

Predictive Models for Thermal Modelling

Andrea Bartolini DEI, Università di Bologna <a.bartolini@unibo.it>

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

- Motivation
- Static Thermal Modelling
- Dynamic Thermal Modelling
- Thermal Management
- Datacenter automation

Motivation

Intel Pentium - 1 core

ALMA MATE

Datacentre: The problem scales up

Tihane-2

(most powerful supercomputer 2013-2015)

- 3120000 cores,
- 17.8MW IT only => 24MW w. cooling

Marconi @Cineca - 1512 nodes - 54432 cores

A MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Datacentre: The problem scales up

MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

Datacentre: The problem scales up

Dynamic Power

- Quadratic \downarrow with \downarrow V_{dd}
- Cubic \downarrow with \downarrow both V_{dd} and f

David H. Albonesi ACACES10

Sub-threshold Leakage Current

- Exponential \downarrow with \downarrow V_{gs} (~V_{dd})
- Exponential \downarrow with $\uparrow V_{TH}$

David H. Albonesi ACACES10

Delay:

$$D_{p} = \frac{C_{out} V_{dd}}{I_{ON}} = \frac{C_{out} V_{dd}}{\mu(T) [V_{dd} - V_{th}(T)]^{\alpha}}$$

Carrier Mobility:

$$\mu(\mathsf{T}) = \mu(\mathsf{T}_{o}) \left(\frac{\mathsf{T}_{o}}{\mathsf{T}} \right)^{m}$$

Threshold Voltage:

$$V_{th} = V_{th}(T_0) - k(T - T_0)$$
$$T \uparrow \qquad \mu \downarrow \qquad V_{th} \downarrow$$

- For wires, the resistivity is linearly dependent from T
 - Delay increases as T increases
- For Low VT (LVT) design ($V_{dd} >> V_{th}$)
 - $-\mu$ dominates w.r.t. V_{th}
 - Delay Increases as T increases
- For High VT (HVT) design (V_{dd} ≈ V_{th})
 - $-V_{th}$ dominates w.r.t μ
 - Delay decreases as T increases, Indirect Temperature Dependence (ITD)

Thermal Behavior of CMOS gates

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

TEST Chip

A 60 GOPS/W, -1.8 V to 0.9 V body bias ULP cluster in 28 nm UTBB FD-SOI technology, D. Rossi, et al., Solid-State Electronics, 2016

Impact of body bias on maximum frequency and leakage power over the supported range of voltage supply.vb

First Multi-core ever in RVT FDSOI

Performance

http://iis-projects.ee.ethz.ch/index.php/PULP

Temperature Impact

ALMA MATER STUDIORUM ~ UNIVERSITA DI BOLOGNA

Thermal Impact

#1 Core Rotating Power Virus

Up to 20 C Temperature difference on DIE ~ 30 C Temperature difference in between sockets - Thermal neighbours exists!

Fan Speed [RPM] Fan #

Haswell - PowerVirus #1

Haswell - PowerVirus #1

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Haswell - PowerVirus #1

- Motivation
- Static Thermal Modelling
- Dynamic Thermal Modelling
- Thermal Management
- Datacenter automation

Thermal Model

Core thermal response

Dynamic Model $T[n+1] = A \cdot T[n] + B \cdot P[n]$ Steady-state condition: T[n+1] = T[n] = TStatic thermal model: $T = SG \cdot P$ Steady-state Gain matrix: $SG = (I - A)^{-1} \cdot B$

Platform

SUN FIRE X4270

- Intel Nehalem 5500
- 8core/16thread
- 1.6÷2.9GHz
- 95W TDP
- IPMI

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Test#1 - Power Mode

Power Data acquisition methodology

- Real multicore platform (4 core per CPU)
- System level power measurements only
- Benchmark based data profiling

Power Data acquisition methodology

Benchmark: Per core Workload allocation

- "1" = Core in fully busy
 state = Maximum core power consumption (PowerVirus process)
- "0" = Idle state = minimum core power consumption
- M_{coreON} = #Active cores

Test#1 - Power Mod

Test#1 - Power Mod

PM: breakthrough

Test#2: Thermal Model

TM: Data Fitting

Results

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

- Motivation
- Static Thermal Modelling
- Dynamic Thermal Modelling
- Scalable Thermal Modelling
- Thermal Management
- Datacenter automation

