From B-physics anomalies to model building and direct searches

David Marzocca

INFN

Sezione di Trieste

Genova, 9/05/2018

Outline

- Introduction
- Recap: B-physics anomalies
- Combined EFT fit of the anomalies
- Simplified models \& direct searches of the mediators
- UV example: a composite Higgs model with scalar LQ. - direct searches of other states

Introduction

The hierarchy problem of the EW scale suggests
The strong bounds from flavour physics require instead
$\Lambda \leqslant \mathrm{TeV}$
$\Lambda \gg \mathrm{TeV}^{\star}$

* for arbitrary flavour structure

To have NP at the TeV scale, the common lore suggested that it should be almost flavour diagonal (MFV-like).
Many theorists believed the LHC era would give:
Abundance of new resonances at the LHC!!!
Boring flavour physics...

Instead we ended up with:

No direct signal of new particles...
Exciting anomalies in flavour physics!!!

Data

Neutral-current anomalies

$$
b \rightarrow s \mu^{+} \mu^{-} \text {vs. } b \rightarrow s e^{+} e^{-}
$$

The LHCb experiment measured:

- Differential distributions in $B \rightarrow K^{*} \mu^{+} \mu^{-}$
- Branching ratios of $b \rightarrow s \mu^{+} \mu^{-}$transitions

Challenging SM prediction

Lepton Flavour Universality ratios

$$
R\left(K^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}
$$

Clean SM prediction

Neutral-current anomalies

The SM contribution is aligned along the effective operator

$$
\left(\bar{s}_{L} \gamma^{\nu} b_{L}\right)\left(\bar{\mu}_{L} \gamma_{\nu} \mu_{L}\right)
$$

\rightarrow all deviations are consistent
$\rightarrow 4-6 \sigma$ deviation in global fits
\rightarrow Best fit with NP in LH current

$$
\begin{aligned}
& C_{9}^{\mathrm{SM}} \approx-C_{10}^{\mathrm{SM}} \approx 4.2 \\
& \Delta C_{9}^{\mu}=-\Delta C_{10}^{\mu}=-0.61 \pm 0.12
\end{aligned}
$$

$$
\mathcal{L} \supset \frac{c_{i}}{\Lambda^{2}}\left(\bar{s}_{L} \gamma^{\alpha} b_{L}\right)\left(\bar{\mu}_{L} \gamma_{\alpha} \mu_{L}\right)+h . c .
$$

What is the scale of NP?

$$
\begin{array}{rll}
\text { No suppression: } & c_{i}=1 & \rightarrow \Lambda \sim 31 \mathrm{TeV} \\
\text { MFV or U(2): } & c_{i}=\mathrm{V}_{\mathrm{ts}} & \rightarrow \Lambda \sim 6 \mathrm{TeV} \\
\text { Loop }+ \text { MFV: } & c_{i}=\mathrm{V}_{\mathrm{ts}} / 4 \pi \rightarrow \Lambda \sim 0.5 \mathrm{TeV}
\end{array}
$$

Adding SM gauge invariance: New Physics in at least one of these operators

$$
C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)+C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)
$$

Charged-current anomalies

b to c transition in τv final state.
Tree-level SM process with Vcb suppression.

LFU ratio to reduce QCD uncertainties

$$
R\left(D^{(*)}\right) \equiv \frac{\mathcal{B}\left(B^{0} \rightarrow D^{(*)+} \tau \nu\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{(*)+} \ell \nu\right)}
$$

$$
\ell=\mu, e
$$

Robust SM prediction
All results since 2012 consistently above SM prediction
$R_{D^{(*)}} \equiv R\left(D^{(*)}\right) / R\left(D^{(*)}\right)_{\mathrm{SM}}=1.234 \pm 0.052$
While μ / e universality tested at \% level.
~ 20\% enhancement from the SM
$\sim 4 \sigma$ from the SM

Charged-current anomalies

$$
\begin{array}{r}
R\left(D^{(*)}\right) \equiv \frac{\mathcal{B}\left(B^{0} \rightarrow D^{(*)+} \tau \nu\right)}{\mathcal{B}\left(B^{0} \rightarrow D^{(*)+\ell \nu)}\right.}, \\
\quad \ell=\mu, e
\end{array}
$$

The tree-level SM contribution is mediated by:

$$
\mathcal{H}_{\mathrm{SM}}=\frac{4 G_{F}}{\sqrt{2}} V_{c b}\left(\bar{c}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma^{\mu} \nu_{\tau}\right)+h . c .
$$

General BSM EFT fit

The V-A operator gives the best fit
Freytsis, Ligeti, Ruderman 2015

$$
\mathcal{L}_{\mathrm{BSM}}=\frac{2 c}{\Lambda^{2}}\left(\bar{c}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma^{\mu} \nu_{\tau}\right)+h . c .
$$

What is the scale of NP?

No suppression: $c_{i}=1 \quad \rightarrow \Lambda \sim 3.7 \mathrm{TeV}$

$$
\mathrm{MFV} \text { or } \mathrm{U}(2): \quad c_{i}=\mathrm{V}_{\mathrm{cb}} \quad \rightarrow \Lambda \sim 0.7 \mathrm{TeV}
$$

$$
\text { Loop }+\mathrm{MFV}: \quad c_{i}=\mathrm{V}_{\mathrm{cb}} / 4 \pi \rightarrow \Lambda \sim 0.2 \mathrm{TeV}
$$

Adding SU(2) L gauge invariance: New Physics in this operator

$$
C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)
$$

To summarise

Quark sector \longrightarrow New Physics in 3-2 transition (bs and bc)

$$
\text { Let me take } \quad c_{i} \sim \mathrm{~V}_{\mathrm{cb}}
$$

* very well motivated in concrete flavour setups: MFV, U(2), etc

Large effect in π	$\rightarrow \Lambda_{\tau \tau} \sim 0.7 \mathrm{TeV}$
Lepton sector \longrightarrow Smaller effect in $\mu \mu$	$\rightarrow \Lambda_{\mu \mu} \sim 6 \mathrm{TeV}$

Negligible effect in ee
Strongest effect in third generation fermions, smaller for second, negligible for first. Very similar to SM fermion masses pattern!

