SOSC 2018, Perugia

MORE SCIENCE, MORE CLOUD - COMMERCIAL CLOUD PERSPECTIVES

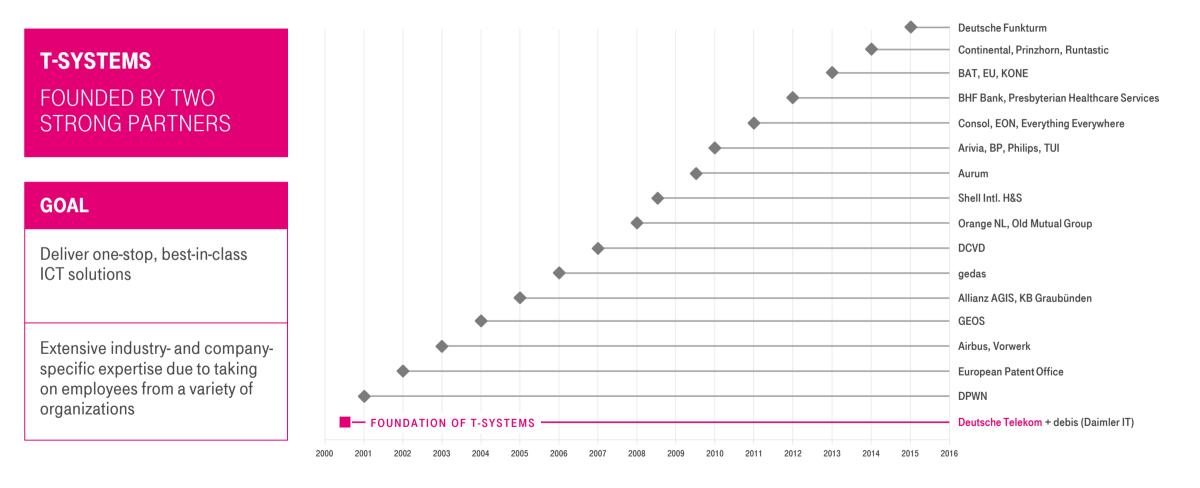
19

T · · Systems ·

SPEAKER

JURRY DE LA MAR

Account Director Research and Aerospace Ph.D. Physics, Free University Amsterdam


T · · Systems ·

AGENDA

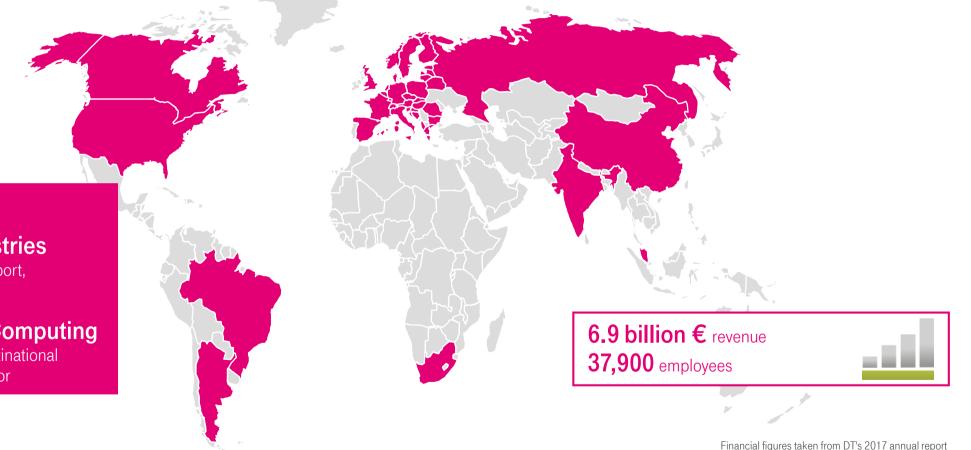
01	INTRODUCTION	
02	DIGITIZATION, CLOUDS AND T-SYSTEMS	
03	RELEVANCE OF CLOUDS IN SCIENCE	
04	OPEN TELEKOM CLOUD – SCIENCE USE CASES AND ACHIEVEMENTS	
05	LESSONS LEARNED	

T··Systems·

T-SYSTEMS – A LEADING ICT PROVIDER THROUGH GROWTH

T · · Systems ·

T-SYSTEMS – DEUTSCHE TELEKOM'S SUBSIDIARY FOR LARGE CORPORATIONS AND PUBLIC SECTOR


Information technology and telecommunications Services for industries

automotive, finance, transport, retail & public sector

Pioneer in Cloud Computing

Corporate customers, multinational corporations & public sector

T · · Systems ·

AGENDA

01	INTRODUCTION
02	DIGITIZATION, CLOUDS AND T-SYSTEMS
03	RELEVANCE OF CLOUDS IN SCIENCE
04	OPEN TELEKOM CLOUD – SCIENCE USE CASES AND ACHIEVEMENTS
05	LESSONS LEARNED

T··Systems·

DIGITIZATION TODAY...