Model Structure

ALMA MATER STUDIORUM ~ UNIVERSITÀ DI BOLOGNA

LS System Identification

Thermal Modeling

i7 Server Platform – 4 cores

Ts = 1ms - Quantizzation noise

<u>Step response:</u>

$$y(t) = K_0 - \sum_{i=1}^{n} k_i \cdot e^{-p_i \cdot t}$$

Thermal Modeling

i7 Server Platform – 4 cores

Ts = 1ms - Quantizzation noise

<u>Step response:</u> $y(t) = K_0 - \sum_{i=1}^{n} k_i \cdot e^{-p_i \cdot t}$

Black Box Model Estimation Performance

Order	1	2	3
SSE	1,02E+05	2,00E+04	2,59E+04
Time elapsed (s)	300,15	2434,24	12681,57

<u>Black Box</u>

<u>Our approach</u> LS + physical constraints

Thermal Model Identification

Single chip cloud computer SCC – 48 cores – 24 tiles

SID Standard ARX

Thermal Model Identification

Why ARX is failing?

- Standard ARX considers white innovation
- Its impact on the output temperature get coloured by the model poles
- In our system we know we have a white additive noise in the temperature sensors
 - Two different noise sources
 - Trying to model it with just the innovation noise source biases the model parameters
 - Noise in the output cannot just be filtered out as it is unknown cannot power down a CPU and access the internal temperature sensors

w(t)

u(t)

 $\overline{A(z^{-1})}$

 $B(z^{-1})$

 $\overline{A(z^{-1})}$

T(t)

ARX MO

Not realist

Noisy Temperature Sensors

• $T(t) = \overline{T}(t) + v(t)$

Thermal Model Identification

Single chip cloud computer SCC – 48 cores – 24 tiles

Ts = 100ms - Measurment noise

Standard ARX:

- Designed only for process noise !
- Measurement noise induces biases !

Bias Compensated ARX

(Diversi et al., 2013a, 2014)

 Iterativelly estimate the noise variance and compensate it in the LS

<u>Dynamic Frisch</u>

(Diversi et al., 2013b)

- Searches solutions compatible with the covariance matrix of the noisy data
- Selection based on a set of low-order and high-order Yule-Walker equations

[TCAS 2014] [DATE13 BPA]

Thermal Model Identification

[TCAS 2014] [DATE13 BPA]

Galileo Modelling

- Motivation
- Static Thermal Modelling
- Dynamic Thermal Modelling
- Thermal Management
- Datacenter automation

Multitherman Holistic Approach

FP7 ERC Advance MULTITHERMAN: Multiscale Thermal Management of Computing Systems PI: Prof Luca Benini

Ы

Timescale: ~msec, ~sec

Built-in sensors and actuators for feedback control of P & T

- 1. Temperature sensors (core)
- 2. Architectural utilization (core)
- 3. Power monitors (cpu)
- 4. Clock Frequency (core)
- 5. Shutdown (core)

Optimal Control Goal:

Maximize core's performance (i.e. frequency) while constraining maximum temperature

Timescale: ~hours

Chip Level Control

Thermal Controller

MPC Scalability

Addressing Scalability

Complexity

Model Predictive Distributed Control

(Bartolini et al., 2013) — (Tilli et al., 2012) — (Tilli et al., 2015) -

a)	Centralized MPC Complexity		b) <i>Di</i>	omplexity		
	MPC_explicit	MPC_implicit		()		
4	81	7,70	f2P		0,061	time (us)
8	6561	9,00	Obs	server	0,743	time (us)
16	OUT	24,20	MPO	C (Impl)	4,690	time (us)
48	OUT	85,50	MPO	C (Expl)	2	<i># regions</i>
	# regions	time (us)	P2f		1,188	time (us)

- Motivation
- Static Thermal Modelling
- Dynamic Thermal Modelling
- Thermal Management
- Datacenter automation

A New Trend: Datacentre Automation

The Big Data & DL backbone

Computing clusters

- Not only the computing engine of Big Data solution
- Also a complex industrial plant and a growing industry in ER
- A compute nodes can produces ~ 100/1000 metrics/s * "peta/exa scale" = Big Data!

