Approx-
imately 92% of cost was spent on EC2 instances, 6% on
support, and 2% on S3 storage. The cost per event for
di↵erent physics samples is shown in Table 3.

12 https://aws.amazon.com/ec2/instance-types/
13 Instance types that provided smaller contributions are not
included.

๏ The growing complexity of LHC 
events is forcing us to look for 
more resources, particularly for 
the computation-heavy central 
reconstruction 

๏ CERN extended the T0 center by 
adding a site in Wigner 
(Hungary) 

๏ Similar approach used by T1s 
(e.g., CNAF T1 extended with 
CPUs in Bari) 

๏ Paradigm extended 
opportunistically to Cloud 
services and HPC sites



Progress – NERSC Edison (and Cori) Status

10/11/16 Dirk Hufnagel | CHEP 2016 San Francisco14

We are using two allocations:

     1.5M cpu hours commissioning

       5M cpu hours production

Haven't used up too much of it yet, only

finished commissioning recently and still

in the process of scaling up production use.

Limited by current Cori downtime.

๏ Similar tests done on HPC 
sites (NERSC Cori) 

๏ x86 machines, in very 
different setup than T0/T1/
T2/T3 sites 

๏ Challenge stands in working 
out all details and finding 
workarounds to incompatible 
setups (e.g., not-supported 
components) 

๏ Result: storage-less site 
added to the CMS grid as yet 
another Tx

More CPU: HPCs
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A convenient new Paradigm?

 25



HEP, Big Data & “offline” 
Processing



๏ Central processing: Runs @T0. Start from RAW data 
and creates a collection of “Primary” Datasets then 
distributed to T1s 

๏ Data skimming: Runs @T0 or T1s. From the Primary 
Datasets, produce “Secondary datasets” by removing 
events (so why did you take them to start with?) or 
reducing the information (data compression) 

๏ Data analysis: runs on Secondary Datasets, applying 
analysis specific selection, reconstructing high-
level objects on which signal-to-background 
discriminating quantities are computed. Runs on T3s, 
on the Grid, etc 

๏ Result extraction: typically a ML fit, based on data 
distributions in signal region and control region + 
prediction from MC simulation (runs on laptops)

The foreseen analysis workflow

 27 Scientific America, Sep 2008

https://www.scientificamerican.com/article/how-lhc-may-change-internet/


๏ Disk issue is less (but still quite) serious than anticipated: 

๏ We (all) introduced AODs (500-1000 kB/evt)  compressed version of 
RECO data format. We saved disk, so we just distributed Primary 
Datasets rather than using the (very bad) Secondary datasets 

๏ With gain detector understanding, we (CMS) then moved forward to 
miniAODs (30 kB/evt) and nanoAOD (3 kB/evt), compressed data 
formats with top-bottom object definition, serving >80% of the 
analysis use cases 

๏ Large demand of CPU faced breaking the paradigm rigidity: 

๏ T1s and T2s interconnection was improved. Now one runs a job 
somewhere accessing data somewhere else 

๏ Still, we would use more disk & CPU if we had it …

It didn’t really go like that

 28



๏ A lot is happening outside HEP 

๏ full data-scientist echo-system 

๏ big-data handling tools 

๏ But we have specific tools (ROOT) 

๏ optimized on our use cases 

๏ very competitive on I/O point of view 

๏ long-term future guaranteed (we develop it 
for ourselves) 

๏ A big effort to integrate ROOT & outside-world 
big-data tools is ongoing, with promising 
results

Big Data tools & HEP

 29



๏ Effort to modernise approach to data 
analysis by integrating/creating data-
analytics tools for physics analyses 

๏ Goals: 

๏ Reduce number of intermediate 
processing+storage steps 

๏ Allow analyses to run on (mini)AODs way 
down to the publication-ready plots in a 
data-science framework

BigData tools integration

 30



๏ Develop a CMS analysis workflow in 
Apache Spark: 

๏ Full ROOT -> Spark analysis 
workflow with 

๏ Event selections 

๏ Data-Simulation comparison 

๏ Data reduction scheme in Spark 

๏ Provided services 

๏ Machine-Learning toolkit 

๏ Data in memory for fast training 

๏ Benchmarking all that and compare 
performance/results with standard 
workflow 

The Final Goal

 31



๏ Dedicated libraries to implement the 
workflow: 

๏ XrootD connector to access files on 
CERN EOS filesystem: (So far) from 
public area. Authentication via 
certificate is under developement 

๏ Spark-root: Read ROOT object 
collections and automatically infer 
their class schema  

๏ Histogrammar (by DIANA-HEP): To 
fill histograms passing lambda 
functions and use them in the same 
way as transformations are used in 
Apache Spark  

๏ 100% data-science echosystem, 
compatible with ROOT I/O but w/o ROOT 
installation

How It works

 32



What Can It Do?