Best SMEFT operators to fit the anomalies

$$
C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)+C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)
$$

CC \& NC
NC

Flavour Universality

Since fermions from different generations have same gauge quantum numbers, gauge interactions in the SM are accidentally flavour-universal.

$$
\mathcal{L}_{\text {gauge }}=i \sum_{j=1}^{3} \sum_{q, u, d, \ell, e} \bar{\psi}_{j} \not D \psi_{j} \quad \text { Accidental global symmetry } \mathrm{U}(3)^{5}
$$

The only other fermionic interactions in the SM (Yukawa interactions) completely break this symmetry and violate universality maximally!

$$
\mathcal{L}_{\mathrm{Yuk}}=\bar{q}_{L} Y_{u} u_{R} H^{*}+\bar{d}_{L} Y_{d} d_{R} H+\bar{\ell}_{L} Y_{e} e_{R} H
$$

Since $y_{e} \ll y_{\mu}<y_{\tau} \sim 10^{-2}$, in most high-energy SM processes
Lepton-Flavour-Universality is a good approximate symmetry.
Notably, this is absolutely not the case in Higgs physics.

BSM interactions are expected to violate this.

New Physics in 3rd generation

In many motivated models:

New Physics

3rd generation fermions

biggest coupling to the Higgs. Maybe 3rd family is particularly related to EW scale dynamics.
e.g.: top partners.

Rare B decays are very sensitive probes
/ of such New Physics scenarios
Suppressed in the SM by loop factor, GIM,

EUtUre Droserects Albrecht et al 1709.10308

Experimental Timeline

+ very precise measurements on many other related observables.

In just a few years we will know if these are genuine NP signals or not.

Charged-current

Neutral-current

Assuming present central value, LHCb will measure $R(K)$ and R(K*)
at >5 σ by Milestone I (2020),
$\sim 15 \sigma$ at Milestone III (2030).
Also Belle-II will reach 7-8o by Milestone II (2025).

Let us assume these anomalies are due to New Physics.

Can we find at least one consistent solution?

SM EFT fit

Our EFT framework

$$
Q_{L}^{i}=\binom{V_{j i}^{*} u_{L}^{j}}{d_{L}^{i}}
$$

$$
\frac{1}{v^{2}} \lambda_{i j}^{q} \lambda_{\alpha \beta}^{\ell}\left[C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)+C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)\right]
$$

All this is automatic if the EFT

- Large effect in 3rd gen. enjoys an approximate
- Smaller effects in light fermions.

$\mathrm{U}(2)_{\mathrm{Q}} \times \mathrm{U}(2) \mathrm{L}$

flavor symmetry minimally broken
$\lambda^{l} \sim\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & \lambda_{\mu \mu} & \lambda_{z_{\mu}} \\ 0 & \lambda_{\tau \mu} & 1\end{array}\right) \quad \lambda_{\mu \mu} \sim O\left(\lambda_{\tau_{\mu}}^{2}\right)$

Only 5 free parameters in the fit
$\boldsymbol{C}_{T}, \quad \boldsymbol{C l}_{s}, \quad \lambda q_{b s} \sim O\left(V_{t s}\right), \quad \lambda \ell_{\mu \mu} \sim O\left(\lambda \ell_{T \mu}\right)^{2}, \quad \lambda \ell_{\tau \mu}$

Challenge: to fit $R\left(D^{(*)}\right)$

The low-energy operator $\left(\bar{c}_{L} \gamma_{\mu} b_{L}\right)\left(\bar{\tau}_{L} \gamma^{\mu} \nu_{\tau}\right)$ receives two contributions:

$$
\begin{aligned}
& R_{D^{(*)}}^{\tau \ell} \approx 1+2 C_{T}\left(1-\lambda_{s b}^{q} \frac{V_{t b}^{*}}{V_{t s}^{*}}\right)=1.237 \pm 0.053 \\
& 33 \text { term: } \\
& -\frac{C_{T}}{v^{2}}\left(\bar{Q}_{L}^{3} \gamma_{\mu} \sigma^{a} Q_{L}^{3}\right)\left(\bar{L}_{L}^{3} \gamma^{\mu} \sigma^{a} L_{L}^{3}\right) \\
& Q_{L}^{3}=\left(V_{t b}^{*} t_{L}+V_{c b}^{*} c_{L}+V_{u b}^{*} u_{L}, b_{L}\right)^{T}
\end{aligned}
$$

If the $\mathbf{3 2}$ term $\left(\lambda q_{b s}\right)$ is negligible, to fit the anomaly one needs $\mathrm{C}_{T} \sim 0.12$

Assuming a tree-level mediator (required for having such a large effect):

$$
C_{T} \sim g_{X}^{2} \frac{v^{2}}{M_{X}^{2}} \longrightarrow M_{X} \sim 700 \mathrm{GeV}\left(\text { for } g_{X} \sim 1\right)
$$

Challenge: to fit $\mathrm{R}\left(\mathrm{D}^{(*)}\right)$

High-pT

$$
\mathrm{C}_{\mathrm{T}} \sim 0.12
$$

With a tree-level mediator $\quad C_{T} \sim g_{X}^{2} \frac{v^{2}}{M_{X}^{2}}$

$$
\mathrm{M}_{\mathrm{x}} \sim 700 \mathrm{GeV} \text { for } \mathrm{gx} \sim 1
$$

Problems with direct searches at LHC
in $\mathrm{bb} \rightarrow$ TT for all mediators.

RGE effects and EWPT

$\sim \frac{3 y_{t}^{2}}{16 \pi^{2}} \log \frac{M_{X}^{2}}{m_{t}^{2}} \frac{C_{T}}{v^{2}}\left(H^{\dagger} \sigma^{a} i \stackrel{\leftrightarrow}{D_{\mu}} H\right)\left(\bar{L}_{L}^{3} \gamma^{\mu} \sigma^{a} L_{L}^{3}\right)$
Problems in well measured (per-mille) $\mathrm{Z}_{\text {TT }}$ couplings at LEP-1 and LFU in T decays.
Ferruglio, Paradisi, Pattori 2016-2017

Solution: ‘large mixing’

Buttazzo, Greljo, Isidori, DM 2017

$$
R_{D^{(*)}}^{\tau \ell} \approx 1+2 C_{T}\left(1-\lambda_{s b}^{q} \frac{V_{t b}^{*}}{V_{t s}^{* *}}\right)=1.237 \pm 0.053
$$

Allow the natural value $\lambda a_{s b} \sim(f e w) \times I V_{\text {ts }} \mid$.