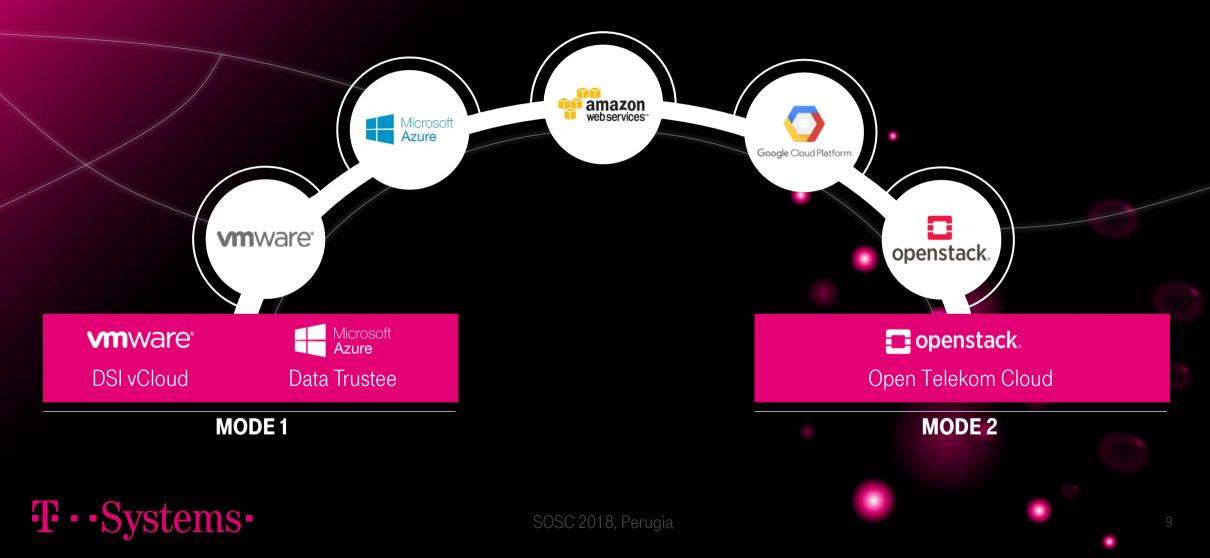
... despite owning no taxis or cars.

... despite owning no hotels or apartments.

...CREATES NEW BUSINESS MODELS

ECONOMIC VALUE-ADD ACROSS ALL INDUSTRIES BY 2020

...CREATES GROWTH OPPORTUNITIES



...AND CHANGES CUSTOMER BEHAVIOR AND REQUIREMENTS

T · · Systems ·

MULTI-CLOUD UNIVERSE FIVE BASIC CLOUD ECOSYSTEMS

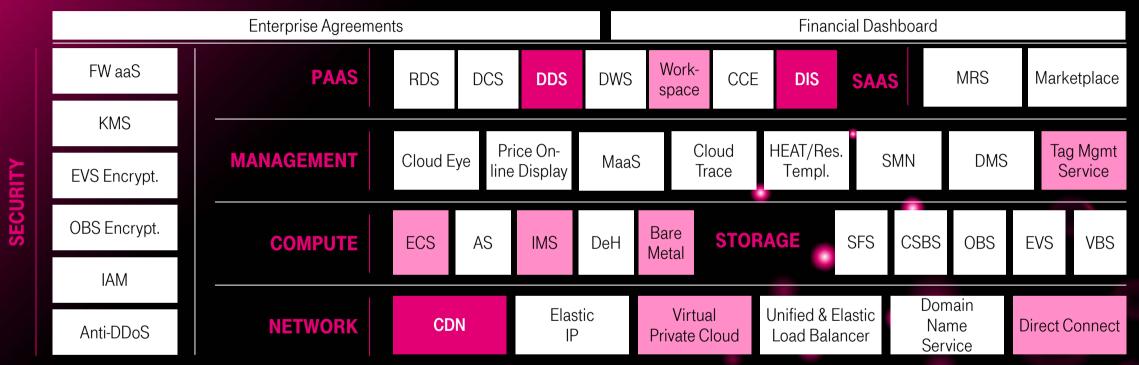
OPEN TELEKOM CLOUD PUBLIC IAAS FOR EUROPEAN STANDARDS

MARKET AND CUSTOMER EXPECTATIONS ARE CHANGING:

Demand for scalable, dynamic IT resources is growing.

Public laaS is the answer (compute, storage,

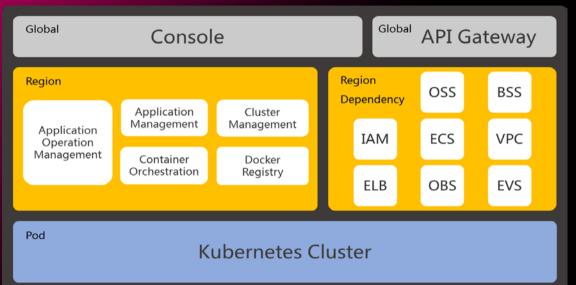
network, management)


Data protection in compliance **SECURE** with German legislation Meeting enterprise needs Rapid access SIMPLE Support/help getting started Easy to use OpenStack API **OPEN** No vendor lock-in Simple to integrate

An open technology platform with built-in compliance, and ease-ofuse, for businesses of any size, in any industry – on demand

OPEN TELEKOM CLOUD

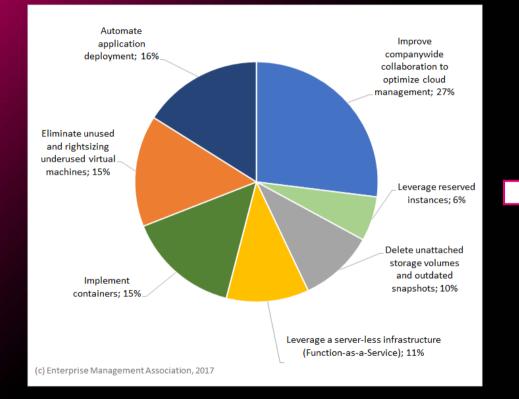
T • • Systems •


OPEN TELEKOM CLOUD FAST GROWING PORTFOLIO

FW = Firewall, KMS = Key Mgmt System, IAM = Identity & Access Mgmt, RDS = Relational Database Service, DCS = Distributed Cache Service, Document DB Service, DWS = Data Warehouse Service, CCE = Cloud Container Engine MaaS = Migration aaS, SMN = Simple Message Notification, DMS = Distributed Message Service, ECS = Elastic Cloud Server, AS = Auto Scaling, IMS = Image Mgmt System, DeH = Dedicated Host SFS = Scalable File Service, CSBS = Cloud Server Backup Service, OBS = Object Storage. EVS = Elastic Volume Storage, VBS = Volume Backup Service, CDN = Content Delivery Network

