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The Al Revolution
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WHY DEEP LEARNING IS
SUDDENLY CHANGING YOUR LIFE

Decades-old discoveries are now
and will soon transfol

Over the past four years, readers have doubt

a wide range of everyday technologies.

Most obviously, the speech-recognition fiunc

A survival guide for the coming Al
revolution
By Natalie Rens, Juxi Leitner Mar 03, 2017

This article first appeared on The Conversation.

If the popular media isto be believed, artificial intelligence Is coming to steal your
Job and threaten life as we know it. If we do not prepare now, we may face a future where
Al runs free and dominates humans in society.

The Al revelution is indeed underway. To ensure you are prepared to make it through the
times ahead, we've created a handy survival guide for you.

Step 1: Recognizing Al

The first step in every conflict Is knowing your target. It Is crucial to acknowledge that Al
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Industry and Al
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Al, Machine Learning & Deep Learning

Artificial Intelligence (Al)

Machine Learning

1950 1960 1970 1980 1990 2000 2010



Artificial Intelligence

“Our ultimate objective is to make
programs that learn from their
experience as effectively as
humans do.”

John McCarthy, 1958




Machine Learning

“Machine Learning is the science
of getting computers to act
without being explicitly
programmed”

Andrew Ng




Machine Learning

“A computer program is said to
learn from experience E with
=l | respect to some class of tasks T
Mraud detection and performance measure P, if its
ol mEE performance at task in T, as
= iy Frssasmga measured by P, improves with
S Ll e A/ - “dam\ 0= ecxperience E.”

translation it ﬂﬂ' self driving
recommendations

Tom Mitchell, 1997
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Machine Learning

Machine Learning
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Relationships
Patterns
Dependencies
Hidden structures

Algorithms + Techniques



Machine Learning

Supervised Learning:

Predicting values. Known targets.

User inputs correct answers to learn from. Machine uses the information to guess new
answers,

REGRESSION: CLASSIFICATION:

Estimate confinuous values Identify a unigue class
(Real-valued output) (Discrete values, Boolean, Categories)

Unsupervised Learning:

Search for structure in data. Unknown targets.

User inputs data with undefined answers. Machine finds useful information hidden in
data.

Cluster Analysis Density Estimation Dimension Reduction
Group into sets Approximate distributions Select relevant variables




Raw Data vs Features




Raw Data vs Features
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Raw Data vs Features
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Learning hierarchical representations

* Traditional framework
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\ Handcrafted ' Classification pear
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* Deep Learning
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Visual Recognition

EETime
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PORTLAND, Ore. -- First computers beat the best of us at chess,
then poker, and finally Jeopardy. The next hurdle is image
recoanition — surely a computer can't do that as well as a human.




Machine Translation

Rick Rashid in Tianjin, China, October, 25, 2012

A voice recognition program translated a speech given by R. F. Rashid, Microsoft’s top scientist, into Mandarin Chinese.
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Deep Learning

* What is deep learning?

* Why is it generally better than traditional ML methods on
image, speech and certain other types of data’



Deep Learning

* What is deep learning?

Deep Learning means using a neural network with several layers of
nodes between input and output

hidden hidden hidden

[

input -

= _ 2 output
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More formally

* A family of parametric models which learn non-
linear hierarchical representations:

(IL(X; @) — hL(hL_l(...(hl(X, 91),9[,_1), 9[,)

e ! T

input parameters non-linear parameters
of the network activation of layer L
function



Deep Learning

* Why is it generally better than other ML methods on
image, speech and certain other types of data?

The series of layers between
input and output compute

relevant features

automatically N v

" " [} \/l () '\.\ {t

in a series of stages, just as our

brains seem to. 0
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Deep Learning

..but neural networks have been around for many years.

So, what is new?
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[LeCun, 1989]



Brief History of Neural Networks

Deep Neural Network

(Pretraining)
Multi-layered S
A
XOR Perceptron A
ADALINE (Backpropagation)
A A
A
Perceptron
| GoldenAge Dark Age (“Al Winter”) ,
Electronic Brain

1960 1970 1980 1990 2000 2010

S. McCulloch - W. Pitts F.Rosenblatt  B. Widrow - M. Hoff D. Rumelhart - G. Hinton - R. Wiliams V. Vapnik - C. Cortes
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Biological neuron and Perceptron

Dendrites Synapses

X, O w
Nucleus X,
i inputs X3 Output
Axon ( X

D :

activation
5 function

Cell body or Soma



1943 - McCulloch & Pitts Model

* Early model of artificial neuron
 Generates a binary output
* The weights values are fixed

1
X @%
nputs x, (O Ws é} ~ output
Xy
Threshold
X w



1958 - Perceptron by Rosemblatt

* Perceptron as a machine for linear classification

* Main idea: Learn the weights and consider bias.
* One weight per input
 Multiply weights with respective inputs and add bias
* If result larger than threshold return 1, otherwise O

X Q W, .
X, % / '\ ;._,.;
nputs x, O W (5 p - output e

activation /
function

4 3 2 1 o 1 2 3




Activation functions

Threshold Function/ Hard Limiter Limear Function sigmoid Function
1 1 1
Good for classification Simple computation Continuous & Differentiable
1
o(x) =



First Al winter

* 1970- Minsky. The XOR cannot be
solved by perceptrons.