With $\lambda_{\mathrm{sb}} \approx 3\left|\mathrm{~V}_{\text {ts }}\right| \mathrm{C}_{\mathrm{t}}$ can be smaller by a factor of $4 \rightarrow \mathrm{Mx}$ larger by a factor of 2 .

EWPT ($\propto \mathrm{C}_{T, S}$) are crucial to select this region.

A posteriori, this also solves the direct searches problems: allows heavier mediators.

Other effects of large mixing

$$
\left(C_{T}-C_{S}\right) \lambda_{b s}\left(\bar{b}_{L} \gamma_{\mu} s_{L}\right)\left(\bar{\nu}_{\tau} \gamma^{\mu} \nu_{\tau}\right)
$$

This can generate too large corrections $\mathrm{O}(1)$ to $B \rightarrow K^{*} \nu \nu$

Requires the singlet operator with $\mathrm{C}_{\mathrm{T}} \sim \mathrm{C}_{S}$

$$
\left(C_{T}+C_{S}\right) \lambda_{b s}\left(\bar{b}_{L} \gamma_{\mu} s_{L}\right)\left(\bar{\tau}_{L} \gamma^{\mu} \tau_{L}\right)
$$

Huge corrections $O\left(>10^{2}\right)$ in $B \rightarrow K^{*} \tau \tau$.
[See also Sebastien's talk from Tuesday]

Also, depending on the UV model, there might be problems with Bs mixing (see later).

EFT Fit - Results

Buttazzo, Greljo, Isidori, DM 2017

Observable	Experimental bound	Linearised expression
$R_{D^{(*)}}^{\tau \ell}$	1.237 ± 0.053	$1+2 C_{T}\left(1-\lambda_{s b}^{q} b_{t b}^{*} / V_{t s}^{*}\right)\left(1-\lambda_{\mu \mu}^{\ell} / 2\right)$
$\Delta C_{9}^{\mu}=-\Delta C_{10}^{\mu}$	$-0.61 \pm 0.12[36]$	$-\frac{\pi}{\alpha_{\mathrm{em}} T_{t b} V_{t s}^{*}} \lambda_{\mu \mu}^{\ell} \lambda_{s b}^{q}\left(C_{T}+C_{S}\right)$
$R_{b \rightarrow c}^{\mu e}-1$	0.00 ± 0.02	$2 C_{T}\left(1-\lambda_{s b}^{q} V_{t b}^{*} / V_{t s}^{*}\right) \lambda_{\mu \mu}^{\ell}$
$B_{K^{(*)}}^{\mu} \nu_{\bar{\nu}}$	0.0 ± 2.6	$1+\frac{2}{3} \frac{\pi}{\alpha_{\mathrm{em}} V_{t b} V_{t s}^{*} C_{S}^{s M}}\left(C_{T}-C_{S}\right) \lambda_{s b}^{q}\left(1+\lambda_{\mu \mu}^{\ell}\right)$
$\delta g_{\tau_{L}}^{Z}$	-0.0002 ± 0.0006	$0.033 C_{T}-0.043 C_{S}$
$\delta g_{\nu_{\tau}}^{Z}$	-0.0040 ± 0.0021	$-0.033 C_{T}-0.043 C_{S}$
$\left\|g_{\tau}^{W} / g_{\ell}^{W}\right\|$	1.00097 ± 0.00098	$1-0.084 C_{T}$
$\mathcal{B}(\tau \rightarrow 3 \mu)$	$(0.0 \pm 0.6) \times 10^{-8}$	$2.5 \times 10^{-4}\left(C_{S}-C_{T}\right)^{2}\left(\lambda_{\tau \mu}^{\ell}\right)^{2}$

Very good fit

natural values of parameters

- small overall coefficient: higher NP scale
- no special alignment required
- R(K) can be easily fit by a suitable value of $\lambda_{\mu \mu} \sim 10^{-2}$
- $\lambda_{\tau \mu} \sim 0.1$ is OK for LFV bounds.

$$
\lambda_{\mu \mu}^{\ell} \times 10^{3}
$$

Simplified Models

Strong assumptions:

- both anomalies are due to the same mediator(s).
- LL operators give the leading contribution.

Tree-level mediators

Buttazzo, Greljo, Isidori, DM 2017

The size of $R(D)$ anomaly suggests a tree-level mediator.

$$
C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)+C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)
$$

The Singlet and Triplet operators can be generated at the tree-level by:

Colorless vectors
$V_{3}=W^{\prime}=(\mathbf{1}, \mathbf{3}, 0)$,
$V_{1}=B^{\prime}=(\mathbf{1}, \mathbf{1}, 0)$,

Vector Leptoquarks
$U_{1}=(\mathbf{3}, \mathbf{1}, 2 / 3)$,
$U_{3}=(\mathbf{3}, \mathbf{3}, 2 / 3)$,

Scalar Leptoquarks

$$
\begin{aligned}
& S_{1}=(\overline{\mathbf{3}}, \mathbf{1}, 1 / 3), \\
& S_{3}=(\overline{\mathbf{3}}, \mathbf{3}, 1 / 3),
\end{aligned}
$$

Tree-level mediators

Buttazzo, Greljo, Isidori, DM 2017

Each mediator generates a specific combination of the singlet and triplet operators:

Colorless vectors

$$
\begin{aligned}
& W^{\prime}=(\mathbf{1}, \mathbf{3}, 0), \\
& B^{\prime}=(\mathbf{1}, \mathbf{1}, 0),
\end{aligned}
$$

Vector Leptoquarks
$U_{1}=(\mathbf{3}, \mathbf{1}, 2 / 3)$,
$U_{3}=(\mathbf{3}, \mathbf{3}, 2 / 3)$,
Scalar Leptoquarks

$$
\begin{aligned}
& S_{1}=(\overline{\mathbf{3}}, \mathbf{1}, 1 / 3), \\
& S_{3}=(\overline{\mathbf{3}}, \mathbf{3}, 1 / 3),
\end{aligned}
$$

Notable:

The \mathbf{U}_{1} can fit perfectly the anomalies as a single mediator.

Combinations of mediators are also OK

Triplet $\quad C_{T}$

Colorless Vectors $W^{\prime}=(\mathbf{1}, \mathbf{3}, 0)$, $B^{\prime}=(\mathbf{1}, \mathbf{1}, 0)$

This generates also 4-Lepton and 4-Quark operators.
Tree-level contribution to Bs mixing
$c_{T} \boldsymbol{\lambda} q_{\mathbf{S b}} \quad$ Large-mixing, Small $C_{T, S}$

This corresponds to the fit shown previously. Direct searches and EWPT are OK.