OPEN TELEKOM CLOUD CLOUD CONTAINER ENGINE

Support of Kubernetes Cluster per Tenant:


#of Clusters	max. #of nodes	max Container Instances per node	max. #Container Instances
5	5000	100	500,000

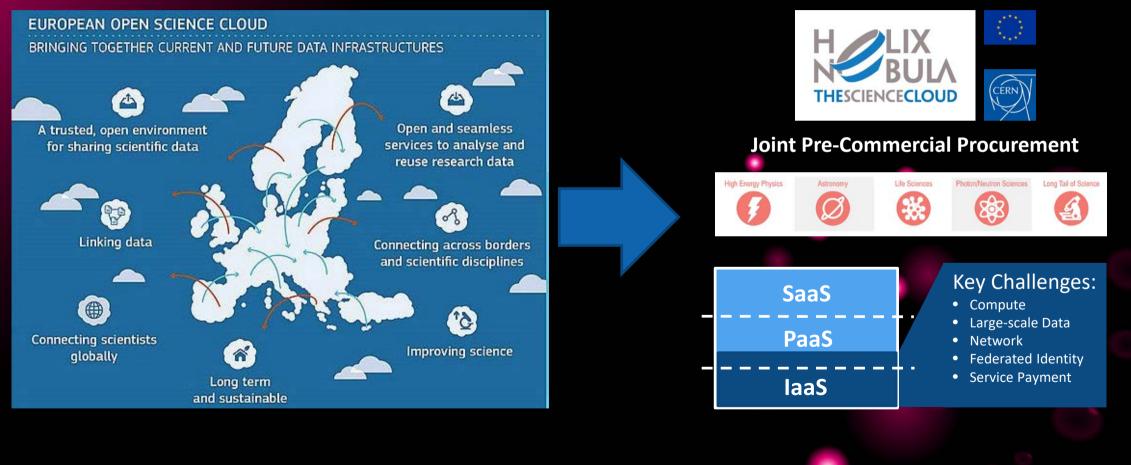
Note: Bare Metal Cluster support available with OTC V3.2 (Nov 2018)

T··Systems·

Feature	CCE V1	CCE V2
Kubernetes Version	1.5	1.9
Docker Version	1.11.2	17.06
Autoscaling for cluster node	Not supported	Supported
Container Storage	EVS	EVS/SFS, Support dynamic provision
Stateful workload(Console)	Not supported	Supported
Job workload(Console)	Not supported	Supported
Configuration Center(Console)	Not supported	Supported
Container network	Overlay	Overlay & Underlay
Application template	Tosca	Kubernetes charts

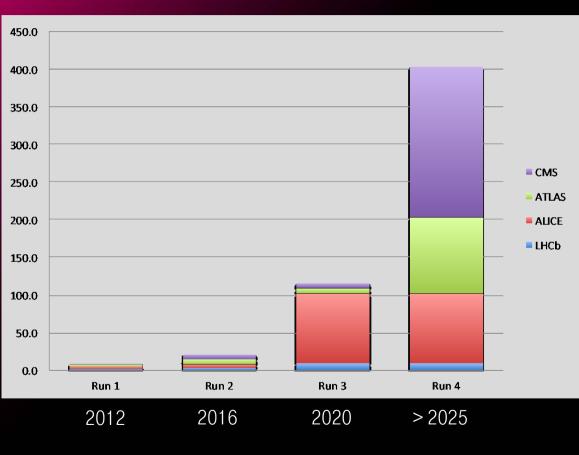
COST TRANSPARENCY – WHERE ARE THE BENEFITS?

New Financial Dashboard


T··Systems·

AGENDA

01	INTRODUCTION	
02	DIGITIZATION, CLOUDS AND T-SYSTEMS	
03	RELEVANCE OF CLOUDS IN SCIENCE	
04	OPEN TELEKOM CLOUD – SCIENCE USE CASES AND ACHIEVEMENTS	
05	LESSONS LEARNED	


T··Systems·

MORE SCIENCE, MORE CLOUD – BUILDING THE EUROPEAN OPEN SCIENCE CLOUD

T··Systems·

CERN ORGANIZATIONAL CHALLENGES AND SOLUTION

Challenges

- Manage the foreseen data explosion
- Create a more elastic IT infrastructure
- Within a fairly stable budget

Solution

- Moore's law helps, but not sufficient
- Large effort spent to improve software efficiency
- Exploit multi-threading, new instruction sets, ...
- Still need factor 2 in terms of cores, storage etc.