Datacenter automation – improve energy/cost efficiency and effectiveness – Industry 4.0 thanks to:

- Live collection and processing of large telemetry data (>100GB/day x cluster)
- On-line generation of "plant models" a.k.a. digital tweens", security break detection

EXA

ExaMon: an Industy 4.0 approach to datacenter automation

Front-end

- Host: management
 node
- Docker containers
- ~45KS/s

Back-end

 MQTT–enabled monitoring agents (e.g. Dig)

ExaMon: an Industy 4.0 approach to datacenter automation

ExaMon: an Industy 4.0 approach to datacenter automation

Broker:

 Forward data to the listeners (e.g. kairosDB)

Mqtt2kairosdb:

- Interface between MQTT and KairosDB
- KairosDB is a front-end to handle time series in Cassandra

Cassandra:

- NoSQL database
- Highly scalable
- Optimized to balance the load on multiple nodes

ExaMon: an Industy 4.0 approach to datacenter automation

Application layer:

- Grafana, Apache Spark, etc …
- Aggregate metrics for
 Data Visualization, ML
 Analysis, Post Processing,
 etc ...

ExaMon: Scalable Data Collection and Analytics

{Key,Value} = TS, Measurement Topic = /davide/node1/Metric

ExaMon: Batch & Streaming

Use Case: Online Power Model Learning

 Idea: Coupling the monitoring framework with Apache Spark to calculate CPU power model parameters

Power Model:

$$\mathbf{P}_{pkg0+1} = \sum_{i=0}^{N_c-1} (a_i + b_i \mathbf{IPS}_i) \mathbf{f}_i$$

Spark MLlib: Streaming linear regression with SGD $\min_{\mathbf{w} \in \mathbb{R}^d} f(\mathbf{w})$ $\mathbf{w} = \begin{bmatrix} a_0, ..., a_{N_c}, b_0, ..., b_{N_c} \end{bmatrix}$ $\mathbf{w}^{(t+\bar{1})} := \mathbf{w}^{(t)} - \gamma f'_{\mathbf{w}, \mathbf{i}}$ Spark

18 September 2018

se Case: Online Power Model Learning

Use Case: Galileo (CINECA) setup

- 516 nodes
- 430 metrics/node

- 221880 total metrics
- •144 Mb/s
 - @ 2 seconds sampling time

Use Case: Results

- Actual Power vs Model prediction (CPU0 + CPU1)
 - Transition between two different workload phases running on the node
 - Online algorithm promptly recovers, learning a new model
 - 5-6 samples recovery time)
- Average model accuracy:

– ±25mW

- Model update time (iteration):
 - 600ms

Algorithm returned satisfactory performance!

Thermal modeling at scale

Problem with training

How to evaluate goodness

Experts features not good!

Deep Learning approaches beats expert user in determining the «good» windows

D.A.V.I.D.E. (#18 Green500 Nov'17)

E4 COMPUTER ENGINEERING

D.A.V.I.D.E. SUPERCOMPUTER (Development of an Added Value Infrastructure Designed in Europe)

DiG: High Resolution Out-of-band Power Monitoring

- Out-of-band \rightarrow Zero overhead
- Collect more than 1.5 kS/s, 7/7d, 24/24h, for all users
- Architecture independent (i.e. tested on Intel, ARM and IBM)
- Fine grain \rightarrow down to ms scale (sampling @800 kS/s + avg)
- IoT communication technology (MQTT) \rightarrow scalable
- Edge Computing!

- Machine learning and DL is a key tool for solving engineering problems!
- We are now able to design predictive control loop on supercomputing processors
- Future works: Datacenter automation and anomaly detection!