However

Bs mixing is too large by a factor ~ 500. Requires a tuning of $\sim 10^{-4}$ level with additional contributions (e.g. from RH currents)

CT $_{\lambda a_{s b}}$ Small-mixing, Large $C_{T, S}$
Now Bs mixing can be OK.
RGE effects into EWPT are large, but can be tuned with additional (extra) contributions: 10% tuning

However
the Z ' is excluded by direct searches, unless it has a very large width
$\left|g_{b} g_{\tau}\right| \times v^{2} / M_{Z}^{2}$

Vector Leptoquark

$$
\begin{aligned}
\mathcal{L}_{U} & =-\frac{1}{2} U_{1, \mu \nu}^{\dagger} U^{1, \mu \nu}+M_{U}^{2} U_{1, \mu}^{\dagger} U_{1}^{\mu}+g_{U}\left(J_{U}^{\mu} U_{1, \mu}+\text { h.c. }\right) \\
J_{U}^{\mu} & \equiv \beta_{i \alpha} \bar{Q}_{i} \gamma^{\mu} L_{\alpha}
\end{aligned}
$$

Requiring a single mediator, the vector $L Q$ is the simplest solution.
It easily provides a good fit since dynamically $\mathrm{C}_{S}=\mathrm{C}_{\mathrm{T}}$.

$$
C_{U}=v^{2}\left|g_{U}\right|^{2} /\left(2 M_{U}^{2}\right)>0
$$

Not calculable in the simplified model Potentially dangerous.

scapraptaparks $\begin{aligned} & S_{1}=(\overline{3}, 1,1 / 3), \\ & S_{3}=(\overline{3}, 3,1 / 3)\end{aligned}$

$$
\mathcal{L} \supset g_{1} \beta_{1 i \alpha}\left(\bar{Q}_{L}^{c i} \epsilon L_{L}^{\alpha}\right) S_{1}+g_{3} \beta_{3 i \alpha}\left(\bar{Q}_{L}^{c i} \epsilon \sigma^{a} L_{L}^{\alpha}\right) S_{3}^{a}+\text { h.c. }
$$

$$
\left|\epsilon_{1,3}\right|^{2}=C_{1,3}=v^{2}\left|g_{1,3}\right|^{2} /\left(4 M_{S_{1,3}}^{2}\right)>0 \quad C_{S}=-C_{1}-3 C_{3}, \quad C_{T}=C_{1}-C_{3}
$$

EFT fit

$$
\begin{aligned}
& R_{D^{*}} / R_{D^{*}}^{\mathrm{SM}} \approx 1+2\left(\left(\left|\epsilon_{1}\right|^{2}-\left|\epsilon_{3}\right|^{2}\right)-\left(\left|\epsilon_{1}\right|^{2} \beta_{1, s \tau}-\left|\epsilon_{3}\right|^{2} \beta_{3, s \tau}\right) \frac{V_{t b}^{*}}{V_{t s}^{*}}\right) \\
& \delta \mathcal{B}\left(B \rightarrow K^{*} \nu \nu\right) \propto\left(\frac{\left|\epsilon_{1}\right|^{2} \beta_{1, s \tau}+\left|\epsilon_{3}\right|^{2} \beta_{3, s \tau}}{0.01\left|V_{t s}\right|}\right) \\
& \delta g_{\tau_{L}} \approx 0.08\left(\left|\epsilon_{1}\right|^{2}+\left|\epsilon_{3}\right|^{2}\right)=(0.16 \pm 0.58) \times 10^{-3}
\end{aligned}
$$

\rightarrow The flavor structure of the two LQ has to be misaligned: $\beta_{1, s \tau} \approx-\beta_{3, s \tau} \approx(\mathrm{few}) \times\left|V_{t s}\right|$
\rightarrow Some residual tension at the $\sim 1.5 \sigma$ level between $Z \pi T$ and $R(D)$
$\rightarrow B_{s}$-mixing is calculable and in tension with $R(D)$:

$$
\frac{\left(\Delta M_{B_{s}}\right)^{S_{1}+S_{3}}}{\left(\Delta M_{B_{s}}\right)^{\mathrm{SM}}} \approx 0.74\left(\frac{m_{S_{1,3}}}{1 \mathrm{TeV}}\right)^{2}\left(\frac{R_{D^{(*)}} / R_{D^{(*)}}^{\mathrm{SM}}-1}{0.23}\right)^{2} \lesssim 10 \%
$$

Requires a tuning with extra contributions at the $\sim 10 \%$ level.

Direct Searches

$$
\begin{aligned}
& \mathrm{S}_{1}=(\overline{\mathbf{3}}, \mathbf{1}, 1 / 3), \quad \mathrm{S}_{3}=(\overline{\mathbf{3}}, \mathbf{3}, 1 / 3) \\
& \quad s_{1,-\frac{1}{3}} \quad s_{3,-\frac{4}{3}}, \quad s_{3,-\frac{1}{3}}, \quad s_{3, \frac{2}{3}} \sim 3 \text { of } \mathrm{SU}(3)_{\mathrm{c}}
\end{aligned}
$$

For LHC only the interactions with the third generation are relevant:

$$
\begin{aligned}
\mathcal{L}_{L Q} & =g_{1} s_{1,-\frac{1}{3}}^{\dagger}\left(\bar{t}_{L}^{c} \tau_{L}-\bar{b}_{L}^{c} \nu_{\tau}\right)+g_{3} s_{3,-\frac{1}{3}}^{\dagger}\left(-\bar{t}_{L}^{c} \tau_{L}-\bar{b}_{L}^{c} \nu_{\tau}\right)+h . c . \\
& +\sqrt{2} g_{3}\left(s_{3, \frac{2}{3}}^{\dagger} \bar{t}_{L}^{c} \nu_{\tau}-s_{3,-\frac{4}{3}}^{\dagger} \bar{b}_{L}^{c} \tau_{L}\right)+h . c .
\end{aligned}
$$

QCD pair production

σ depends only on ms

single production

More sensitive at high masses

$$
\sigma \propto\left|g_{1,3}\right|^{2}
$$

For high masses: $\sigma \propto\left(\left|g_{1,3}\right|^{2} / m s^{2}\right)^{2} \propto\left(C_{1,3}\right)^{2}$