T··Systems·

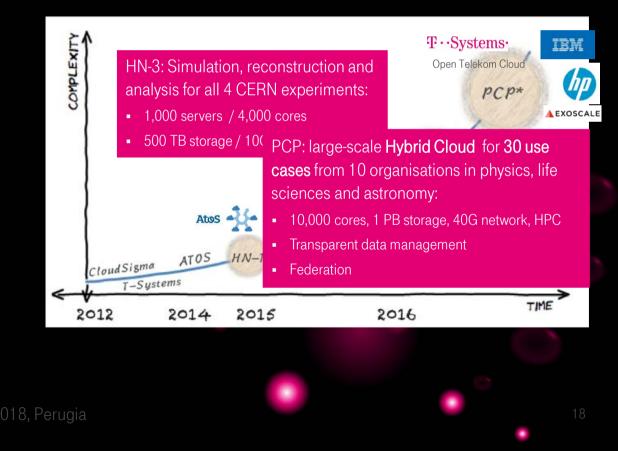
SOSC 2018, Perugia

16

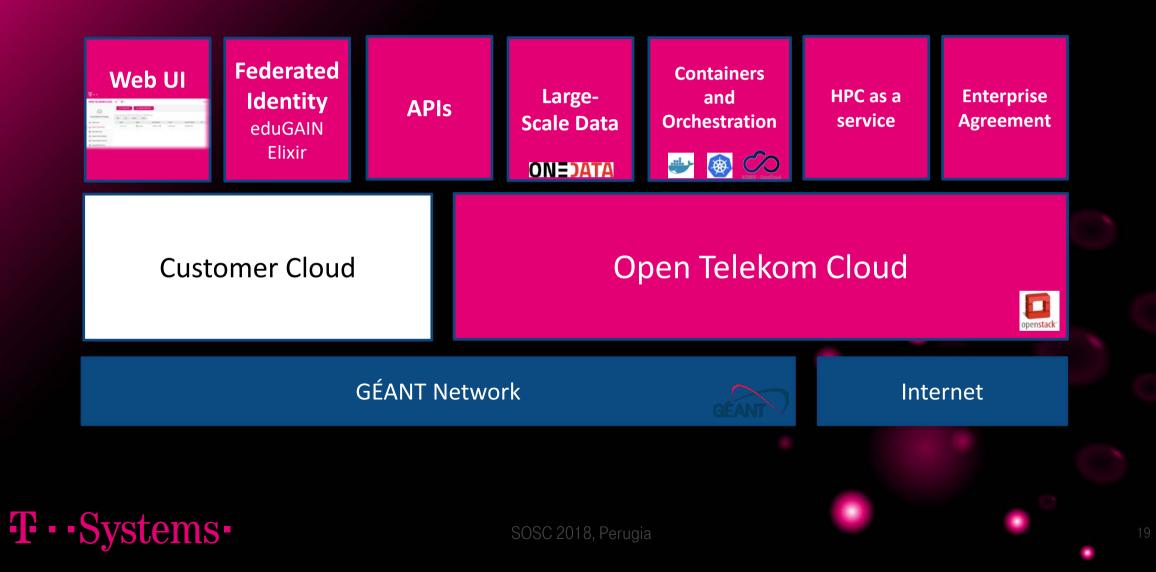
AGENDA

01	INTRODUCTION	
02	DIGITIZATION, CLOUDS AND T-SYSTEMS	
03	RELEVANCE OF CLOUDS IN SCIENCE	
04	OPEN TELEKOM CLOUD – SCIENCE USE CASES AND ACHIEVEMENTS	
05	OUTLOOK	

T··Systems·


THE CERN / HELIX NEBULA APPROACH

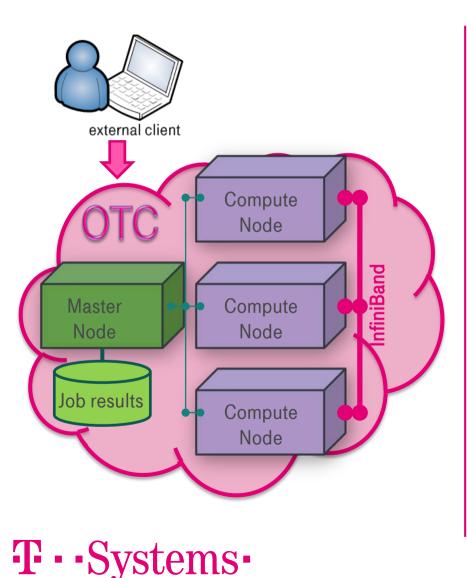
Transforming In-House Resources


- 2012: Start with private cloud under OpenStack
- Physical and virtual servers, remote machines
- Responsibilities by layers of service deployment
- Scaling to large numbers
 (> 15'000 physical, several 100'000s virtual)
- Support for dynamic host creation/deletion
 - Deploy new services/servers in hours rather than weeks/months
 - Optimise operational and resource efficiency

Evaluating Public Clouds

Series of pilot projects increasing in size and complexity

HELIX NEBULA – MORE SCIENCE THROUGH HYBRID CLOUDS



HELIX NEBULA 2018 – USE CASES TESTED

TEST/Deployment NAME	PROCURER	STATUS	Expected Results	Summary of results obtained
Batch Service Deployments		On-going		
TOTEM Deployment test		On-going	Fully functional data analysis software stack. Scaling out the installation and testing a complex analysis example.	Functional deploymment OK. Now scaling out.
Security test challenge	CERN	On-going		
PerfSONAR tests	OLINI	On-going	Avg Latency (in/out):	
Deep Learning with GPUs		On-going	Parallel training of Generative Adversarial Networks. Scaling experiments and comparison to HPC clusters. Expect linear (strong) scaling.	Initial run on 2 T-Systems GPU.
IAAS access via EduGain and local accounts	CNRS	Completed		in Advania we had issue with the openstack
Onedata Wave 1: HDF5_IO		Completed		marked as completed but was not able to reach
Onedata Wave 2: Scaling HDF5_IO	DESY	On-going	100TB shared data (50MB average file size, min 7MB, max 4GB), more than 100 (parallel) instances (of HDF5_IO)	Currently trying to run tests with multiple files.
SLURM Integration	DEST	Completed		Works, still need to check updated LUMA version
Docker SLURM jobs in the Cloud		Completed		works, need to rerun on Exoscale to measure job
CLOUD_BENCHMARK test		On-going		Some flavors of VMs are able to match (+/- 20%)
Onedata Wave 1: Data Transparency Layer	EMBL	Completed	The data transparency layer can be established, sub-tenants and tenants are able to share datasets with other sub-	Data transparency layer cannot be established or
Onedata Wave 2: PanCancer deployment		On-going		
FDMNES: HPC Test		On-going	- start a multi-process MPI and/or OpenMP (later also GPU) job on a cluster with a user-configurable number of nod	RHEA: no HPC tests yet because no cloud
Cloud Access Interface	ESRF	On-going	The HPC based use-case, such as the ESRF/FDMNES in the Buyers Group test-suite, must be executable in a script	RHEA: so far, I have not been able to set up a
Performance test		On-going	Once the first multi-process HPC job has successfully run, it would be interesting to do some tests: I how do	d
Onedata Wave 1: DODAS	INFN	Completed		
Onedata Wave 2: Scaling DODAS	INFIN	On-going		
Batch system extension□		On-going		
CPU benchmarks		On-going		
Non-browser federated authentication with ECP	KIT			T-Systems fixed the registration of the SP for the
SAML extension		Completed		
Onedata Wave 1: dCache_io		On-going	Objective: a custom tool will be provided to be run in a simple small VM, with enough allocated storage for t	
Federated AAI for OTC setup		Completed		SAML translation worked
WeNMR / HADDOCK SLURM deployment	SURFsara	On-going		
NIKHEF scale-out		On-going		
LOFAR SLURM deployment		On-going	Run LOFAR pipelines on a SLURM cluster on both providers	
Batch-system-extension	STFC	Not Started		
Jobs-on-kubernetes		Not Started		

