

Deep Learning and Machine Learning in Hybrid Clouds

Davide Salomoni (<u>davide@infn.it</u>)

SOSC 2018

Perugia, Sep 20, 2018

By now we all know what we mean by ML/DL...

Deep Learning

INFŃ

A word of caution about machine learning...

OK

Exit

Nikon

Did someone blink?

Maria Bowen may also be in the photos below

Google 'fixed' its racist algorithm by removing gorillas from its image-labeling tech

Nearly three years after the company was called out, it hasn't gone beyond a quick workaround

By James Vincent | @jjvincent | Jan 12, 2018, 10:35am EST

Web Images Videos Maps News Shopping Gmail more •			
Google translate			
From: English - detected V 😆 To: Vietnamese V Translate	English to Vietnamese translation		
Will Justin Bieber ever hit puberty	Justin Bieber sẽ bao giờ đến tuổi dậy thì		
	Listen		
Listen			
Web Images Videos Maps News Shopping Gmail more •			
Google translate			
From: Vietnamese - detected 🔻 🧧 To: English 🔻 Translate	Vietnamese to English translation		
Justin Bieber sẽ bao giờ đến tuổi dây thi	Justin will never reach puberty		
	4 Listen		
C Listen			
Google Translate for my: 🔍 Searches 🧉 Videos 🥌 Email 📲 Phone 🗭 Chat 🧰 Business			
About Google Translate Turn off i	nstant translation Privacy Help		

Whatever, ML/DL is here to stay, at least until the next buzzword kicks in

Hype Cycle for Emerging Technologies, 2018

gartner.com/SmarterWithGartner

Source: Gartner (August 2018) © 2018 Gartner, Inc. and/or its affiliates. All rights reserved.

Davide Salomoni

So, you want to apply your ML/DLrelated ideas

- But where do you find a suitable ML/DL environment that works...
 - ... for you (and not against you)...
 - ... configured the way you want (and not the way the resource owner thinks it's best)...
- time-efficient, cost-effective

usable

flexible

 ... quickly and for the time you need it (you don't want to wait until you're old to see whether your ideas worked)

Let's add buzzwords

- We want to use **«The Cloud**» to find, selfprovision and use the [compute, storage] resources we need.
- But what *is* "The Cloud"?
 - See http://goo.gl/eBGBk for the classical NIST definition. It is in practice a way to:

THE CLOUD THINGY

The 5 Cloud postulates

- 1. Self-service, on-demand provisioning
- 2. Network-based access
- 3. Resource sharing
- 4. Elasticity (with *infinite resources*)
- 5. Pay-per-use

What matters at the end *are the applications*.

To provision resources (including those for ML/DL), we want to consider Hybrid Clouds (*)

Source: KPMG international, 2016

(*) I won't discuss here why it is so, see Q&A or seek me offline

INFN

How?

- We certainly don't want to reinvent the wheel
- We'd rather start from what is available and adapt / evolve it to satisfy our needs
- One can certainly do all of this by putting scores of PhD students to write ad-hoc, home-made and selfmaintained solutions, but still..

Consider this image before saying "don't reinvent the wheel"

INDIGO-DataCloud

- The ElectricIndigo Release (<u>https://www.indigo-datacloud.eu/service-component</u>):
 - 47 open source modular components, distributed via 170 software packages, 50 ready-to-use Docker containers
 - Supported operating systems: CentOS 7, Ubuntu 16.04
 - Supported cloud frameworks: OpenStack Newton, OpenNebula 5.x (plus connection to Amazon, Azure, Google)
 - Download it from the INDIGO-DataCloud Software Repository: <u>http://repo.indigo-datacloud.eu/index.html</u>

The ElectricIndigo Release

- The ElectricIndigo modular software components are organized around 5 areas:
 - 1. Application-level Interfaces to Cloud Providers and Automated Service Composition
 - For users porting their apps to the Cloud
 - 2. Flexible Identity and Access Management
 - For users needing to handle AAI
 - 3. Data Management and Data Analytics Solutions
 - For users managing distributed [big] data
 - 4. Programmable Web Portals, Mobile Applications
 - For the creation of front-ends
 - 5. Enhanced and Scalable Services for Data Centers and Resource Providers
 - For providers wishing to **optimize/enhance their service offerings**

INDIGO-DataCloud & Sons

- INDIGO-DataCloud has now two ongoing follow-on European projects, complementary in nature:
 - eXtreme-DataCloud (<u>http://www.extreme-datacloud.eu/</u>), focusing on the development of scalable technologies for federating storage resources and managing data in highly distributed computing environments
 - DEEP-HybridDataCloud (<u>https://deep-hybrid-datacloud.eu</u>), focusing on intensive computing services exploiting specialized hardware components, such as GPUs, low-latency interconnects, and others resources.