 33

0n-the-fly Feature 
Engineering

I/O from structured ROOT files 
(e.g., experiment-specific data files)



HPC, HEP & Deep Learning



๏ With Deep Learning gaining 
territory in HEP(*), NN training 
will become soon a new workflow for 
large HEP experiments 

๏ Experiments will want to maximise 
performances  

๏ Fast turn-around for new 
trainings, as long as new data 
are collected 

๏ Need dedicated hardware to be 
effective (TPU, GPU, etc) 

๏ Ideal use case to integrate HEP 
workflows into network of HPC sites

Large-scale training

 35 (*) more on this in afternoon seminar
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Artificial Neural Network

See all developing applications in David's talk 

https://indico.cern.ch/event/587955/contributions/3012266/ 

http://www.asimovinstitute.org/neural-network-zoo

●
Large number of parameters

●
Efficiently adjusted with stochastic gradient descent

●
The more parameters, the more data required

●
Training to convergence can take minutes to several days, ... 
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Artificial Neural Network

See all developing applications in David's talk 

https://indico.cern.ch/event/587955/contributions/3012266/ 

http://www.asimovinstitute.org/neural-network-zoo

●
Large number of parameters

●
Efficiently adjusted with stochastic gradient descent

●
The more parameters, the more data required

●
Training to convergence can take minutes to several days, ... 

07/12/18
Deep Learning 

Training & Optimization, J-R Vlimant, CHEP18 8

Training Artificial Neural Networks

● ANN and associated loss function have fully analytical
formulation and are differentiable with respect to model
parameters

● Gradient evaluated over batch of data
➢ Too small : very noisy and scattering
➢ Too large : information dilution and slow convergence



๏ Not only the best set of parameters, 
but also the best network overall:  

๏ how many layers? 

๏ how many nodes/layers? 

๏ which activation function? 

๏ Answers to be find by Optimization 
algorithm 

๏ Bayesian Optimization 

๏ Evolutionary Algorithms 

๏ … 

๏ One extra reason to train production-
ready algorithms @HPC sites

Hyper-parameter optimization

 36
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Bayesian Optimization

● Objective function is
approximated as a multivariate
gaussian

● Measurements provided one by
one to improve knowledge of the
objective function

● Next best parameter to test is
determined from the acquisition
function

● Using the python implementation
from 
https://scikit-optimize.github.io 

https://tinyurl.com/yc2phuaj 

07/12/18
Deep Learning 

Training & Optimization, J-R Vlimant, CHEP18 26

Evolutionary Algorithm
● Chromosomes are represented by the hyper-parameters
● Initial population taken at random in the parameter space
● Population is stepped through generations

● Select the 20% fittest solutions
● Parents of offspring selected by binary tournament based on

fitness function
● Crossover and mutate to breed offspring

●   Alternative to bayesian opt. Indications that it works better for
large number of parameters and non-smooth objective function 



๏ Assigning uncertainties to 
training-goodness figures of 
merit to establish ACTUAL 
improvements 

๏ Are ROC AUCs 98.754 and 
97.998 actually different? 

๏ Done by different training vs 
validation dataset splits 

๏ Average performances and 
performance dispersion allow 
to “measure” mean and variance  

๏ Multiply workflow computing 
needs by K

K-folding cross validation

 37
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K-Folding Cross Validation

● Estimate the performance of multiple model training over
different validation part of the training dataset

● Allows to take into account variance from multiple source
(choice of validation set, choice of random initialization, ...) 