HPCAAS: FDMNES USE CASE (ESRF)

- "CFN" User Menu (CloudFormatioN)
- Workflow (high level):
 - 1. Create cluster (on local pc)
 - 2. Enter master node
 - 3. Submit job (on master node)
 - 4. Execute job
 - 5. Auto-delete compute nodes after job termination
 - 6. Keep results
- HPCAAS menu's prepared to also integrate e.g., SLURM workload manager

Example master flavor: s2.medium.1 (cheaper, exists longer) Example compute flavor: h2.3xlarge.10 (more expensive, auto-deleted after job-end)

HELIX NEBULA – DODAS USE CASE

EOSC-hub DODAS in a nutshell

Dynamic On Demand Analysis Service: DODAS

- Platform as a Service tool which aim is to guarantee deployment of complex and intricate setup on "any cloud provider" with almost zero effort.
- Allows to instantiate on-demand container based cluster to execute software applications

DODAS is a Thematic Service under EOSC-hub Horizon 2020 EU project.

Initially developed as an INDIGO-DataCloud use cases based on CMS workflow.

Opportunistic computing:

Temporarily available for a specific task, user or group.

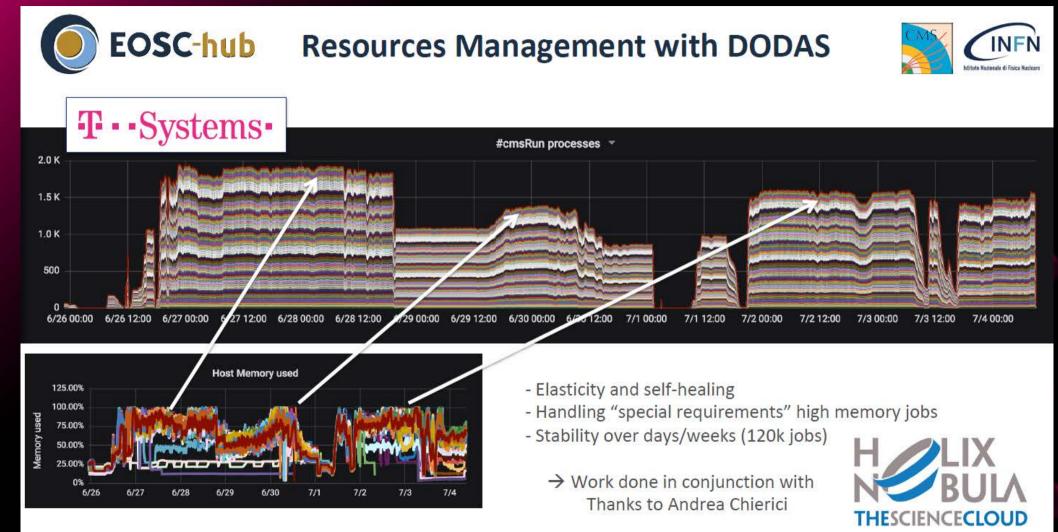
Extension of existing Facility Manage peaks of usage

Multi cloud cluster deployment Harvest dispersed resources (PaaS level federation)

Exploitation of Machine Learning as a Service

Batch System as a Service HTCondor batch System

F••Systems•


SOSC 2018, Perugia

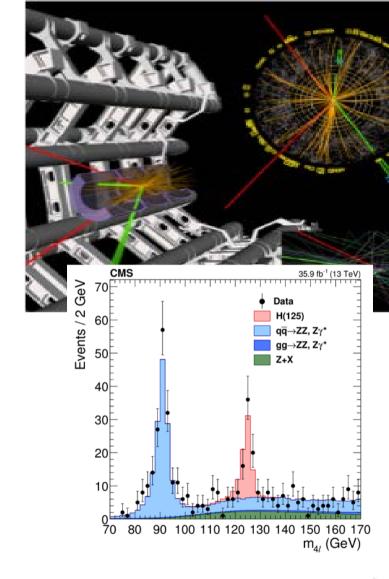
2

HELIX NEBULA – DODAS USE CASE

T . .

vstems

Monte Carlo Simulation: Why

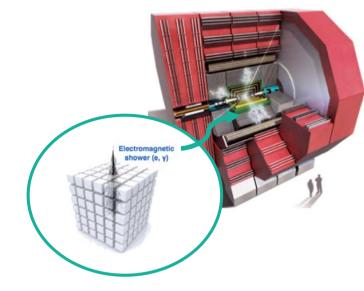

Detailed simulation of subatomic particles is essential for data analysis, detector design