* Neural models cannot be applied
to complex tasks.

0 l

ELCET

me.org




Multi-layer Feed Forward Neural Network

* 1980s. Multi-layer Perceptrons
(MLP) can solve XOR.

ML Feed Forward Neural Networks:

* Densely connect artificial neurons to
realize compositions of non-linear
functions

* The information is propagated from the
inputs to the outputs

» The input data are usually n-dimensional
feature vectors

* Tasks: Classification, Regression

Output
layer

Hidden
layer




How to train a MLP?

» Rosenblatts algorithm not applicable,

as it expects to know the desired
target.

* For hidden layers we cannot know the
desired target

Output
layer

Hidden
layer




1986 - Backpropagation

* Learning MLP for complicated functions can be solved.

 Backpropagation: efficient algorithm for complex NN which
processes “large’ training sets.

 Today backpropagation is still at the core of NN training.

Werbos (1974). Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. Ph.D. Thesis, Harvard University.
Rumelhart, Hintont, Williams (1986). Learning representations by back-propagating errors. Nature



Backpropagation

Learning is the process of modifying the weights of each layer 8, in
order to produce a network that performs some function:

layer




Backpropagation
* Preliminary steps:
» Collect a training set {x,, y;}

* Define model and initialize randomly weights.

* Given the training set find the weights:

aL(x; @) = hL(hL_l(...(hl(X, 91),9,{,_1), 9[,)

e = argmén Z l(yi,ar(x:;9))

Xi,YUs



Backpropagation

True label vectory,

| [©

Hypotesis a, = h (x;; 6)

Randomly initialize the weights

WHILE error is too large
(1) For each training sample (presented in random order)
Apply the inputs to the network
Calculate the output for every neuron from the input layer, through the
hidden layers, to the output layer
(2) Calculate the error at the outputs
(3) Use the output error to compute error signals for previous layers
Use the error signals to compute weight adjustments
Apply the weight adjustments

Periodically evaluate the network performance




Backpropagation
» Optimization with gradient descent:

O = argm@in Z L (yi,arn(x;;O))

Xi,Us
O =0"' - Vel
* The most important component is how to compute the gradient

 The backward computations of network return the gradient
* Efficient due to recursive computations

8_11:(8@“)1”. 0L ., 9L _da (0L\"
803; 851334-1 aa£+1 00, - 00, daj

Recursive rule: Previous layer

Current layer



1990s - CNN and LSTM

* Important advances in the field:
 Backpropagation
* Recurrent Long-Short Term Memory Networks (Schmidhuber, 1997)

» Convolutional Neural Networks - LeNet: OCR solved before 2000s
(LeCun, 1998).

Convalutions Subsampling Comvolutions  Subsampling Full connection




Second Al winter

* NN cannot exploit many layers
 Overfitting

* Vanishing gradient (with NN training you
need to multiply several small numbers =
they become smaller and smaller)

* Lack of processing power (no GPUs)

* Lack of data (no large annotated
datasetS) A Input space ) Feature space

* Kernel Machines (e.g. SVMs) suddenly LI S
become very populare o g o o>,

Y



Pretraining of Deep Neural Networks

Deep Neural Network
(Pretraining)

Multi-layered SVM
XOR Perceptron A
ADALINE (Backpropagation)
A 4
A
Perceptron
| GoldenAge Dark Age (“Al Winter”) ,
Electronic Brain

1960 1970 1980 1990 2000

D. Rumelhart G. Hinton - R. Wiliams V. Vapnik - C. Cortes

S. McCulloch - W. Pitts F. Rosenblatt  B. Widrow - M. Hoff
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2012 - AlexNet

 Hinton' s group implemented a CNN similar to LeNet [LeCun1998]
but...
* Trained on ImageNet (1.4M images, 1K categories)
« With 2 GPUs
* Other technical improvements (ReLU, dropout, data augmentation)

ILSVRC top-5 error on ImageNet

Traditional ML
Vs
Deep models
Vs
Human

22.5

15

7.5

2010 2011 2012 2013 2014 Human 2015



Why Deep Learning now?