SOSC 2018, Perugia

How do you specify your *requirements*?

- **«Requirement»** : in general, what you would like to see to automagically appear for you in the Cloud
- For example, an auto-scalable cluster of GPU-equipped machines (physical machines, or containers), associated to some databases (maybe in an HA configuration), auto-configured to connect to some distributed file system, perhaps part of a Spark cluster, or of a virtual batch system.
- You don't want (trust me on this one) to instantiate, operate, manage the above manually.
- In INDIGO and follow-on projects, we use an *open templating language* to specify requirements, called TOSCA

TOSCA, in short

- Topology and Orchestration Specification for Cloud Applications
- It standardizes the language to describe:
 - *The structure* of an IT service (its **topology** model)
 - How to orchestrate operational behavior (plans such as build, deploy, patch, shutdown, etc.)
- It is a declarative model that spans applications, virtual and physical infrastructures.
- INDIGO supports TOSCA declarations at the IaaS, PaaS and SaaS levels to automatize the definition & instantiation of services.

tosca_definitions_version: tosca_simple_yaml_1_0

description: Template for deploying a single server with predefined properties.

topology_template:

- An example of a **TOSCA** topology template
- For more examples, see https://github.com/indigodc/tosca-templates

inputs: cpus: type: integer description: Number of CPUs for the server. constraints:

```
- valid_values: [ 1, 2, 4, 8 ]
```

node templates:

```
my_server:
type: tosca.nodes.Compute
capabilities:
  # Host container properties
  host:
    properties:
      # Compute properties
     num_cpus: { get_input: cpus }
     mem_size: 2048 MB
      disk_size: 10 GB
```

outputs:

server_ip:

description: The private IP address of the provisioned server. value: { get_attribute: [my_server, private_address] }

With TOSCA, you can create rather complex topologies

Now on to ML/DL...

- With the PaaS technology shown above, we can e.g. automate the instantiation of on-demand Spark clusters on hybrid Clouds.
- However, we also want to support computing techniques for the analysis of very large datasets, exploiting specialized hardware components:
 - GPUs...
 - ... low-latency interconnects...
 - ... and other resources usually accessed as "bare metal".
- Also ensuring interoperability with existing applications and infrastructures → these are the main objectives of the DEEP-Hybrid DataCloud project.

The DEEP consortium

- A balanced set of partners
 - Strong technological background on development, implementation, deployment and operation of federated e-Infrastructures
- 9 academic partners
 - CSIC, LIP, INFN, PSNC, KIT, UPV, CESNET, IISAS, HMGU
- 1 industrial partner
 - Atos
- 6 countries

Davide Salomoni

https://deep-hybrid-datacloud.eu

• Spain, Italy, Poland, Germany, Czech Republic, Slovakia

SOSC 2018, Perugia

9/19/18

Figure 6: Analysis of massive real-time data streams following a lambda architecture.

Some use cases, concrete

- Retinopathy detection: DL application for the classification of disease progression of diabetic retinopathy – classify stage and progression of the disease based on labelled image data taken from the back of the human eye. Dataset from <u>https://www.kaggle.com/c/diabetic-retinopathy-</u> <u>detection</u>.
- Plant classification with DL. Training data comes from images & metadata (author, data, url, species, id, etc.) from portals such as iNaturalist or Natusfera.
- Pattern recognition in satellite images (from Copernicus or NASA), associated to in situ measurements. Environmental data are used to validate the predictions.
- Analysis of massive online data streams, coming e.g. from monitoring of log files in big data centers.

DEEP, architectural diagram

What is missing?

- Application composition: beyond a text-based TOSCA template (see earlier), we want a tool capable of
 - graphically composing services to create a topology, and
 - deploying the created topology on some Clouds
- Software components that are able to properly parse TOSCA (and TOSCA extensions) through transparent hybrid multi-Cloud deployments, involving the use of specialized computing devices such as GPUs or low latency interconnects.

Two simple video demonstrations

- 1. How the INDIGO-DataCloud orchestrator can be used from the command line to deploy Jupyter notebooks over cloud infrastrucures. This is eventually realized with Docker containers with CUDA and Tensoflow through a Cloud-based Mesos cluster.
- 2. How the Alien4Cloud product is being extended by DEEP to graphically create a topology and the related TOSCA template, which will eventually be deployed on cloud infrastructures.

DEEP GPU deployment demo

Simple Jupyter deployment through the INDIGO Orchestrator

Álvaro López García aloga@ifca.unican.es Spanish National Research Council

DEEP-Hybrid-DataCloud has received funding from the European Union's Horizon 2020 SOSC 2018, Ference and innovation programme under grant agreement No 777435.

