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Preface

Science needs conceptual representations of real phenomena 

• → modelling 

Operational value of a model relies in its predictive capabilities 

• knowledge + data from past + math/stat  →  forecast future 

Every scientific model is - at best - just a decent approximation of 
reality 

• → model improvement and refinement (e.g. seek and adopt new techniques) 
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This is where Machine Learning (ML) and Deep Learning (DL) 
knock on the doors of Science(s)



Predictive models are crucial in natural sciences and formal sciences 

• Medical Science (e.g. predicting a disease, drug discovery, ..) 

• Chemistry (e.g. predicting chemical reactions, ..)  

• Bioinformatics (e.g. predicting protein structures, mining omic data, ..)  

• Geosciences (e.g. predicting a rare catastrophic event, ..) 

• Physics (e.g. predicting - and enforcing - a discovery of a new particle) 

• Many more would deserve a discussion (Astronomy, Astrophysics, Earth Sciences, Climate, ..)  

This talk will not review the theory of building predictive models, and/or ML/DL 
frameworks and algorithms (done well elsewhere in this School).  

My goal today is to provide examples that highlight some level of similarity 
across science challenges, and how specific ML/DL tools might massively 
help a very diverse set of scientific disciplines.
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Credits: Luca Antiga (Orobix CEO) for inspiration and (rearranged) material 
from his contribution at a AI for Industry event, Bologna, April 2017



Medical image analysis

“I think that if you work as a radiologist you are 
like Wile E. Coyote in the cartoon (..) You’re 
already over the edge of the cliff, but you 
haven’t yet looked down. There’s no ground 
underneath.”  

“It’s just completely obvious that in five years 
deep learning is going to do better than 
radiologists (..) It might be ten years. I said this 
at a hospital. It did not go down too well.” 

“They should stop training radiologists now (..) 
The role of radiologists will evolve from doing 
perceptual things that could probably be done 
by a highly trained pigeon to doing far more 
cognitive things.”
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[H1] DISCLAIMER: “views are not my own”..

G. Hinton, interviewed by The New Yorker



Deep Learning roars
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G. Litjens et al, “A Survey on Deep Learning in Medical Image Analysis”, Jun 2017 [H2]

Breakdown of scientific papers by publication yr, task addressed, imaging modality, and application area

CNN = Convolutional NN
RBM = Restricted Boltzmann Machines
RNN = Recurrent NN
AE = Auto Encoders



Vast set of application areas
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[H2]

Airways

Lung nodule
classification

Bone 
suppression

Mammography

Diabetic
retinopathy

Breast cancer 
metastases  

detection 
in lymph nodes

Brain lesions

Prostate

Skin lesions



“Equivalence” demonstration in skin lesions    [1/2]
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A. Esteva et al, “Dermatologist-level classification of skin cancer with deep NN”, Feb 2017 [H3]

Demonstrated the equivalence between a DL-based system and a pool of experts in dermatology image classification



“(…) Here we demonstrate classification of skin 
lesions using a single CNN, trained end-to-end from 
images directly, using only pixels and disease labels 
as inputs. We train a CNN using a dataset of 
129,450 clinical images - two orders of magnitude 
larger than previous datasets - consisting of 2,032 
different diseases. We test its performance against 
21 board-certified dermatologists on biopsy-
proven clinical images with two critical binary 
classification use cases: keratinocyte carcinomas 
versus benign seborrheic keratoses; and malignant 
melanomas versus benign nevi. The first case 
represents the identification of the most common 
cancers, the second represents the identification of 
the deadliest skin cancer. The CNN achieves 
performance on par with all tested experts across 
both tasks, demonstrating an artificial intelligence 
capable of classifying skin cancer with a level of 
competence comparable to dermatologists. 
Outfitted with deep neural networks, mobile devices 
can potentially extend the reach of dermatologists 
outside of the clinic. It is projected that 6.3 billion 
smartphone subscriptions will exist by the year 2021 
and can therefore potentially provide low-cost 
universal access to vital diagnostic care (…)”
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[H3]

“Equivalence” demonstration in skin lesions    [2/2]

Interesting “equivalence” demo,
but - still - humans are able to do this.