Direct Searches

$$
\begin{aligned}
& S_{1}=(\overline{\mathbf{3}}, \mathbf{1}, 1 / 3), S_{3}=(\overline{\mathbf{3}}, \mathbf{3}, 1 / 3) \\
& \mathcal{L}_{L Q}=g_{1} S_{1,-\frac{1}{3}}^{\dagger}\left(\tilde{t}_{L}^{c} \tau_{L}-\bar{b}_{L}^{c} \nu_{\tau}\right)+g_{3} s_{3, \frac{1}{3}}^{\dagger}\left(-\bar{t}_{L}^{t_{L}} \tau_{L}-\bar{b}_{L}^{c} \nu_{\tau}\right)+\text { h.c. } \\
& +\sqrt{2} g_{3}\left(s_{3, \frac{2}{3}}^{\dagger} \bar{t}_{L}^{c} \nu_{\tau}-s_{3,-\frac{4}{3}}^{\dagger} \bar{b}_{L}^{c} \tau_{L}\right)+\text { h.c. },
\end{aligned}
$$

(All very similar for the vector LQ)
Limits and prospects from π final state (t-channel exchange of $S_{3,-4 / 3}$)

Limits and prospects from single-production of LQ in bt final state (for $\mathrm{s}_{3,-4 / 3}$)
CMS-PAS-EXO-17-029

Limits and prospects from LQ pair production.

CMS 1703.03995, CMS 1803.02864.
CMS-PAS-SUS-18-001

Region fitting Banomalies (assuming B_{s} mixing is tuned)

Tree-level mediators for B anomalies

Colorless Vectors

Killed
either by B_{s} mixing or direct searches.

Scalar Leptoquarks

Vector Leptoquark

B_{s} mixing still gives some tension with $R(D)$
campacicoms

Connection with the Higgs

$$
\mathrm{M}_{\mathrm{LQ}} \sim \mathrm{TeV} \quad \& \quad M_{\mathrm{BSM}} \text {-Higgs hierarchy problem } \sim \mathrm{TeV}
$$

Is it an accident or is there a connection?
Two broad possibilities to build a "Natural" model

Elementary: SUSY

These mediators do not arise in the MSSM.
Need much more complicated setups.

If we forget about naturalness:

- Elementary scalar LQ Becirevic et al 2016; Dorsner et al 2017; Crivellin, Muller, Ota 2017; ...
- Elementary LQ gauge boson [See Marzia's talk]

Di Luzio, Greljo, Nardecchia 2017; Calibbi, Crivellin, Li 2017;
Bordone, Cornella, Fuentes-Martin, Isidori 2017

- Elementary W', Z' gauge bosons

Compositeness:
 Composite Higgs

- Scalar LQ as Goldstone bosons

Gripaios, Nardecchia, Renner 2014; Buttazzo, Greljo, Isidori, D.M. 2017; D.M. 2018

- Composite Vector LQ

Barbieri, Isidori, Pattori, Senia 2015; Barbieri, Murphy, Senia 2016; Buttazzo, Greljo, Isidori, D.M. 2017; Barbieri, Tesi 2017

- Composite W', Z' resonances Buttazzo, Greljo, Isidori, D.M. 2016

Vector LQ $U_{1}=(\mathbf{3}, \mathbf{1}, 2 / 3)$

The U_{1} LQ gives the best fit of the anomalies with smallest number of param.
The massive vector of Pati-Salam has same quantum numbers as $U_{1} L Q$.
2 classes of UV completions

Gauge boson

Di Luzio, Greljo, Nardecchia 2017; Calibbi, Crivellin, Li 2017; Bordone, Cornella, Fuentes-Martin, Isidori 2017

Composite vector

Both also predict massive color-octed and massive Z^{\prime}, which couple to SM fermions.
It is crucial to avoid large tree-level FCNC effects and direct searches limits on these.

- All these constraint point to strong gauge couplings, at the limit of perturbativity.
Doesn't address the EW hiearchy problem.

The theory is fully strongly coupled at that scale: no calculability

The issue is:

$$
m_{V L Q} \sim \Lambda
$$

No parametric splitting between
LQ and other states

Composite Scalar LQ

One would like a mass splitting between the B anomalies mediator and other states: Z', heavy gluons, etc..

Scalar LQ as pseudo-Goldstone boson

M
$\wedge \sim g_{\rho} f \sim 10 \mathrm{TeV}$ other resonances

Gap
$\mathrm{m}_{\mathrm{PNGB}} \sim 1.5 \mathrm{TeV}$
Flavor-mediators
f

Requirements:

$$
m_{S L Q} \ll \Lambda
$$

Fundamental description of the strong-sector QCD-like
Higgs
A mass splitting in composite models is natural between the (pseudo) Goldstone bosons and the other resonances.

Like between pions and ρ mesons in QCD.

Fermionic Composite Higgs

Buttazzo, Greljo, Isidori, D.M. 2017; D.M. 1803.10972

Gauge group: $\quad \mathrm{SU}\left(N_{H C}\right) \times \mathrm{SU}(3)_{c} \times \mathrm{SU}(2)_{w} \times \mathrm{U}(1)_{Y}$
"HyperColor"

		$\mathrm{SU}\left(N_{H C}\right)$	$\mathrm{SU}(3)_{c}$	$\mathrm{SU}(2)_{w}$	$\mathrm{U}(1)_{Y}$
Extra	Ψ_{L}	$\mathbf{N}_{\mathbf{H C}}$	$\mathbf{1}$	$\mathbf{2}$	Y_{L}
HC Dirac	Ψ_{N}	$\mathbf{N}_{\mathbf{H C}}$	$\mathbf{1}$	$\mathbf{1}$	$Y_{L}+1 / 2$
fermions:	Ψ_{E}	$\mathbf{N}_{\mathbf{H C}}$	$\mathbf{1}$	$\mathbf{1}$	$Y_{L}-1 / 2$
	Ψ_{Q}	$\mathbf{N}_{\mathbf{H C}}$	$\mathbf{3}$	$\mathbf{2}$	$Y_{L}-1 / 3$

$$
\mathrm{SU}\left(N_{\mathrm{HC}}\right) \text { confines at } \Lambda_{\mathrm{HC}} \sim 10 \mathrm{TeV}
$$