● Crucial when comparing models performance
● Training on folds can proceed in parallel

07/12/18
Deep Learning 

Training & Optimization, J-R Vlimant, CHEP18 28
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๏ Data Parallelism: master nodes 
handle parameter setting, 
receives gradients from 
workers and distribute new 
parameter values. Good for 
datasets with many events

07/12/18
Deep Learning 

Training & Optimization, J-R Vlimant, CHEP18 12

Data Distribution

https://arxiv.org/abs/1712.05878 

● Master node operates as parameter server
● Work nodes compute gradients
● Master handles gradients to update the central model

➔ downpour sgd https://tinyurl.com/ycfpwec5 
➔ Elastic averaging sgd https://arxiv.org/abs/1412.6651  

Parallelisms
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Performance on ANN

● Speed up in training recurrent neural networks on Piz
Daint CSCS supercomputer

➔ Linear speed up with up to ~20 nodes. Bottlenecks
to be identified

➔ Needs to compensate for staleness of gradients
● Similar scaling on servers with 8 GPUs

➔ x7 speed up with students' work 

https://github.com/duanders/mpi_learn 

07/12/18
Deep Learning 

Training & Optimization, J-R Vlimant, CHEP18 15
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Deployed @HPC centres
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Performance on GAN

● Speed up in training generative
adversarial networks on Piz Daint CSCS
and Titan ORNL supercomputers

➔ Using easgd algorithm with rmsprop
➔ Speed up is not fully efficient.

Bottlenecks to be identified

NVIDA K20 at Titan, ORNL

NVIDA P100 on Piz Daint, CSCS

07/12/18
Deep Learning 

Training & Optimization, J-R Vlimant, CHEP18 14

Performance on GAN

● Speed up in training generative
adversarial networks on Piz Daint CSCS
and Titan ORNL supercomputers

➔ Using easgd algorithm with rmsprop
➔ Speed up is not fully efficient.

Bottlenecks to be identified

NVIDA K20 at Titan, ORNL

NVIDA P100 on Piz Daint, CSCS



07/12/18
Deep Learning 

Training & Optimization, J-R Vlimant, CHEP18 18

P
a
ra

m
e
te

r-
s
e
t 
g
ro

u
p
 0 TW1
GPU2

TW1
GPU2

TWN
W

GPU2

Training master
group 0, subrank 0

TW1
GPU1

TW2
GPU1

TWN
W

GPU1

TW1
GPUN

GPU

TW2
GPUN

GPU

TWN
W

GPUN
GPU

● A logical worker is spawn over multiple mpi processes
● Communicator passed to horovod https://github.com/uber/horovod 
● Private horovod branch to allow for group initialization/reset
● Nvidia NCCL enabled for fast GPU-GPU communication

“all-reduce” Layout

๏ Gradient Parallelism: 
parallelise gradient computation 
of a single batch on multiple 
workers. Good for datasets with 
large-size examples 

Parallelisms
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Communication through Horovod with fast 
GPU-GPU communication (nVidia NCCL)
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Sofia V. @ https://sites.google.com/nvidia.com/ai-hpc 

Not
mpi-opt
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๏ Model Parallelism: compute 
gradients for different parts 
of the networks on different 
workers. Good for large models

Parallelisms
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Intra-Node Model Parallelism

See T. Kurth et al. @ https://pasc18.pasc-conference.org for node
to node model parallelism considerations

GPU2GPU1

● Perform the forward and backward pass of sets of layers on
different devices

● Require good device to device communication
● Utilize native tensorflow multi-device manager
● Aiming for machines with multi-gpu per node topology (summit)

Requires good devide-to-device communication 
Used TensorFlow native multi-device manager 

Aiming to test this on machines with multi-gpu nodes (Summit)



Conclusions

 42

๏ Large-scale computing is a consolidated tradition in HEP 

๏ Things didn’t go as planned, since new developments made us more 
competitive at fixed/decreasing resource budget (e.g., scouting & 
real-time processing to do more with less) 

๏ New challenges ahead call for qualitative and quantitative (more 
CPU + GPU + …) and qualitative (Big data tools integration) 
improvements 

๏ Exploiting existing sites (HPC) rather than building dedicated 
facilities 

๏ Opportunistic cloud computing  

๏ Large-scale training as a service on GPU clusters 

๏ Challenges ahead, time for brave people to come out with ideas



Backup
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