Genetic mutation probability in prostate cancer    [1/2]

“This is the first pipeline predicting gene mutation probability in cancer from digitised H&E-stained 
microscopy slides. To predict whether or not the speckle-type POZ protein [SPOP] gene is mutated in 
prostate cancer, the pipeline (i) identifies diagnostically salient slide regions, (ii) identifies the salient 
region having the dominant tumor, and (iii) trains ensembles of binary classifiers that together predict a 
confidence interval of mutation probability. Through deep learning on small datasets, this enables 
automated histologic diagnoses based on probabilities of underlying molecular aberrations and finds 
histologically similar patients by learned genetic-histologic relationships”
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Source: TCGA cohort of 
frozen section images

20 SPOP mutants

157 SPOP non-mutants

A.J. Schaumber et al, “H&E-stained Whole Slide Image Deep Learning Predicts  
SPOP Mutation State in Prostate Cancer”. May 2017 [H4]



This is interesting because humans are NOT able to do this 

• experts might develop “intuitions” of this kind after decades of experience..  but this might 
become an automated system always available in support to clinical activities
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Customised ResNet-50 architecture, plus additional dropout and fully connected neuron layers 
(total 28,574 neurons)

RoI and patches with classification 
heatmaps. Strong SPOP mutation 

predictions is red, no such 
evidence is white. Weighted mean 
predictions are calculated per each 

patch, and combined. Meta-
ensemble’s SPOP mutation 
prediction here is 95% C.L.

Genetic mutation probability in prostate cancer    [2/2]



Deep generative models
DL methods involving discriminative models are most commonly used (and successful) 
for classification tasks… 

• based on back-propagation, dropout, piecewise linear units as activation functions… well-behaved 
GD 

… increasing demand for deep generative models 

• i.e. ways to use DL to directly generate a model that could be successfully applied to e.g. 
compression, denoising, inpainting and/or texture synthesis, semi-supervised learning, unsupervised 
feature learning, … 

.. with the latter being a much bigger challenge than the former! 

• initial generative models (e.g. restricted/deep Boltzmann machines, denoising autoencoders, ..) are 
probabilistic and based on a parametric specification of a probability distribution function. Training of 
such models requires the maximization of the log-likelihood, a function that is usually computationally 
intractable, with the additional complication of the activation functions.. 

• several alternative (deep) generative models have been suggested, which do not require the explicit 
representation of the likelihood while being able to generate samples from the desired distribution 

Latest class of non-parametric approaches for deep generative models is known as 
Generative Adversarial Network (GAN) 

• generative models are estimated via an adversarial process. More in [IG1]

SOSC 2018 - Perugia, 17-21 September 2018 12 D. Bonacorsi

I. Goodfellow et al. “Generative Adversarial Nets” [IG1]



Artificially-intelligent drug discovery engines    [1/2]

“Recent advances in deep learning 
and specifically in GANs have 
demonstrated surprising results in 
generating new images and videos 
upon request even using natural 
language as input.” 

“In this paper we present the first 
application of generative 
adversarial autoencoders (AAE) 
for generating novel molecular 
fingerprints with a defined set of 
parameters. (…) This approach is a 
proof of concept of an artificially-
intelligent drug discovery engine, 
where AAEs are used to generate 
new molecular fingerprints with the 
desired molecular properties.
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A. Kadurin et al, “The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule 
development in oncology”, Dec 2016 [H5]
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Architecture of the 7-layer 
Adversarial Autoencoder (AAE) 

used in the aforementioned study. 

Encoder consists of 2 consequent 
layers L1 and L2 with 128 and 64 

neurons. In turn, decoder consists of 
2 layers L’1 and L’2 comprising 64 

and 128 neurons. Latent layer
consists of 5 neurons, one of which 

is Growth Inhibition percentage (GI) 
and the other 4 are discriminated 

with normal distribution.

Artificially-intelligent drug discovery engines    [2/2]

(..) “As an input and output the AAE uses a vector of binary fingerprints and concentration of the 
molecule. In the latent layer we also introduced a neuron responsible for growth inhibition percentage, 
which when negative indicates the reduction in the number of tumor cells after the treatment. To train 
the AAE we used the NCI-60 cell line assay data for 6252 compounds profiled on MCF-7 cell line. The 
output of the AAE was used to screen 72 million compounds in PubChem and select candidate 
molecules with potential anticancer properties.”



One “non technical” thought (-> ethics)

Having an automated system has been a convenience so far 

•  and experts always dominated.. 

Now, not in the medical job at large, but in specific pattern 
matching tasks, these systems easily beat humans. 

Ethical implications? 

• “is it ethical?” 

• or, even, “will it become non-ethical not to use an automated system?” 

Other implications 

• Many! E.g. future of jobs. E.g. how will this transform regulatory rules, FDA, … 

(perhaps, to be seen as a human-machine collaboration and not a 
competition..)
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FDA-approved DL systems

Example. Artemys, first start-up that had  
a DL-method  (segmentation of cardiac  
valves, ..) approved by FDA 

• quoted here only for one reason: perhaps a milestone indicative of just one 
company's momentum in applying AI to advance medical imaging accuracy
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FDA 510(k) approval Nov’16
4D flow (velocity vectors + time) from 

MRI scans

FDA 510(k) approval Feb’17
Cardiac valves segmentation, validated 

on ~1k patients

[*] 510(k) = premarket submission made to FDA to demonstrate that the device to be marketed is at least as 
safe and effective - that is, substantially equivalent - to a legally marketed device 



Outlook on role(s) of ML in Medical Science
ML prospers with Big Data, and Medical science is yielding large amount of 
heterogeneous data daily  

• R&D, physicians and clinics, patients, caregivers, etc. 