In absence of SM gauging, the strong sector has a global symmetry

$$
\begin{array}{r}
\mathrm{G}=\mathrm{SU}(10)_{\mathrm{L}} \times \mathrm{SU}(10)_{\mathrm{R}} \times \mathrm{U}(1) \mathrm{V} \\
\left\langle\bar{\Psi}_{i} \Psi_{j}\right\rangle=-\left.B_{0} f^{2} \delta_{i j}\right|_{\nabla} f \sim 1 \mathrm{TeV} \\
\mathrm{H}=\mathrm{SU}(10)_{\mathrm{V}} \times \mathrm{U}(1)_{\mathrm{V}}
\end{array}
$$

Goldstone Bosons

D.M. 1803.10972

$$
\mathrm{G}=\mathrm{SU}(10)_{\mathrm{L}} \times \mathrm{SU}(10)_{\mathrm{R}} \times \mathrm{U}(1)_{\mathrm{V}} \longrightarrow \mathrm{H}=\mathrm{SU}(10)_{\mathrm{V}} \times \mathrm{U}(1)_{\mathrm{V}}
$$

Like QCD pions, the pNGB are composite states of HC-fermion bilinears:

$$
\bar{\Psi} \Psi
$$

In terms of SM representations

$$
\begin{aligned}
\text { Two Higgs doublets: } & H_{1,2} \sim(\mathbf{1}, \mathbf{2})_{1 / 2} \\
\text { Singlet and Triplet LQ: } & \mathrm{S}_{1} \sim(\mathbf{3}, \mathbf{1})_{-1 / 3}+\mathrm{S}_{1} \sim(\mathbf{3}, \mathbf{3})_{-1 / 3} \\
\text { Three singlets: } & \eta_{1,2,3} \sim(\mathbf{1 , 1})_{0} \\
\text { Other electroweak states: } & \omega \sim(\mathbf{1 , 1})_{1}+\Pi_{\mathrm{L}, \mathrm{Q}} \sim(\mathbf{1 , 3})_{0} \\
\text { Other coloured states: } & \mathrm{R}_{\left.2 \sim(\mathbf{3}, \mathbf{2})_{1 / 6}+\mathrm{T}_{2} \sim \mathbf{(3 , 2)}\right)_{-5 / 6}} \\
& \tilde{\pi}_{1} \sim(\mathbf{8}, \mathbf{1})_{0}+\tilde{\pi}_{3} \sim(\mathbf{8 , 3})_{0}
\end{aligned}
$$

For energies $E \ll \Lambda_{H}$ the theory is described by a weakly coupled effective chiral Lagrangian.
Structure driven by the symmetries and spurions.

Yukawas \& LQ couplings

Coupling with SM fermions from 4-Fermi operators

$$
\mathcal{L}_{4-\mathrm{Fermi}} \sim \frac{c_{\psi \Psi}}{\Lambda_{t}^{2}} \bar{\psi}_{\mathrm{SM}} \psi_{\mathrm{SM}} \bar{\Psi} \Psi \quad \stackrel{E \lesssim \Lambda_{H} C}{\longrightarrow} \sim y_{\psi \phi} \bar{\psi}_{\mathrm{SM}} \psi_{\mathrm{SM}} \phi+\ldots
$$

$\Lambda_{t} \gtrsim \Lambda_{H C}$

SM Yukawas + LQ couplings

A new sector responsible for these operators is necessary (as Extended Technicolor)

An approximate $S U(2)^{5}$ flavor symmetry protects from unwanted flavor violation

$$
G_{F}=\mathrm{SU}(2)_{q} \times \mathrm{SU}(2)_{u} \times \mathrm{SU}(2)_{d} \times \mathrm{SU}(2)_{l} \times \mathrm{SU}(2)_{e}
$$

minimally broken by these spurions:

$$
\begin{gathered}
\Delta Y_{u}=(\mathbf{2}, \overline{\mathbf{2}}, \mathbf{1}, \mathbf{1}, \mathbf{1}), \quad \Delta Y_{d}=(\mathbf{2}, \mathbf{1}, \overline{\mathbf{2}}, \mathbf{1}, \mathbf{1}), \quad \Delta Y_{e}=(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2}, \overline{\mathbf{2}}) \\
V_{q}=(\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}), \quad V_{l}=(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1})
\end{gathered}
$$

Good structure to fit the flavour anomalies!

Imposing conservation of $B \& L$ such that the proton is stable, automatically allows only the Higgses Yukawas and LQ couplings.

Higgs Yukawas

UV effective Lagrangian:

$$
\begin{aligned}
\mathcal{L}_{F} & \supset \frac{1}{\Lambda_{t}^{2}}\left(\bar{u}_{R} c_{1, u}^{\dagger} q_{L}+\bar{q}_{L} c_{1, d} d_{R} \epsilon+\bar{l}_{L} c_{1, e} e_{R} \epsilon\right)\left(\bar{\Psi}_{L} \gamma_{5} \Psi_{N}\right)+ \\
& +\frac{1}{\Lambda_{t}^{2}}\left(\bar{u}_{R} c_{2, u}^{\dagger} q_{L} \epsilon+\bar{q}_{L} c_{2, d} d_{R}+\bar{l}_{L} c_{2, e} e_{R}\right)\left(\bar{\Psi}_{E} \gamma_{5} \Psi_{L}\right)+h . c .
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{\text {Yuk }}^{\mathrm{eff}}= & \frac{f}{2}\left(\bar{u}_{R} \tilde{y}_{1, u}^{\dagger} q_{L}^{\beta} \epsilon^{\beta \alpha}+\bar{q}_{L}^{\alpha} \tilde{y}_{1, d} d_{R}+\bar{l}_{L}^{\alpha} \tilde{y}_{1, e} e_{R}\right) \operatorname{Tr}\left[\Delta_{H_{1}}^{\alpha}\left(U-U^{\dagger}\right)\right]+ \\
& +\frac{f}{2}\left(\bar{u}_{R} \tilde{y}_{2, u}^{\dagger} q_{L}^{\beta} \epsilon^{\beta \alpha}+\bar{q}_{L}^{\alpha} \tilde{y}_{2, d} d_{R}+\bar{l}_{L}^{\alpha} \tilde{y}_{2, e} e_{R}\right) \operatorname{Tr}\left[\Delta_{H_{2}}^{\alpha}\left(U-U^{\dagger}\right)\right]+\text { h.c. }
\end{aligned}
$$