Pubblications – Naif Modelling

- Davide Rossi, Antonio Pullini, Igor Loi, Michael Gautschi, Frank K. Gürkaynak, Andrea Bartolini, Philippe Flatresse, Luca Benini, A 60 GOPS/W, -1.8 V to 0.9 V body bias ULP cluster in 28 nm UTBB FD-SOI technology, JSSE15
- Conficoni C.; Bartolini A.; Tilli A.; Tecchiolli G.; Benini L.; Energy-Aware Cooling for Hot-Water Cooled Supercomputers, DATE 15
- Conficoni, Christian, et al. "HPC Cooling: A Flexible Modeling Tool for Effective Design and Management." IEEE Transactions on Sustainable Computing (2018).
- Bartolini, Andrea, et al. "The DAVIDE Big-Data-Powered Fine-Grain Power and Performance Monitoring Support." (2018).
- Beneventi, Francesco, et al. "Continuous learning of HPC infrastructure models using big data analytics and in-memory processing tools." 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2017.
- Bartolini A.; Cacciari M.; Cavazzoni C.; Tecchiolli G.; Benini L.; **Unveiling Eurora Thermal and** power characterization of the most energy-efficient supercomputer in the world, DATE14
- Fraternali, Francesco, et al. "Quantifying the impact of variability and heterogeneity on the energy efficiency for a next-generation ultra-green supercomputer." IEEE Transactions on Parallel and Distributed Systems 29.7 (2018): 1575-1588.
- F. Fraternali, A. Bartolini, C. Cavazzoni, G. Tecchiolli, L. Benini, **Quantifying the impact of** variability on the energy efficiency for a next-generation ultra-green supercomputer; ISLPED14

Pubblications Thermal

- Beneventi F. ; Bartolini A. ; Tilli A. ; Benini L., An Effective Gray-Box Identification Procedure for Multicore Thermal Modeling TC14
- Diversi R.; Tilli A.; Bartolini A.; Beneventi F.; Benini L.; Bias-Compensated Least Squares Identification of Distributed Thermal Models for Many-Core Systems-on-Chip, TCAS 14
- Diversi, R; Bartolini, A.; Tilli, A.; Beneventi, F.; Benini, L.; ,"SCC thermal model identification via advanced bias-compensated least-squares", DATE13 BPA
- Bartolini, A., Diversi, R., Cesarini, D., & Beneventi, F.. Self-Aware Thermal Management for High Performance Computing Processors. IEEE Design & Test.
- Diversi, Roberto, et al. "Thermal model identification of supercomputing nodes in production environment." Industrial Electronics Society, IECON 2016-42nd Annual Conference of the IEEE. IEEE, 2016.
- Bartolini, Andrea, et al. "Multiscale Thermal Management of Computing Systems-The MULTITHERMAN approach." IFAC-PapersOnLine 50.1 (2017): 6709-6716.
- Beneventi, Francesco, et al. "Static thermal model learning for high-performance multicore servers." Computer Communications and Networks (ICCCN), 2011 Proceedings of 20th International Conference on. IEEE, 2011.
- Beneventi, Francesco, et al. "Cooling-aware node-level task allocation for next-generation green HPC systems." High Performance Computing & Simulation (HPCS), 2016 International Conference on. IEEE, 2016.
- Bartolini, Andrea, et al. "Thermal and energy management of high-performance multicores: Distributed and self-calibrating model-predictive controller." IEEE Transactions on Parallel and Distributed Systems 24.1 (2013): 170-183.

Pubblications - NN

- Netti, A., Kiziltan, Z., Babaoglu, O., Sirbu, A., Bartolini, A., & Borghesi, A. (2018). FINJ: A Fault Injection Tool for HPC Systems. arXiv preprint arXiv:1807.10056.
- Lombardi, Michele, Michela Milano, and Andrea Bartolini. "Empirical decision model learning." Artificial Intelligence 244 (2017): 343-367.
- Bartolini, Andrea, et al. "Optimization and Controlled Systems: A Case Study on Thermal Aware Workload Dispatching." AAAI. 2012.

Pubblications – big data

- Bartolini, Andrea, et al. "The DAVIDE Big-Data-Powered Fine-Grain Power and Performance Monitoring Support." (2018).
- Beneventi, Francesco, et al. "Continuous learning of HPC infrastructure models using big data analytics and in-memory processing tools." 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2017.

• HPC team:

 Luca Benini, Francesco Beneventi, Antonio Libri, Andrea Borghesi, Federico Pittino, Alessandro Petrella, Daniele Cesarini, Christian Conficoni, Roberto Diversi, Andrea Tilli, Michele Lombardi, Michela Milano