Gains:  

• better decision-making, optimised innovation, improved efficiency of research/clinical trials, 
creation of new tools for physicians, consumers, .. 

A (non exhaustive) list of applications of ML in Medical Science - for those interested: 

• Disease Identification/Diagnosis → a quick example in this talk 

• Personalised Treatment/Behavioural Modification 

• Drug Discovery/Manufacturing → a quick example in this talk 

• Clinical Trial Research 

• Smart Electronic Health Records 

• Epidemic Outbreak Prediction 

• Radiology and Radiotherapy → a quick example in this talk 

• …
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Chemistry
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Predicting chemical reactions

Predicting the course and major products of arbitrary reactions is a 
fundamental problem in Chemistry 

• chemists address this in a variety of ways, from synthesis design to reaction 
discovery 

Basically, two different approaches:  

• Write a system of rules (so-called “rule-based experts systems”) 

❖ limitation: very tedious, non-scalable, limited coverage 

• Learn the rules from Big Data 

❖ traditional inductive ML may not suffice, as you lack sufficient data to be implemented
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Chemistry towards ML    [1/2]

E.g. “Reaction Explorer”, a system to predict organic chemical reactions based on 
a knowledge base of >1500 manually composed reaction transformation rules.
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Product prediction for a Diels-Alder 
reaction using the accompanying 
“SMIRKS” transformation rule.

Huge expressive power of the rules to 
enforce regioselectivity, stereospecificity, 

stereoselectivity of the reaction (e.g. 
carbon 1 preferentially assumes an ortho 

position with respect to carbon 6, etc).

[C1]

A new method uses ML [C2]: 

• describe single reactions as interactions between coarse approximations of molecular orbitals (MOs). 
Use topological and physicochemical attributes as descriptors.  

• Use an existing rule-based system (Reaction Explorer) to derive a restricted chemistry dataset consisting 
of 1630 full multi-step reactions with 2358 distinct starting materials and intermediates, associated with 
2989 productive mechanistic steps and 6.14 million unproductive mechanistic steps 

• Use ML: formulate identifying productive mechanistic steps as a statistical ranking, information retrieval, 
problem: given a set of reactants and a description of conditions, learn a ranking model over potential 
filled-to-unfilled MO interactions such that the top ranked mechanistic steps yield the major products.
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A user inputs the 
reactants and 

conditions

Potential e- donors and acceptors 
are identified using coarse 

approximations of electron filled
and electron unfilled MOs.

Highly sensitive reactive site classifiers 
are trained and used to filter out the vast 
majority of unreactive sites, pruning the 

space of potential reactions.

 Reactions are 
enumerated by pairing 
filled and unfilled MOs.

A ranking model is trained
and used to order the reactions, 

where the best ranking one or few 
represent the major products.

[C2]

Chemistry towards ML    [2/2]



Bioinformatics
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Bioinformatics

“Bioinformatics” = answer biological questions using tools from 
mathematics, statistics and computer science 

• advanced computational tools → boost in collection and analysis of biological 
data  

Biological “sequences” represent a large portion of biological data 

• large size of the sequences + numerous possible features → strong need of 
powerful analysis methods and tools 
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ML in Bioinformatics

Very complex mapping of ML methods to biological tasks..
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[B2]

i.e. study of 
nucleotide chains 

i.e. study of proteins



ML in genomics and proteomics
Genomics 

• one of the most important domains in bioinformatics, as genes contain all the information 

❖ From genome sequences, location and structure of the genes are extracted. The regulatory elements and non-
coding RNA genes are identified. Sequence information is also used for gene function and RNA secondary 
structure prediction.  

• Big (Bio-)data: # of sequences available is increasing exponentially. From 1982 to 
present, the # of bases in GenBank has ~doubled every ~18 months. Large data volume 
is richness for ML.. 

Proteomics 

• proteins transform the information in the genes into life 

• The goal is protein structure prediction: their 3D structure is a key feature in their 
functionality (evolution, structure and function). But proteins are very complex 
macromolecules with thousands of atoms and bounds. Hence, the number of possible 
structures is huge, and protein structure prediction is a very complicated combinatorial 
problem where optimisation techniques are required. This is where computational 
methods are needed. 