The spurion gives the Higgses as leading terms: $\quad \operatorname{Tr}\left[\Delta_{H_{1,2}}^{\alpha}\left(U-U^{\dagger}\right)\right]=i \frac{2 \sqrt{2}}{f} H_{1,2}^{\alpha}+\mathcal{O}\left(\phi^{2} / f^{2}\right)$

$$
\text { Fermion masses: } \quad m_{f}=f \sin \theta\left(\tilde{y}_{1, f}-\tilde{y}_{2, f}\right)=\frac{v}{\sqrt{2}}\left(\tilde{y}_{1, f}-\tilde{y}_{2, f}\right) \equiv \frac{v}{\sqrt{2}} y_{f}
$$

The Yukawa matrices of the two Higgses need to be identical to avoid flavour-violating couplings and custodial symmetry-breaking effects

LQ couplings

UV effective Lagrangian:

$$
\begin{aligned}
& \mathcal{L}_{F} \supset \frac{1}{\Lambda_{t}^{2}}\left[\left(\bar{q}_{L}^{c} c_{1, q l} \epsilon l_{L}+\bar{e}_{R}^{c} c_{1, e u} u_{R}\right)\left(\bar{\Psi}_{Q} \gamma_{5} \Psi_{L}\right)+\left(\bar{q}_{L}^{c} c_{3, q l} \epsilon \sigma^{A} l_{L}\right)\left(\bar{\Psi}_{Q} \gamma_{5} \sigma^{A} \Psi_{L}\right)\right]+\text { h.c. } \\
& \bar{\Psi}_{i, L} \Psi_{j, R} \rightarrow-B_{0} f^{2} U(\phi)_{j i}, \bar{\Psi}_{i, R} \Psi_{j, L} \rightarrow-B_{0} f^{2} U^{\dagger}(\phi)_{j i}
\end{aligned}
$$

At low energy it becomes: spurions

$$
\begin{aligned}
\mathcal{L}_{\mathrm{LQ}}^{\mathrm{eff}}= & i \frac{f}{4}\left(g_{1} q_{L}^{c, a} \beta_{1} \in l_{L}+g_{1}^{u} \bar{e}_{R}^{c} \beta_{1}^{u} u_{R}^{a}\right) \operatorname{tr}\left[\Delta_{S_{1}}^{a}\left(U-U^{\dagger}\right)\right]+h . c . \\
& +i \frac{f}{4}\left(g_{3} \bar{q}_{L}^{c, a} \beta_{3} \epsilon \sigma^{A} l_{L}\right) \operatorname{Tr}\left[\Delta_{S_{3}}^{A, a}\left(U-U^{\dagger}\right)\right]+\text { h.c. }= \\
= & -g_{1} \beta_{1, i \alpha}\left(\bar{q}_{L}^{c i} \epsilon l_{L}^{\alpha}\right) S_{1}-g_{1}^{u}\left(\beta_{1}^{u}\right)_{\alpha i}^{T}\left(e_{R}^{c \alpha} u_{R}^{i}\right) S_{1}-g_{3} \beta_{3, i \alpha}\left(\bar{q}_{L}^{c i} \epsilon \sigma^{A} l_{L}^{\alpha}\right) S_{3}^{A}+\text { h.c. }+\mathcal{O}\left(\phi^{2}\right)
\end{aligned}
$$

Flavour structure:

$$
\beta_{1,3} \sim\left(\begin{array}{cc}
V_{q}^{*} V_{l}^{\dagger} & V_{q}^{*} \\
V_{l}^{\dagger} & 1
\end{array}\right) \quad \beta_{1}^{u} \sim\left(\begin{array}{cc}
0 & \left(V_{q}^{\dagger} \Delta Y_{u}\right)^{T} \\
V_{l}^{\dagger} \Delta Y_{e} & 1
\end{array}\right)
$$

The coupling of S_{1} to $R H$ fermions induces an m_{t}-enhanced contribution to $\tau \rightarrow \mu \gamma$.
Requires $g_{1}^{u} \lesssim 10^{-2} g_{1}$ Introducing an extra approximate $U(1)$ e symmetry for the RH leptons to protect the τ Yukawa would give:

$$
g_{1}^{u} / g_{1} \sim y_{\tau} / y_{t} \sim 10^{-2}
$$

Scalar Potential

The pNGB potential arises at 1-loop from all the explicit breaking terms

The gauge contribution is positive and is larger for colored states.
EW charges give subleading corrections.

$$
\begin{aligned}
& \Delta m_{\omega}^{2} \approx\left(0.05 \Lambda_{H C}\right)^{2}, \quad \Delta m_{H_{1,2}}^{2} \approx\left(0.08 \Lambda_{H C}\right)^{2}, \quad \Delta m_{\Pi_{L, Q}}^{2} \approx\left(0.13 \Lambda_{H C}\right)^{2}, \quad \sim \mathbf{1} \text { of } \mathrm{SU}(3)_{\mathrm{c}} \\
& \Delta m_{S_{1}}^{2} \approx\left(0.17 \Lambda_{H C}\right)^{2}, \quad \Delta m_{S_{3}}^{2} \approx\left(0.21 \Lambda_{H C}\right)^{2} . \quad \Delta m_{\tilde{R}_{2}, T_{2}}^{2} \approx\left(0.19 \Lambda_{H C}\right)^{2} . \sim \mathbf{3} \text { of } \mathrm{SU}(3)_{\mathrm{c}} \\
& \Delta m_{\tilde{\pi}_{1}}^{2} \approx\left(0.26 \Lambda_{H C}\right)^{2}, \quad \Delta m_{\tilde{\pi}_{3}}^{2} \approx\left(0.28 \Lambda_{H C}\right)^{2}, \quad \sim \mathbf{8} \text { of } \mathrm{SU}(3)_{\mathrm{c}}
\end{aligned}
$$

$\Lambda_{H C} \gtrsim 10 \mathrm{TeV}$

Scalar Potential

The pNGB potential arises at 1-loop from all the explicit breaking terms

Tuning to get EWSB as in usual Composite Higgs models:

$$
m_{H_{1,2}}^{2} \approx 2 B_{0}\left(m_{L}+m_{E}\right)+\Delta m_{\text {gauge }}^{2}+\Delta m_{\text {Yuk }}^{2}<0 \quad \xi \equiv \frac{v^{2}}{f^{2}}=2 \sin ^{2} \frac{v_{h}}{\sqrt{2} f} \leqslant 10 \%
$$

From the structure of the potential and the expressions for the various terms I get

$$
m_{h}^{2}=\left(C_{t}-C_{g}\right) f^{2} \xi \sim N_{c} c_{t} m_{t}^{2}-3 c_{w} m_{W}^{2}
$$

The deviations in Higgs couplings and the EWPT are similar to most Composite Higgs models.