Visual Composition of TOSCA Templates with Alien4Cloud: JupyterHub + Kubernetes

EOSC-HUB Week

Málaga, Spain April 2018

Germán Moltó, Miguel Caballer, Andy S. Alic gmolto@dsic.upv.es, micafer1@upv.es, asalic@upv.es

Universitat Politècnica de València (UPV)

DEEP-Hybrid-DataCloud is funded by the Horizon 2020 Framework Programme of the European union under grant agreement number 777435 SOSC 2018, Perugia

What about software quality?

- Remember that we said we don't want to reinvent the wheel... but how do we make sure that what we «invent» is solid enough for production use?
- INDIGO-DataCloud, eXtreme-DataCloud and DEEP-Hybrid DataCloud jointly delivered "A set of common software quality assurance baseline criteria for research projects", with the objective of delivering quality software
 - See <u>http://hdl.handle.net/10261/160086</u>
- Do not underestimate the importance of software QA!

A set of Common Software Quality Assurance Baseline Criteria for Research Projects

Abstract

The purpose of this document is to define a set of quality standards, procedures and best practices to conform a Software Quality Assurance plan to serve as a reference within the European research ecosystem related projects for the adequate development and timely delivery of software products.

Document Log

Issue	Date	Comment
V1.0	31/01/2018	First draft version
V2.0	05/02/2018	Updated criteria

Common SQA Baseline Criteria for Research Projects

.

The Elephant in the Room

- So far, I basically skipped one of the most important and most complex topics related to what we have been discussing.
- What is it?

Data Management Plans!

- If you don't know what a Data Management Plan is, I strongly advice you to go and look it up carefully.
 - See e.g. <u>https://dmponline.dcc.ac.uk</u> for some information and examples.
- From the all-powerful <u>Wikipedia</u>:
 - A data management plan or DMP is a formal document that outlines how data are to be handled both during a research project, and after the project is completed. The goal of a data management plan is to consider the many aspects of data management, metadata generation, data preservation, and analysis before the project begins; this ensures that data are well-managed in the present, and prepared for preservation in the future.
- Consider at least:
 - Information about data and data format (describe your data, how it will be acquired, when and where, how it will be processed, etc.)
 - Metadata content and format
 - Policies for access, sharing, re-use can these policies change over time? How?
 - Long-term storage and data management
 - Budget!

Data management?

- This would require a *substantial* time to even just list the core issues, but I encourage you to think for example at the following topics:
 - How can you automate dataset distribution according to some «intelligence»?
 - Quality of service is important. Would you prefer to have fast or slow access to your data? How can you choose between the two
 - Hint: see what e.g. Amazon does with its Glacier vs S3 offerings
 - Are data access patterns important?
 - How can you access data that can sit in [perhaps multiple] Clouds transparently from a "client"? What if some Cloud sites offer object storage and other Posix storage?
 - Can you do some sort of "smart caching"?
 - Hint: think at what happens when you want to view a YouTube video.
 - How do you manage metadata?
 - What about sensitive data handling? Secure storage and encryption?

Conclusions

- We all appreciate how powerful can ML/DL techniques be. But we want also ways to effectively and efficiently get, configure and use resources for our ML/DL problems.
- Cloud-based resources are pervasive today, and *can* be extremely effective in reducing time and money to get the results we want.
- But in order to do so, without being locked in to proprietary, closed solutions, and without reinventing too many wheels, we still need some effort – so that we can streamline our experience.
- These are exciting times to be involved in this field! So, get involved and make a difference! (*)

(*) See also the talk on "Collaboration opportunities" on Friday

Thank you

"Stat rosa pristina nomine, nomina nuda tenemus"

SOSC 2018, Perugia

Backup Slides

The INDIGO-DataCloud Consortium Members

- Software developers Universities
- Industrial partners
- Research institutes
- e-infrastructures
- Scientific communities

The European Open Science Cloud (EOSC)

• The EOSC: "a model for the use of a cloud in the private and public sectors" (European Parliament resolution on the European Cloud Initiative, Feb 2017)

• Why the EOSC?

- To facilitate scientific developments and make the EU a center for global research
- EOSC: "S" as in "Science", but with its user base to be extended to industry and governments
- To foster the growth of the European Digital Economy → competiveness, global market positioning (esp. for SMEs)
- To accelerate work on standards & interoperability, sharing of open data, creation of an open environment for storing, sharing and re-using scientific data and results, with the overall goal of removing fragmentation.