In both genomics and proteomics, ML techniques are applied for protein 
function prediction
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Example: mining omic data

Most effective predictors of protein 3D structure (able e.g. to 
capture secondary structures) nowadays are a combination of 
methods 

• Not only sequence profiles at the input, but also sequence similarity and 
structural(e.g. similarity to sequences in the Protein Data Bank used to infer 
annotations at the output level), then you can use Bidirectional Recursive 
Neural Networks
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General workflow of (selected) predictors [B1]. Sequence and structural similarity analyses are 
performed by stand-alone modules (those named “*pro”) and BRNN models are trained to 

predict the features from the profiles and combined in an ensemble



ML on Microarrays and in Systems biology

Microarray: 

• essays as the best known (despite not the only one) domain where bio-data is 
collected 

• complex experimental data need to be pre-processed (i.e. modified to be 
suitably used by ML algos), then the data analysis method depends on what it 
is being looked for 

• most typical ML applications are on expression pattern identification, 
classification and genetic network induction 

Systems biology: 

• very complex to model the life processes that take place inside the cell 

• ML helpful ingredients in modelling biological networks (especially genetic 
networks), signal transduction networks and metabolic pathways
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ML on Evolution and Text-mining

Evolution 

• ML used especially in phylogenetic tree reconstruction 

• traditionally: these schematic representations of organisms’ evolution were 
constructed according “only” to different features (morphological features, 
metabolic features, etc.)  

• today: great amount of genome sequences available → phylogenetic tree 
reconstruction algos based on the comparison between different genomes, 
made by means of multiple sequence alignment, where optimisation 
techniques are very useful  

Text-mining 

• data proliferation → text mining techniques useful for knowledge extraction 
and organisation, and are becoming popular as a side effect of (big) biodata 

• applied in functional annotation, cellular location prediction and protein 
interaction analysis - more in [B3] 
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Which ML approach(es) for bioinformatics?

You find in literature application of:   (not exhaustive list) 

Bayesian classifiers, logistic regression, discriminant analysis, 
classification trees, nearest neighbour, neural networks, support 
vector machines, ensembles of classifiers, partitional clustering, 
hierarchical clustering, mixture models, hidden Markov models, 
Bayesian networks and Gaussian networks, .. 

Few examples: 

• e.g. identification of specific biological sequence segments with NN, Bayesian 
classifiers, decision trees, and SVM 

• when standard ML approaches fail, focus goes to feature generation, feature 
selection 

• also, clustering algos are used to group structurally related biological 
sequences 

Bioinformatics and ML/DL is a very active and interesting field!
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Geoscience(s)
Earth’s major interacting components are complex dynamic systems  

• e.g. litho- sphere, biosphere, hydrosphere, and atmosphere 

Their states perpetually keep changing in space and time, creating a 
balance of mass and energy 

• e.g., layers in oceans, ions in air, minerals and grains in rock, land covers on the 
ground 

All interact with each other through complex and dynamic 
geoscience processes 

• e.g. rain falling on Earth’s surface and nourishing the biomass; sediments 
depositing on river banks and changing river course; magma erupting on sea 
floor and forming islands..  

Geo-data comes mainly from 2 broad categories of sources: 

• 1. observational data collected via sensors (space, sea, land) 

• 2. simulation data from physics-based models of the Earth system. 
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Big (geo-)Data

Geosciences are a field of great societal relevance, requiring solutions to urgent 
problems that humanity is facing 

• impact of climate change; air pollution; increased risks to infrastructures by disasters (such as 
hurricanes); modelling future availability and consumption of water, food, and mineral resources; 
identifying factors responsible for earthquake, landslide, flood, and volcanic eruption 

Research is extremely complex, as it is at the confluence of various disciplines 

• e.g. physics, geology, hydrology, chemistry, biology, ecology.. 

The Big Data era impacted geosciences too, which became a data-rich field 
• better sensing technologies (e.g., remote sensing satellites and deep sea drilling vessels) 

• improvements in computational resources for running large-scale simulations of Earth system 
models 

• Internet-based democratisation of data, enabling collection, storage, processing of data on 
crowd-sourced and distributed environments such as cloud platforms 

Several unique challenges that are seldom found in other sciences, mostly related 
to the typical sources of geoscience data and their properties. In this scenario, ML 
offer immense potential to contribute to problems in Geosciences 
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Hard to use ML on geo-data
Several characteristics of geo-data and geoscience applications limit the usefulness of traditional ML algos 
for knowledge discovery, e.g.: 

the nature of geoscience processes  

• objects with amorphous boundaries (e.g. waves, flows, ..). E.g. advanced fluid segmentation and fluid feature characterisation 
are needed 

• space-time structure. Land cover labels (e.g. forest, desert, urban, ..) require high resolution in space, and can change over 
time. High correlations. Cannot use ML methods that assume independent and identically distributed variables. 

