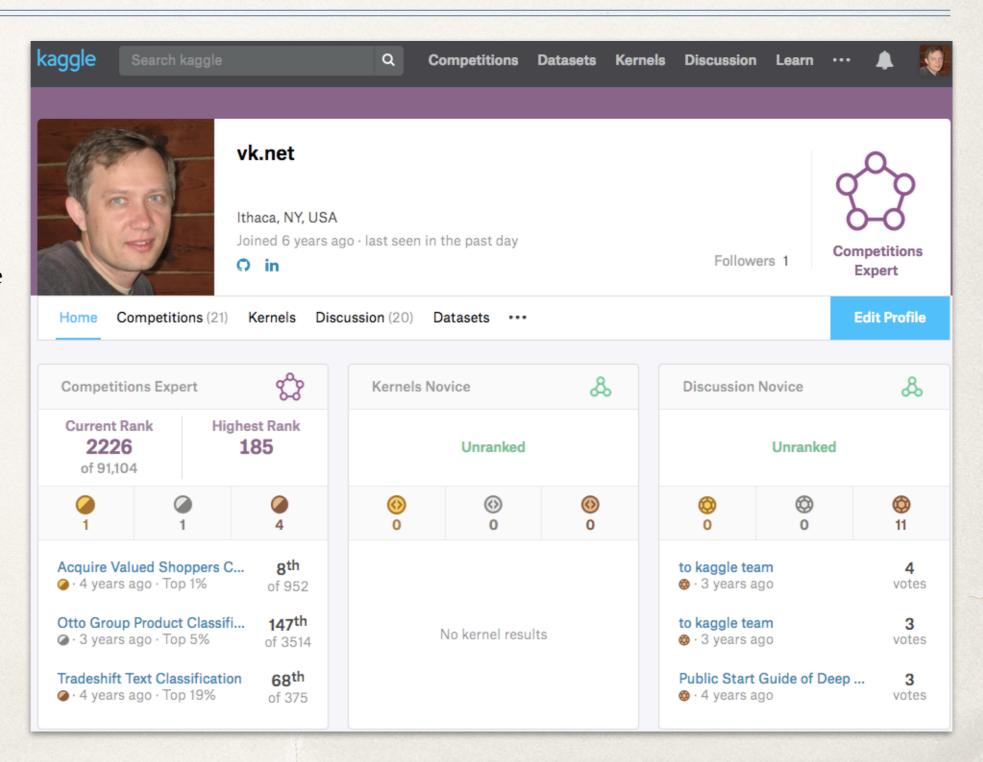

How to compete on Kaggle

Valentin Kuznetsov, Cornell University


kaggle.com

- It is open platform for Data Scientist to compete over published datasets
- In 2017: 120K DataScientists compete in 44 competitions, a total prize sum was \$4.75M+, 600K new users joined, 1.3M total users

My kaggle profile

- My goal is to learn ML/ DL/AI and not prizes
 - my main source of DataScience
- I competed alone in my free time apart from regular job, teachings, student projects, family, etc.
 - turns out it is much tougher to compete alone since amount of info, data, training, ideas significantly increases
 - I was mostly active around 2015

Kaggle competitions

Acquire Valued Shoppers Challenge

Predict which shoppers will become repeat buyers

Featured · 4 years ago

otto group

Otto Group Product Classification Challenge

Classify products into the correct category

Featured · 3 years ago · ● internet, tabular data

Tradeshift Text Classification

Classify text blocks in documents

Featured · 4 years ago

National Data Science Bowl

Predict ocean health, one plankton at a time

Featured · 3 years ago · • oceanography, image data, multiclass classification

Homesite Quote Conversion

Which customers will purchase a quoted insurance plan?

Featured · 2 years ago · ● tabular data, binary classification

Homesite competition

1.764

1.939

36,387

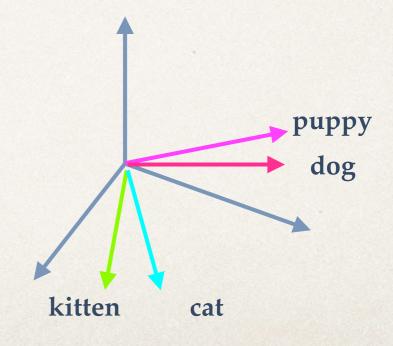
Teams Competitors Entries

Homesite dataset

- Using an anonymized database of information on customer and sales activity, including property and coverage information, Homesite is challenging you to predict which customers will purchase a given quote. Accurately predicting conversion would help Homesite better understand the impact of proposed pricing changes and maintain an ideal portfolio of customer segments.
- This dataset represents the activity of a large number of customers who are interested in buying policies from Homesite. Each QuoteNumber corresponds to a potential customer and the QuoteConversion_Flag indicates whether the customer purchased a policy.
- * The provided features are anonymized and provide a rich representation of the prospective customer and policy. They include specific coverage information, sales information, personal information, property information, and geographic information. Your task is to predict QuoteConversion_Flag for each QuoteNumber in the test set.
- Train sample: 299 columns (28 categorical variables), 260K rows (200MB); test sample 174K rows (131MB)

Homesite leaderboard

9		All Zeros Benchmark		0.50000	
102	▲ 101	vk.net		0.96792	-0.49%
101	▲ 23	Overfitters		0.96792	
100	▼11	BMX		0.96793	
10	₹1	VinaKago		0.96956	
9	^ 2	Daniel FG		0.96959	
8	_	A Few with NO Clue	+8	0.96960	
7	+1	monkeys rising		0.96961	
6	± 1	victor, clustifier & adam	999	0.96968	
5	_	The Northern Hemisphere		0.96983	
4	±1	Gilberto Leustagos Stanislav		0.96988	
3	± 1	New Model Army CAD & QuY		0.97001	
2	_	Frenchies	🙎 🌉 🤱	0.97018	-
1	_	KazAnova Faron clobber		0.97024	1st place


Recipe

- Node/environment setup
 - introduction to Anaconda
- Data exploration
 - introduction to R
- System limitations
 - issues with python, R and others
- Data preprocessing
 - intro to Python tools, common format, data scaling, normalization, working with NAs, etc.
- Training and modeling
- Reaching the limit
 - embeddings, stacking, etc.

Word embedding

- A way to capture multi-dimensional relationships between categories
 - e.g. Sun and Sat may have similar effect while other days may be treated independently
 - you define a dimension of word vector upfront
 - it projects categorical variables into another phase space, e.g. days may be sunny or rainy, season or off season; all of these features are hidden from original data representation
- Use NN or other ML algorithms to train the model to find best representation of embedded variables

puppy	[0.9, 1.0, 0.0]
dog	[1.0, 0.2, 0.0]
kitten	[0.0, 1.0, 0.9]
cat	[0.0, 0.2, 1.0]

Embeddings recipe

- Identify categorical variables and order them
- Define embedded matrix and cardinality of categorical variable
- Perform one-hot-encoding
- Train Neural Network model
- Extract NN weights (embeddings matrix)
- Plug embeddings matrix into regular ML model instead of categorical variable
- Train ML model with embeddings matrices