From the EOSC vision to action: the EOSC-hub project

- The EOSC-hub project, funded with about 30M€, mobilizes providers from 20 major digital infrastructures, EGI, EUDAT CDI and INDIGO-DataCloud, jointly offering services, software and data for advanced data-driven research and innovation through a unified service catalogue.
- Some facts:
 - 100 Partners, 75 funded beneficiaries
 - 3874 PMs, 108 FTEs, more than 150 technical and scientific staff involved
 - 36 months: Jan 2018 Dec 2020

Federation and Collaborative Services

- Identification, Authentication, Authorization and Attribute Management (EUDAT B2ACCESS, EGI CheckIn, INDIGO WaTTS)
- Marketplace and Order Management (Service Portfolio Management Tool, Data Project Management Tool)
- Integrated Business and Operations Support Systems (Configuration Management Data Base [GOCDB], EGI Operations Portal)
- Monitoring, Accounting, Messaging, Security Tools (ARGO, EGI Security monitoring tool, EUDAT accounting repository, APEL)
- Helpdesk Services and Tools (EGI & EUDAT)
- Application store, Software Repositories and other Collaboration Tools

Common Services: Integration and Maintenance

- Discovery and Access (INDIGO IAM, Onedata, CDMI storage services; EGI DataHub; EUDAT B2SHARE, B2FIND, B2STAGE, B2HANDLE, B2DROP; OpenStack Swift [external])
- Federated Compute (INDIGO advanced IAAS) services [Tosca Heat translator, Cloud spot instances, udocker]; CREAM-CE, BDII, VOMS, STORM, CVMFS, ARGUS, DIRAC)
- Processing and Orchestration (INDIGO PaaS ٠ [TOSCA-based templates], FutureGateway, Open Mobile Toolkit)
- Data and Metadata management (EUDAT B2NOTE, B2SAFE, B2HANDLE)
- Preservation (Trusted Digital Repository [by DANS-KNAW])
- Sensitive Data (TSD [by SIGMA2], ePouta [by CSC])

The EOSC-hub Thematic Services and Competence Centers

Thematic Services

- **ECAS** Climate Analytics Service (ECAS), provided by ENES
- **DARIAH** Science gateway tailored for the digital arts and humanities communities
- OPENCoastS On-demand Operational Coastal Circulation Forecast Service
- GEOSS GEO DAB (Discovery and Access Broker), GEOSS portal
- **EO Pillar** Earth observation services, coordinated by ESA
- WeNMR Structural biology services
- DODAS Dynamic On Demand Analysis Service (CMS & others)
- LifeWatch Citizen science services, GBIF, Digital Knowledge preservation framework, remote monitoring and smart sensing
- **CMI** The Component MetaData Infrastructure, including the Virtual Language Observatory and the Virtual Collection Registry, provided by CLARIN

Competence Centers

- **IFREMER**: unified data analytics platform for the marine science community wrt climatology and oceanography
- LOFAR: online platform for radioastronomy data storage and data analysis
- **Fusion/ITER**: Platform data storage and simulation & modelling for open data in fusion research
- European Integrated Data Archive framework (EIDA): tools for seismological data and services
- **ELIXIR**: dataset distribution service and tools for life science
- **EISCAT_3D**: data analysis for atmosphere and near-Earth space studies

INDIGO-DataCloud in the EOSC-hub Thematic Services

THEMATIC	DESCRIPTION	INDIGO SOLUTIONS
SERVICE		specified in the proposal
ECAS	Climate Analytics Service (ECAS)	Ophidia, KEPLER,
	provided by ENES	FutureGateway
DARIAH SG	DARIAH science gateway	OneDock, OpenStack Nova
	tailored for the digital arts and humanities communities	Docker, FutureGateway, Onedata
OPENCoastS	OpenCoastS: On-demand Operational Coastal Circulation	INDIGO udocker
	Forecast Service	Infrastructure Manager
		Orchestration (TOSCA, HEAT)
WeNMR	Structural biology services	IAM, PaaS Orchestrator,
	DISVIS POWEREIT HADDOCK GROMACS AMPS-NMR	Infrastructure Manager
	CS-ROSETTA, UNIO, FANTEN	FutureGateway, Onedata
DODAS	Dynamic On Demand Analysis Service	IAM, TTS, PaaS Orchestrator,
		Orchent, IM, TOSCA,
		Onedata, FutureGateway
LifeWatch	PAIRQURS, Citizen science services, GBIF, Digital	IAM, PaaS Orchestrator,
	Knowledge preservation framework, remote monitoring	Infrastructure Manager
	and smart sensing.	FutureGateway, Onedata
EO Pillar	Earth observation services coordinated by ESA.	Onedata. Analysis of INDIGO
	The tools are: MEA, EPOSAR, Sentinel playground,	cloud software add-ons for
	Datacube analytic service, Geohazards exploitation platform, OSS-X Sentinel service	OpenStack.
СМІ	The Component MetaData Infrastructure	Providing interoperable
	Including the Virtual Language Observatory and the	metadata for (digital)
	Virtual Collection Registry, provided by CLARIN	humanities between both CLARIN and DARIAH.
GEOSS	GEO DAB (Discovery and Access Broker) GEOSS portal	-