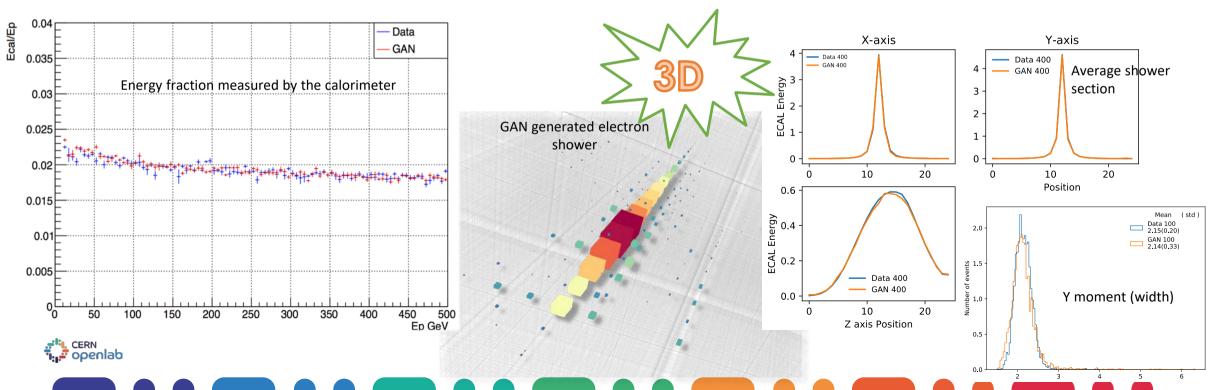
Understand how detector design affect measurements and physics

Correct for inefficiencies, inaccuracies, unknowns.

Theoretical model to compare data against.

>50% of WLCG power for simulations Current code cannot cope with 2025 LHC upgrade





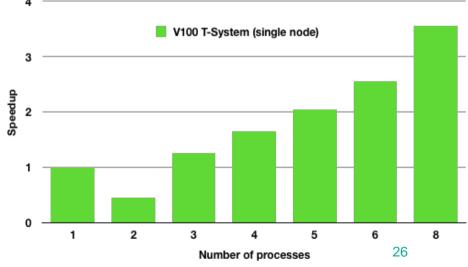
Generated images

Interpret detector output as a 3D image

3D convolutional GAN generate realistic detector output Customized architecture (includes auxiliary regression tasks) Agreement to standard Monte Carlo in terms of physics is remarkable!

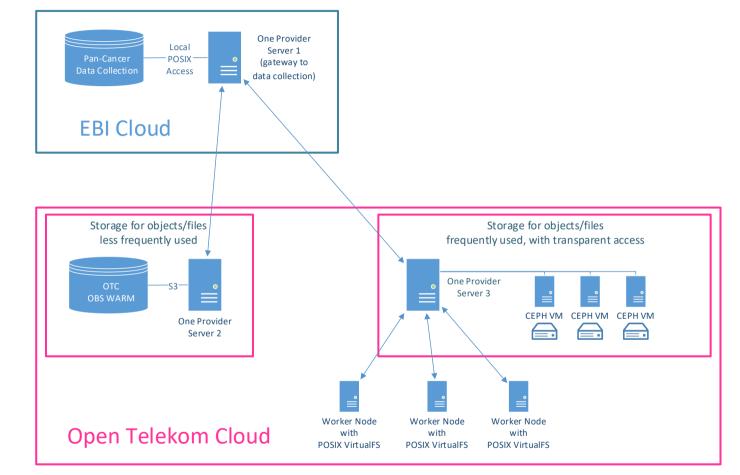
Distributed training is needed

Optimised training and access to cloud facilities enables a larger range of applications


Inference: Monte Carlo: 17 s/particle vs 3DGAN: 7 ms/particle

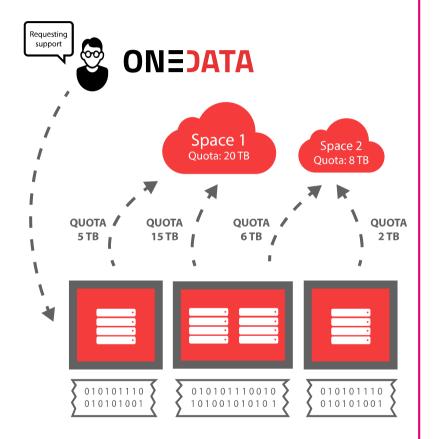
- ➔ speedup factor > 2500!!
- Training: 1 day on a NVIDIA GTX1080
- Introduce mpi based data parallel training
- First results using cloud GPUs via Helix Nebula Science Cloud (T-System)
- Test on 8xV100 BMS on OTC

CERN


🖉 openlab

Time to create an electron shower										
Method	Machine	Time/Shower (msec)								
Full Simulation (geant4)	Intel Xeon Platinum 8180	17000								
3d GAN (batch size 128)	Intel Xeon Platinum 8180	7								
3d GAN (batchsize 128)	GeForce GTX 1080	0.04								