• high dimensionality. Earth system incredibly complex, huge # of potentially correlated variables (e.g. detection of land cover 
changes requires analysis of multiple remote sensing variables) 

• rare processes. Most catastrophic events would be the most useful to predict. But historical occurrences are few, hence issues 
with the skew (imbalance) between the rare and not-rare classes. 

geoscience data collection 
• multi-resolution data. E.g. sources like satellite sensors or in-situ measurements are associated to 

varying spatial and temporal resolutions, sampling rate, accuracy, uncertainty. Need algos that can 
identify patterns at multiple resolution. 

• noise, incompleteness, and uncertainty in Data 

scarcity of samples and ground truth.  

• small sample size. Issue from both reliable sensor-based data (e.g. satellites only since the 1970s), and rarity of some major 
events (landslides, tsunamis, forest fires, M>6 earthquakes). A killer for ML/DL approaches. 

• paucity of labeled samples with gold-standard ground truth. High-quality measurements need very expensive apparatuses 
(e.g. low-flying airplanes), or expensive and time-consuming field operations. In addition, some geoscience processes (e.g. 
subsurface flow of water) do not have ground truth at all (so complex that exact state of the system is never fully known). 
Underfitting vs overfitting issues in ML.

SOSC 2018 - Perugia, 17-21 September 2018 33 D. Bonacorsi



Possible ML directions for Geosciences    [1/2]

1. Characterising Objects and Events  

• characterise and identify objects (e.g. weather fronts, atmospheric rivers); analyse 
patterns in geo-data objects to study events (e.g. tornado-genesis) 

• beyond using hand-coded features (size, shape), ML can help in automated 
detection from data with improved performance using pattern mining techniques, 
provided that can account for the s+t properties of geo-data 

❖ done e.g. for spatio-temporal patterns in sea surface height data [G2], resulting in the creation of a 
global catalogue of ocean eddies 

2. Estimating Geoscience Variables from Observations  

• supervised ML can help to infer critical geoscience variables that are difficult to 
monitor directly (e.g. use data about other variables collected via satellites and 
ground-based sensors, or simulations). E.g. multi-task learning (MTL) is used (which 
improve generalisation by leveraging the domain-specific information contained in 
the training signals of related tasks) 

• to address the non-stationary nature of some geo-data (e.g. climate), online 
machine learning is used - dynamically adapting to new patterns in the data - to 
predict e.g. temperatures. This approach outperforms the traditional, non-adaptive 
(multi-model) mean over expert predictors
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more later
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Performance improvement in estimating forest cover in 4 states 
of Brazil (“green” is “better performance) [G3]

Baseline ML Multitask ML



3. Long-term Forecasting of Geoscience Variables 

• traditionally, run physics-based model simulations that encode geo-processes using state-based 
dynamical systems (current state determined by previous plus observations). Now: attacking as a 
time-series ML regression problem (e.g. hidden Markov models, ..)  

• even more complex are long-term forecasts for rare events (due to few data, sparsity, etc). Promising 
is transfer learning, as model training on a present task (with sufficient # of training samples) can be 
used to improve prediction performance on a future task (with limited # of training samples) 

4. Mining Relationships in Geoscience Data  

• find relationship among different geo-physical processes. One class of such relationship in the climate 
domain is the “teleconnections” (pairs of distant regions highly correlated in climate variables such as 
sea level P or T)  

• huge potential of data-driven approaches here, that can sift through vast volumes of observational 
and model-based geoscience data and discover interesting patterns 

5. Causal Discovery and Causal Attribution  

• discover cause-effect relationships. Traditionally, causality tools are used, e.g. bivariate Granger 
analysis or multi-variate Granger analysis using vector autoregression (VAR) models (the latter, 
together with Pearl’s framework, not yet so common though) 

• reinforcement learning and other stochastic dynamic programming approaches that can solve 
decision problems with ambiguous risk are promising directions that geoscientists are pursuing
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Possible ML directions for Geosciences    [2/2]



Raise of DL in Geosciences
DL ability to automatically extract relevant features from the data 

• huge potential in geoscience (difficult to otherwise build hand-coded features for 
objects/events/relationships) 

The space-time nature of geo-data raises some similarity with problems like 
computer vision and speech recognition, where DL excels 

• → frameworks such CNNs and RNNs are used more and more 

❖ CNN already used for detecting extreme weather events from climate model simulations [G4] 

❖ RNN-based frameworks (such as LSTM models) have been explored for mapping plantations in Southeast Asia 
from remote sensing data [G5] 

• DL systems explored also for downscaling outputs of Earth system models and 
generating climate change projections at local scales [G6], and for classifying objects in 
high-resolution satellite images 

Warning: availability of large volumes of labeled data has been a key factor 
behind the DL success. Paucity of labeled samples in geosciences is hence 
an issues, limiting the effectiveness of traditional DL methods. 