* Three main factors:
* Better hardware
* Big data
* Technical advances:
* Layer-wise pretraining
* Optimization (e.g. Adam, batch normalization)

* Regularization (e.g. dropout)



GPUs

DGX-1 with Tesla V100
8X GPU Server

CPU-anly Sarver

7.4 hours, 96X faster

18 howurs, 40X faster

] 711 hours

0¥ 10% 0 E0 A0 Ll B0 70K B0 SO 00

Relative Parfarmance (Based on time to Trabn)

[NVIDIA Blog]



Large fully annotated datasets
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Rectified Linear Units

— sigrmoid
S
softplus
f(x) = max(0, x) ST
2 .....................................................................................
1 R S S A
* More efficient gradient propagation: |
(derivative is O or constant)
5

* More efficient computation:
(only comparison, addition and multiplication).

* Sparse activation: e.g. in a randomly initialized networks, only
about 50% of hidden units are activated (having a non-zero output)

* Lots of variations have been proposed recently.



Stochastic Gradient Descent (SGD)

* Use mini-batch sampled in the dataset for gradient estimate.

Geell = Tt :
e = —EZVQEE

ieB

* Sometimes helps to escape from local minima

* Noisy gradients act as regularization

* Variance of gradients increases when batch size decreases
* Not clear how many sample per batch

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent



Data augmentation

* Simple preprocessing makes the difference (e.g. image flipping,
scaling)




Regularization - Dropout

* For each instance drop a node (hidden or input) and its connections
with probability p and train

* Final net just has all averaged weights (actually scaled by 1-p)

* Asif ensembling 2~ different network substructures




Technical Advances

* Activation functions and losses (e.g. ReLU and cross-entropy)
* Data augmentation and pretraining

* Address overfitting (e.g. dropout)

* Training schemes (e.g. Adam)

* Architectures (e.g. ResNet, DenseNet...)
* Weights initialization

* Model distillation

* Batch normalization

* Deep domain adaptation




Batch Normalization

* |dea: renormalize activations.

* Obtain zero-mean and unit variance inputs. Scale and shift the
normalized activation with two learnable weights y and B:

(k) _ Elp(k)
(k) — L ']
v/ Var[z(%)]

y8) = (K3 4 g(k)

* Problem: Compute mean and variance of that activation for
the entire data set. Solution: Approximate over a mini-batch.

* BN advantages: allows larger learning rates, improves
gradient flow, reduces dependence on initialization

[loffe and Szegedy, 2015]



Domain Adaptation

Soﬂrce
Distribution

U
So I'ce Tang; )mati 1

Source

:D Softmax Loss

Reference
Distribution
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onv =i 2
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73] 0 & :
Target
:{:: { Entropy Loss } Distribution

Target

[Mancini et al., CVPR 2018], [Carlucci et al., ICCV2017]



Deep Learning Models

Backfed Input Cell
g ac nput Cal Deep Fowd Farward [OFF)

i It Cll OHNE Fjodar van Veen - asimovinstitute.org

&) Noisy Input Cell Perceptran (F) Feed Forward (FE)  Radial Basis Network (RBF)

@ HiddenCel il i iB
@ Frobablistic Hidden Cell : () (7

. Spiking Hidden Cell

@ ouputceu

. Match Inpart Qutput Cell

Recurrent Neural Network (RNN) Long # Short Term Memary (LSTM)  Gated Recurrent Unit (GRU)

Generative Adversarial Network [GAN]) Liquid State Machine (LSM)

. Recurrent Cell

P Cell
@ remory ce Aute Encoder(AE)  Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)
. Difterant Memany Cell
s Deep Residual Network (DRN) Kohonen Metwork (KM)
I':-_) Kermel
|ﬁ Convolution or Pool : Hw :%%
Markow Chain (M) Hopfield Network (HN)  Beltzmann Machine (BM) - Restricted BM (REM) Deep Belief Netwaork (DEN) Extreme Learning Machine [ELM) Echo State Network (ESN)

Deconvolutional Netwoark (DN) Deep Convolutional Inverse Graphics Metwark (DCIGN) Support Vector Machine (SVM]  Meural Turing Machine (NTM)

-

& & O
N N
. N

http://www.asimovinstitute.org/neural-network-zoo/


http://www.asimovinstitute.org/neural-network-zoo/

Autoencoders

* Unsupervised learning.

» Compress (encode) information automatically.

* An encoder is a deterministic mapping f that transforms an input vector
x into hidden representation y

* A decoder maps back the hidden representation y to the reconstructed
Input zviag.

 Autoencoder: compare the reconstructed input z to the original
input x and try to minimize the reconstruction error.