LIFE SCIENCES - PAN-CANCER USE CASE



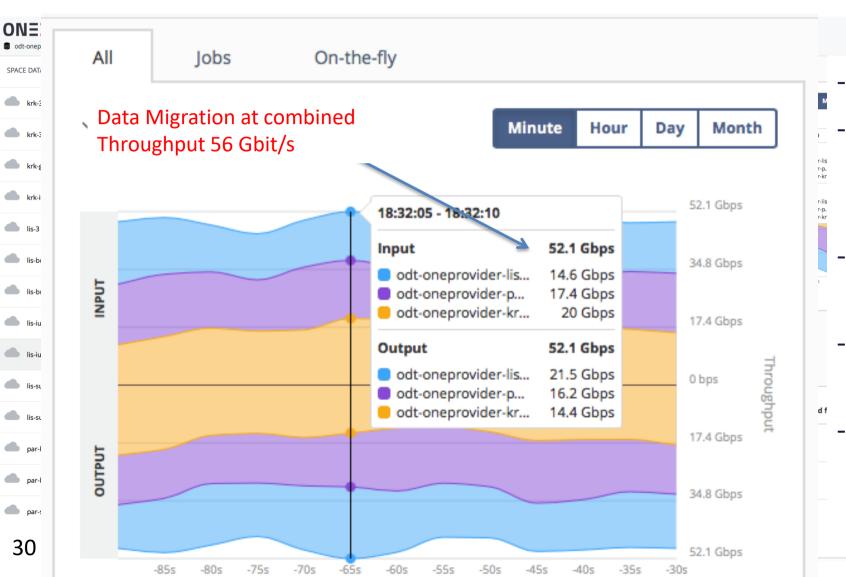
- Use case with strong burst character: Continuous use: 7 VMs
 Burst use (2.5 days p.m.): up to 400 VMs
- Storage infrastructure with High I/O and infrequent usage patterns.
- Users require transparent data management and "simple" parallel processing.
- Total-Cost-of-Ownership study comparing on-premise processing with Hybrid Cloud model.

T · · Systems ·

LIFE SCIENCES – DATA MANAGEMENT

0)	ONEDATA S Example Provider			t ₽	s ≤ *	•	M		<u> </u>	Û S	🚺 admin 🗸
Ô	Personal files										
Data	Personal files V	FILES								SIZE	MODIFICATION
Shared	Root directory	P	file1.txt							6 B	2017-02-06 02:02
C Spaces		P	file2.txt							6 B	2017-02-06 02:02
		P	file3.txt							6 B	2017-02-06 02:02
Groups											
ا عنائیں Tokens											
Providers											
											-

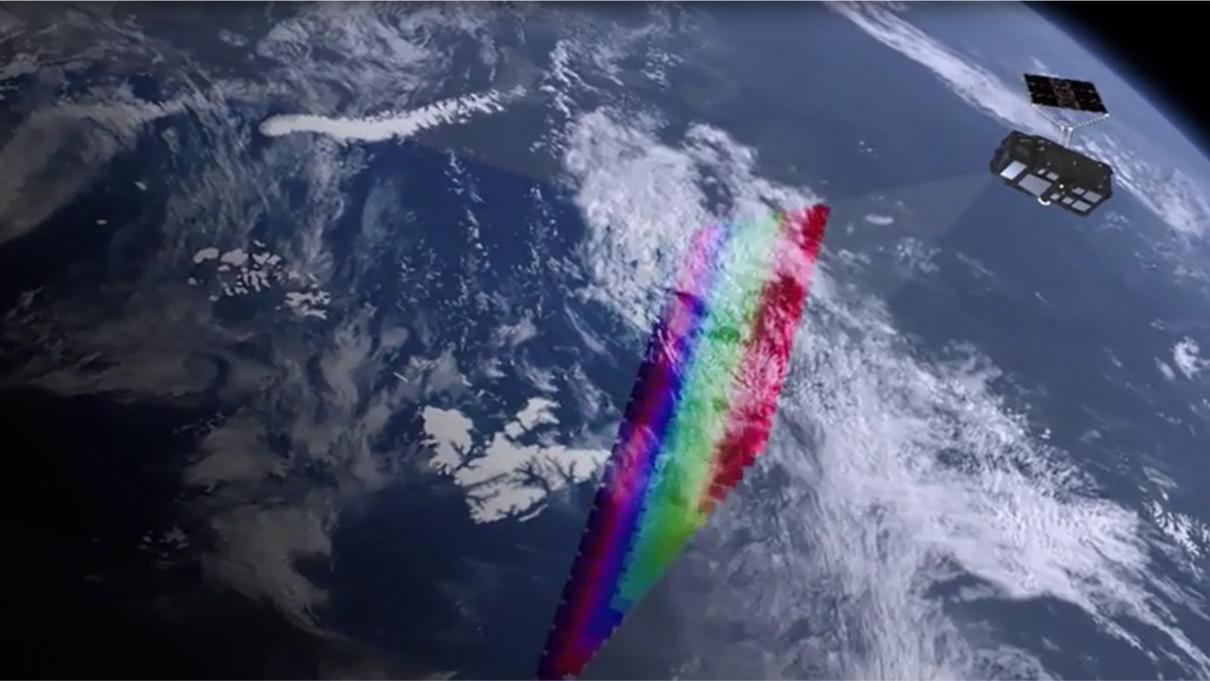
T · · Systems ·


ONEDATA – High-Throughput Data Processing

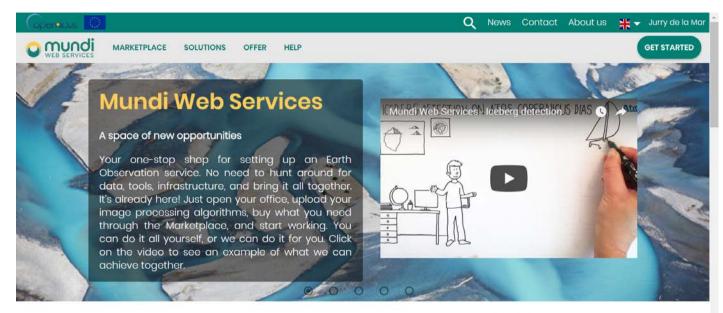
Oneclients Oneclients aggregated FUSE transfer TOTAL 40 GBps 300 K MAN 250 K 30 GBps 2018-06-15 01:23:00 - perSecond(sumSeries(oneclient-*.comp.oneclient.mod.fuse.read.count)): 36.8 GBps 20 GBps - perSecond(sumSeries(oneclient-*.comp.oneclient.mod.fuse.write.count)): 10 GBps 5U K 0 6/13 16:00 6/14 00:00 6/14 0 Bps 6/14 08:00 6/15 08:00 6/13 16:00 6/14 00:00 6/14 16:00 6/15 00:00 - perSecond(sumSeries(oneclient-*.comp.oneclient.mod.fuse