• need to develop novel DL frameworks for geoscience (e.g. using domain-specific 
information of physical processes?)
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DISCLAIMER: focus mostly on High Energy Physics (HEP) with particle accelerators.



High Energy Physics (HEP)
HEP focus is the study of fundamental interactions among 
elementary particles 

• quarks and leptons as building blocks 

• aiming at a complete understanding of microcosm and macrocosm 

HEP physicists create matter 
• they need to observe and study it beyond the ordinary one, hence they create 

matter in the states it existed fractions of seconds after the Big Bang 

HEP physicists’ instruments are particle accelerators plus large and 
complicated particle detectors around interaction points 

• build and operate accelerators, accelerate particles to collisions, measure 
fragments that fly through the active volumes of the detectors → physics! 

• or - in the case of Astrophysics - the Universe is a “natural particle accelerator” 

This is amazingly fascinating and beautiful. And so complicated..
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HEP with LHC at CERN
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Check out full video at: https://videos.cern.ch/record/1541893 



Innovation is hard(er in Big Science)

HEP community is at the frontier of computing technologies 

• (apart from the obvious WWW born at CERN..) HEP has driven Grid Computing worldwide 

But HEP community is extremely large, work on long timescales, and some 
inertia in a otherwise flexible adoption of new paradigms can be observed 

• Current generation experimental programmes last *decades*. Long planning, long 
construction time, long operation by huge collaborations (~1000s of scientists) 

Software and Computing experts from previous generation of experiments 
pioneered studies employing ML and laid the ground for the emergence of 
ML as an essential tool for HEP 

But HEP timescales are decades, while ML/DL evolution timescale is years (or 
less..). 

Today, important focus is in cross-discipline fertilisation (cultural and technical)  

• Incorporating the “latest greates” new ML/DL tools in experiments that are finally taking 
data after decades of construction and large investments.. while maintaining the scientific 
rigour required in particle physics analyses.. in such a huge scientific environment.. all this 
presents some unique (not only technical!) challenges and opportunities
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ML for HEP

Very wide field of supervised ML (mostly), e.g. training algorithms 
to classify data as signal or background by studying existing labeled 
(possibly Monte Carlo) data. 

There are some HEP groups contributing to ML research worldwide, 
but most ML usage in HEP - as in most other sciences - is not 
research on ML 

• HEP community is building domain-specific applications on top of existing 
toolkits and ML algorithms developed by computer  scientists, data scientists, 
and scientific software developers from outside the HEP world 

Work is also being done to understand where HEP problems do not 
map well onto existing ML paradigms and how these problems can 
be recast into abstract formulations of more general interest
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ML algorithms in HEP
BDTs/ANNs typically used to classify particles and events 

• they are also used for regression, e.g. to obtain the best estimate of particle’s energy based 
on the  measurements from several detectors 

ANNs being used for a while in HEP, then.. → rise of DNNs 

• particularly promising when there is a large amount of data and features, as well as 
symmetries and complex non-linear dependencies between inputs and outputs 

Different types of NNs used in HEP: 

• fully-connected (FCN), convolutional (CNN), recurrent (RNN) network 

• additionally, NNs are used in the context of Generative Models, when a NN is trained to 
mimic multidimensional distributions to generate any number of new instances. Variational 
AutoEncoders (VAEs) and more recent Generative Adversarial Networks (GANs) are two 
examples  of such generative models used in HEP.  

Plus, ML algorithms devoted to time-series analysis 

• in general not relevant for HEP where events are independent from each other 

• however, growing interest in these algorithms for HEP-related sequential non-collision data, 
e.g. for Data Quality and Computing Infrastructure monitoring (as well as those physics 
processes and event reconstruction tasks where time is an important dimension)
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Particle properties: energy resolution

Using ML to improve the determination of particle properties is now 
commonplace in all LHC experiments 

• E.g. energy deposited in calorimeters is recorded by many sensors, which are 
clustered to reconstruct the original particle energy. CMS is training BDTs to 
learn corrections using all information available in the various calorimeter 
sensors - thus resulting in a sizeable improvement in resolution
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Improvements to the Z→e+e- 
energy scale and resolution from 

the incorporation of more 
sophisticated clustering and 
cluster correction algorithms  