\

4

Bourlard, Hervé, and Yves Kamp. “Auto-association by multilayer perceptrons and singular value decomposition.” Biological cybernetics 59.4-5 (1988): 291-294.



Denoising Autoencoders

* Vincent et al. (2010): “a good representation can be obtained
robustly from a corrupted input”

* The higher level representations are relatively stable and robust
to input corruption.

\/\/ \/ X.Z

X ,:,.,4‘.,:, . 000K, Lot
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Vincent, Pascal, et al. “Extracting and composing robust features with denoising autoencoders.” ICML, 2008.



Structured Data

* Some applications naturally deal with an input space which
is locally structured - spatial or temporal

* Images, language, etc. vs arbitrary input features
* Deep Learning extremely powerful in this case.

Tomorrow, and

—_— _ tomorrow, and
: o tomorrow; creeps
- e in this petty pace

from day to day,
until the last syll-
able of recorded
time. And all our
yesterdays have

lighted fools the
way to dusty

«




Convolutional Neural Networks

* A multi-layer neural network:
* With local connectivity

 Sharing weight parameters across spatial positions (shift-invariant
kernels)

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning Applied to Document Recognition, Proceedings of the IEEE, 86(11):2278-2324, November 1998



CNN Architecture

'normal’
connects to

several feature maps

non-linear
stage

non-linear
stage

convolutional
stage

non-linear
stage
non-linear
stage
convolutional
stage

will have different filters
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Pedestrian Detection

__—Cross-Modality Transfer

Deep Reconstruction Deep Detection

RGB Data Thermal Data

-

[Xu et al., CVPR 2017]



Recurrent Neural Networks

» Standard Neural Networks (and also CNN):

* Accept a fixed-size vector/matrix as input (e.g., an image) and
produce a fixed-size vector as output (e.g., probabilities of
different classes).

» Use a fixed amount of computational steps (e.g. the number of
layers in the model).

* Recurrent Neural Networks are unique as they permit to
operate on sequences of vectors.

* Sequences in the input, the output, or both.

SRR
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Elman, Jeffrey L. “Finding structure in time.” Cognitive science 14.2 (1990): 179-211



Recurrent Neural Networks

* Anunrolled RNN (in time) can be considered as a deep neural
network with indefinitely many layers:

o
O 0 o
o t—1 A AHF
se = fUx¢ + Wse—q) VT » VT v %
s w St-1 X Ste1
— e () e (5 e () s
y = g(Vsy) G mmm) — O OO
UT TU U U
x X % X

I t t+1

* The parameters to be learned (U, V, W) are shared by all time steps
in the network. The gradient at each output depends not only on
the calculations of the current time step but also of the previous
time steps.



Deep Generative Models

* Lots of research on generative models to create probabilistic models
of training data with ability to generate new images, sentences, etc.

Noise ~ N(0,1)
Sy T e
R
U
A B (e
SRR TR

—_

»

Wi (DA
e T
WREET A

Generative




Generative Adversarial Networks (GANSs)

* Generator net produces samples x close to training samples

* Discriminator net (adversary) must differentiate between samples from
the generative net and the training set

* Use error feedback to improve task of both nets, until discriminator can
no longer distinguish

* Discriminator net is discarded at test time.

A AYAYAYaY
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Goodfellow, lan, et al. “Generative adversarial nets.” Advances in Neural Information Processing Systems. 2014.



Video Generation
I Samparat e pooing ]| —2{ 1o ]

Real face
embeddings
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Conditional Recurrent Generator

Spontaneous Smile (GroundTruth VS Generated)

Posed Smile (GroundTruth VS Generated)
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[Wang et al., CVPR 2018]



Video Generation

* Generator net produces samples x close to training samples

* Discriminator net (adversary) must differentiate between samples from
the generative net and the training set

* Use error feedback to improve task of both nets, until discriminator can
no longer distinguish

* Discriminator net is discarded at test time.

Real
Samples

Latent
Space

: - IsD .
—)\._. D {_ Correct?
* Discriminato
P G ; ]
Generator Generated | :
Fake
A

Samples

I:l - ‘ Fine Tune Training

5 St et ’

Noise

Goodfellow, lan, et al. “Generative adversarial nets.” Advances in Neural Information Processing Systems. 2014.



Open Issues: NN size

Scale: larger and larger nets... ResNet 152 [ayers
(ILSVRC 2015)

AlexNet, 8 layers =~ 4 VGG, 19 layers v ' GoogleNet, 22 layers weme
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Open Issues: NN size

Scale: how to stop this???

PERFORMANCE/COMPUTE

NEURAL NETWORK SIZE
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Open Issues: XAl

Global LENA
Pooling
[Virality score}

[Alameda-Pineda, CVPR2017]



Thanks for your attention!