Onedata Transparent POSIX File System Processing transparently cached data - 37GBytes/sec

ONEDATA – High-Throughput Data Migration

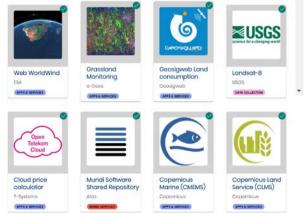


H BULA THESCIENCECLOUD


- Data Transfer Mesh
- 3 Oneproviders connected by 20+Gbit/s links

🚺 joe 🗸

- Transfer data between all them
- Single VM Node per Provider
- Linear scalability



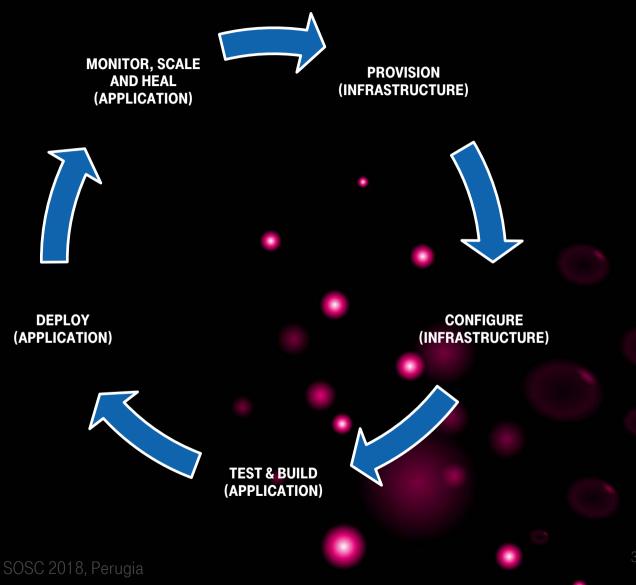
INFORMATION SERVICES FOR COPERNICUS DIAS (ESA/EU)

Mundi: A space of new opportunities

Mundi combines real-time earth observation data from Copernicus with data from several sources and turn them into products for companies through easy cloud functions and support.

The challenge:

- To provide data access to at least two years of Copernicus Satellite data from the ESA Sentinel Missions.
- To provide geo-analytics tools and services with attractive business models.
- To complement the data with other relevant information for big-data analytics.


The solution:

- Mundi Web Services SaaS and PaaS services on OTC
- Live start June 2018
- 5 PB data, expected to grow to more than 40 PB by End of 2019
- Sentinel Cloudless, Grasslands Monitoring, Regional Agriculture and Forestry Services established
- Various other use cases under implementation.

T · · Systems ·

THE PARADIGM – ADOPT THE CLOUD NATIVE WORLD

- Consequent application development, taking cloud computing architectures into account
- Use of microservices, that can be run on any combination of infrastructure(s)
- Containers, automation, resilience and scalability as the framework
- New tool ecosystems emerging to support developers and users e.g., HEAT, Terraform, Ansible, Kubernetes, Mesos/Marathon

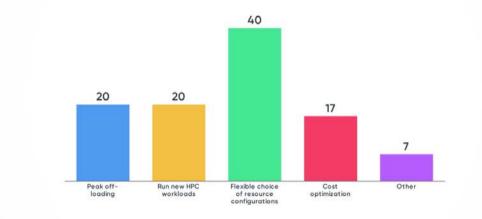
AGENDA

01	INTRODUCTION	
02	DIGITIZATION, CLOUDS AND T-SYSTEMS	
03	RELEVANCE OF CLOUDS IN SCIENCE	
04	OPEN TELEKOM CLOUD – SCIENCE USE CASES AND ACHIEVEMENTS	
05	LESSONS LEARNED	

T··Systems·

LESSONS LEARNED

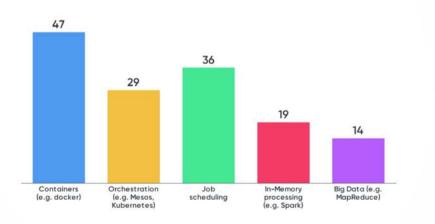
- Main challenge is to adept to a **cloud-native** world
- Federation is key to win user acceptance, while maintaining security
- Automation and self-healing will generate totally new dimensions of computing
- Data Management challenges often underestimated and require next generation approaches
- Organisations require flexible and highly-granular cost transparency and management


T · · Systems ·

QUESTIONS?

What do you consider main challenges for using cloud computing in your environment today?

What functionality would be relevant for your work or environment?

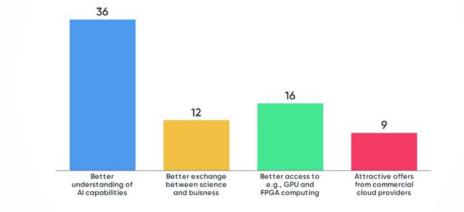


53

2 55

Mentimeter

What technologies are you using or interested in today?



What would you need to exploit more benefits from AI?

Mentimeter

Mentimeter

KEY CONTACTS

JURRY DE LA MAR

+49 170 9236058 jurry.delamar@t-systems.com

THANK YOU!