(energy sum  over  the  seed  5x5  
crystal matrix,  bremsstrahlung  
recovery  using  supercluster, 

inclusion of pre-shower energy, 
energy correction using a 
multivariate algorithm)

betterbetter

[ 2015 ECAL detector performance plots, CMS-DP-2015-057. Copyright CERN, reused with permission ]



Particle ID

Similarly, ML is commonly used to identify particle types 

• e.g. LHCb uses NNs trained on O(30) features from all its subsystems, each of 
which is trained to identify a specific particle type  

• ~3x less mis-ID bkg /particle. Estimates indicate that more advanced 
algorithms may reduce bkg by another ~50%
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Discovery of the Higgs boson

ML played a key role in the discovery of the Higgs boson, 
especially in the diphoton analysis by CMS where ML (used to 
improve the resolution and to select/categorise events) increased the 
sensitivity by roughly the equivalent of collecting ~50% more data. 
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Higgs was not supposed to be discovered as early as in 2012 

• Given how machine progressed, a possible discovery was expected by end 2015 / mid 2016 

This was possible (and a Nobel was awarded) in advance, thanks (also) to ML

[courtesy 
M.Pierini]



Study of Higgs properties

E.g. analysis of 𝜏 leptons at LHC complicated as they decay before being 
detected + loss of subsequently produced neutrinos + bkg from Z decays 

• e.g. ATLAS divided the data sample into 6 distinct kinematic regions, and in each a 
BDT was trained using 12 weakly discriminating features → improved sensitivity by 
~40% vs a non-ML approach 
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[arXiv:1501.04943]

Also part of the 
2014 Higgs ML 

Kaggle challenge



High-precision tests of the SM
CMS and LHCb were the first to find evidence for the B0

s→𝜇+𝜇- decay with a 
combined analysis (as rare as ~ 1 / 300 billion pp collisions..) 

• BDTs used to reduce the dimensionality of the feature space - excluding the mass - to 1 
dimension, then an analysis was performed of the mass spectra across bins of BDT 
response 

• decay rate observed is consistent with SM prediction with a precision of ~25%, placing 
stringent constraints on many proposed extensions to the SM 

• To obtain the same sensitivity without ML, LHCb as a single experiment would have 
required ~4x more data. Just one of many examples of high-precision tests of the SM at 
the LHC where ML can dramatically increase the power of the measurement
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Mass distribution of the 
selected B0 → μ+μ− 

candidates with BDT > 0.5. 

[arXiv: 1703.05747]



Trigger

Crucial trade-off in algorithm complexity and performance under 
strict inference time constraints 

E.g. ATLAS/CMS each only keep about 1 in every 100 000 events, 
and yet their data samples are each still about 20 PB/yr 

• ML algorithms have already been used very successfully for rapid event 
characterisation 

• adoption depth vary across experiments, but the increasing event complexity 
at High Luminosity LHC will require more sophisticated ML solutions and its 
expansion to more trigger levels 

A critical part of this work will be to understand which ML 
techniques allow us to maximally exploit future computing 
architectures
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Trigger (cont’d)

E.g. CMS employs ML in its trigger hardware to better estimate the 
momentum of muons 

• inputs to the algorithm are discretised to permit encoding the ML response in 
a large look-up table that is programmed into FPGAs 

E.g. LHCb, many of the reactions of greatest interest do not 
produce striking signatures in the detector, making it necessary to 
thoroughly analyse high-dimensional feature spaces in real time to 
efficiently classify events 

• LHCb used a BDT for 2 years, then a MatrixNet algorithm 

• ML now almost ubiquitous in LHCb Trigger. 70% of all persisted data is 
classified by ML algorithms. All charged-particle tracks are vetted by NNs.  

• LHCb estimated that reaching the same sensitivity as a recent LHCb search for 
the dark matter on 2016 data, would have required collecting data for 10 yrs 
without the use of ML
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Computing resource optimisations
Industrial-scale data samples collected by e.g. LHC experiments 
produce non-collisions metadata from which actionable insights can 
be extracted 

• results of logging while running LHC Run-1/2 operations of complex Grid systems 

ML techniques have begun to play a crucial role in increasing the 
efficiency of computing resource usage for LHC experiments since few 
years 

• e.g. predicting which data will be accessed the most to a-priori optimise data 
storage at Grid computing centres via pre-placement, or perform WAN path 
optimisation based on user access historical patterns (done/in-progress primarily, 
but not only, in LHCb and CMS) 

• e.g. monitoring data transfer latencies over complex network topologies, using ML 
to identify problematic nodes and predict likely congestions (in progress by CMS) 

Current approach is that ML informs the choices of the computing 
operations teams 

• this might be the basis of fully adaptive models in the next future
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Similar work ongoing at: 

• other neutrino experiments - e.g. NOvA 

❖ inspired to GoogLeNet architecture. Improvement in the efficiency of selecting electron neutrinos by 40% with no loss 
in purity. Used as event classifier in both an electron neutrino appearance search, and in a search for sterile neutrinos 

• collider experiments in the area of jet physics 

CNNs for neutrinos

MicroBooNE has managed to train CNNs that can locate neutrino interactions 
within an event in their LArTPC, identify objects and assign pixels to them 

• CNN perfect to identify objects in an image (translational invariant feature learning), and 
sensitive volumes are large due characteristics of neutrino interaction with matter
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[more at arXiv:1611.05531]

[arXiV:1604.01444]

[arXiv:1511.05190]
[arXiv:1603.09349]



Back to the.. past?

The data taking pace has changed 

• e.g. BEBC in 1973-83 equals to 6 
seconds of (e.g.) LHCb today 

• e.g. LHC sensor arrays’s 1 hr equals 
to ~ Facebook data in 1 year 

• algorithms running on large 
computing farms took over long ago 

Still dealing with inability for 
humans to visually inspect vast 
amounts of data 

• Indeed, inability “for humans”..
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Neutral currents in BEBC - WA21 CC Charm Event: 
Roll 204, Frame 995 [CERN]
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Going beyond feature engineering and embracing the revolutions that 
DL brings is somehow connecting HEP future to its glorious past..



Arguing that “HEP is different”..
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Scene labelling
in automotive applications

MicroBooNE examples of cosmic 
bkg events with detected neutrino 
bounding boxes with low scores.

[arXiv:1611.05531]
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Airports detection 
from satellite images

with CNNs

MicroBooNE examples of cosmic 
bkg events with detected neutrino 
bounding boxes with low scores.

[Remote Sens. 2017, 9, 1198; doi:10.3390/rs9111198 ]
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[arXiv:1611.05531]

Arguing that “HEP is different”..



More ML/DL in HEP..
Just the top of the iceberg! More, on a non-exhaustive list, below: 

• CNNs/RNNs to reconstruct images from pixel intensities and identify particles and 
extract many parameters 

• Various DL application in the Tracker systems towards High-Luminosity LHC 

• Fast generative models like VAEs/GANs as alternatives to HEP Fast Simulation (as Full 
Simulation is very computationally demanding..), aiming at orders of magnitude 
improvements! 

• unsupervised algos able to monitor many variables at the same time, learn from data 
and produce an alert when deviations are observed could kill the need of expert 
shifters in LHC data taking periods 

• predictive maintenance studies (algorithms sensitive to subtle signs forewarning of 
imminent failure, so that pre-emptive actions can be scheduled ) on computing 
centres to reduce the cost of computing while keeping unchanged the physics 
throughput 

• and even more..! 

❖ hardware-side of choices, deployed computing infrastructures for ML in HEP, jet tagging with RNNs, deep 
NNs on FPGAs, Deep Kalman Filters, compression using autoencoders, seeking the right format for ML on 
HEP data, first prototypes of Cloud-compliant ML as-a-service solutions for HEP, ..
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More on ML in HEP
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Very recent HEP review work on Nature (Aug 2nd, 2018) 

• bit.ly/ML-DBonacorsi   



Conclusions
Science is a pool of application areas for ML/DL techniques 

• it is an amazing one, indeed 

ML-based methods stand as powerful tools in many disciplines 

• more recently, DL started to become a game player in some 

For the un-initiated, the technology poses significant difficulties 

• A constant training path is one of the keys towards success 

• A school like this one is an excellent leg in your ML/DL/DataScience trip! 

Many challenges are just common across sciences.. 

• .. but every science have unique data and tasks, and very peculiar priorities 

• and not all sciences are at the same level of advancement and tools adoption 

A zoo of always-more-refined algos and techniques to learn! 

• more in next slide on this
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Availability of world-class ML frameworks is encouraging cross-
discipline fertilisation 

• scientists from different communities started to talk to each other, and learn 
from each other’s experiences - like you in this room this week! 

• this might be tough, but will eventually be VERY GOOD.
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Frameworks and tools

Regardless of the science (or not!) you focus on, you will go through 
one (or more) of these:



What should you aim at?!

More similarity in tools/techniques than in applications themselves 

• ML/DL/DataScience is like learning a language: it builds bridges to/from other 
communities 

If you e.g. gain experience on one class of algos.. 

• .. then it will be easier to become expert on neighbouring classes of algos 

if you become confident in a ML/DL framework for one application.. 

• .. then it will be easier to use that experience in other application domains 

So, get started, get solid, and explore! 

Of course, Science welcomes ML/DL practitioners and data scientists, 
and guarantees that you will never run out of problems to solve!
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Enjoy this week!

61

Thanks for the attention.
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