Spectrum

valence	irrep.	valence	irrep.
$H_{1} \sim i \sigma^{2}\left(\bar{\Psi}_{L} \Psi_{N}\right)$	$(\mathbf{1}, \mathbf{2})_{1 / 2}$	$H_{2} \sim\left(\bar{\Psi}_{E} \Psi_{L}\right)$	$(\mathbf{1}, \mathbf{2})_{1 / 2}$
$S_{1} \sim\left(\bar{\Psi}_{Q} \Psi_{L}\right)$	$(\overline{\mathbf{3}}, \mathbf{1})_{1 / 3}$	$S_{3} \sim\left(\bar{\Psi}_{Q} \sigma^{a} \Psi_{L}\right)$	$(\overline{\mathbf{3}}, \mathbf{3})_{1 / 3}$
$\omega^{ \pm} \sim\left(\bar{\Psi}_{N} \Psi_{E}\right)$	$(\mathbf{1}, \mathbf{1})_{-1}$	$\Pi_{L} \sim\left(\bar{\Psi}_{L} \sigma^{a} \Psi_{L}\right)$	$(\mathbf{1}, \mathbf{3})_{0}$
$\tilde{R}_{2} \sim\left(\bar{\Psi}_{E} \Psi_{Q}\right)$	$(\mathbf{3}, \mathbf{2})_{1 / 6}$	$T_{2} \sim\left(\bar{\Psi}_{Q} \Psi_{N}\right)$	$(\overline{\mathbf{3}}, \mathbf{2})_{5 / 6}$
$\tilde{\pi}_{1} \sim\left(\bar{\Psi}_{Q} T^{A} \Psi_{Q}\right)$	$(\mathbf{8}, \mathbf{1})_{0}$	$\tilde{\pi}_{3} \sim\left(\bar{\Psi}_{Q} T^{A} \sigma^{a} \Psi_{Q}\right)$	$(\mathbf{8}, \mathbf{3})_{0}$
$\Pi_{Q} \sim\left(\bar{\Psi}_{Q} \sigma^{a} \Psi_{Q}\right)$	$(\mathbf{1}, \mathbf{3})_{0}$	$\eta_{i} \sim 3 \times c_{i}^{a}\left(\bar{\Psi}_{a} \Psi_{a}\right)$	$(\mathbf{1}, \mathbf{1})_{0}$

Using the structure of the potential from the explicit breaking terms and the NDA estimates I get (just an example, since NDA gives only $O(1)$ estimates)

The lightest pNGBs are the singlets. Some pNGB have anomalous couplings to gauge bosons:

$$
\mathcal{L}_{\mathrm{WZW}} \supset-\frac{g_{\beta} g_{\gamma}}{16 \pi^{2}} \frac{\phi^{\alpha}}{f} 2 N_{H C} A_{\beta \gamma}^{\phi^{\alpha}} F_{\mu \nu}^{\beta} \widetilde{F}^{\gamma \mu \nu}
$$

$A_{\beta \gamma}^{\phi^{\alpha}}$	g_{1}^{2}	g_{2}^{2}	g_{3}^{2}	$g_{1} g_{2}$	$g_{1} g_{3}$	$g_{2} g_{3}$
η_{1}	Y_{L}	0	0	0	0	0
η_{2}	$-\frac{1}{4 \sqrt{2}}$	$\frac{1}{4 \sqrt{2}}$	0	0	0	0
η_{3}	$\frac{1+48 Y_{L}}{12 \sqrt{30}}$	$-\frac{\sqrt{3}}{4 \sqrt{10}}$	$-\frac{1}{\sqrt{30}}$	0	0	0
$\tilde{\pi}_{1}$	0	0	$d^{\alpha \beta \gamma} /(2 \sqrt{2})$	0	$\frac{1}{\sqrt{2}}\left(Y_{L}-\frac{1}{3}\right)$	0
$\tilde{\pi}_{3}$	0	0	0	0	0	$\frac{1}{2 \sqrt{2}}$
Π_{L}	0	0	0	$\frac{Y_{L}}{2}$	0	0
Π_{Q}	0	0	0	$\frac{\sqrt{3}}{2}\left(Y_{L}-\frac{1}{3}\right)$	0	0

Can be produced in gg-fusion!

Singlet η_{3}

Couples to gluons and EW gauge bosons. Possible signal in diphoton, $\mathrm{ZZ}, \mathrm{Z}\rangle$ searches... reminds you of something?

Excluded region from present searches and prospects from $\mathrm{Y} Y$

Already puts important limits on the model parameters!

Other pNGBs

The other singlets $\eta_{1,2}$ and the triplets $\Pi_{L, Q}$ do not couple to gluons.
The SU(2)L-triplet and color-octet $\tilde{\pi}_{3}$ only couples to gluon+EW gauge boson.
\rightarrow Too small production XS at the LHC and heavy mass.

The color-octet $\tilde{\pi}_{1}$ can be searched in dijet but in this model it is too heavy for the LHC.

Other pNGBs

The other pNGBs can be pair-produced but do not decay directly to SM particles.
They can decay via higher-order terms such as:

None of them is expected to be observable at the LHC (too heavy or only EW couplings).

The other resonances have masses at the $\Lambda \sim 4 \pi \mathrm{f}>10 \mathrm{TeV}$ scale

Composite pNGB Scalar LQ

Summary

EFT fit Including RGE effects

$$
\frac{1}{v^{2}} \lambda_{i j}^{q} \lambda_{\alpha \beta}^{\ell}\left[C_{T}\left(\bar{Q}_{L}^{i} \gamma_{\mu} \sigma^{a} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} \sigma^{a} L_{L}^{\beta}\right)+C_{S}\left(\bar{Q}_{L}^{i} \gamma_{\mu} Q_{L}^{j}\right)\left(\bar{L}_{L}^{\alpha} \gamma^{\mu} L_{L}^{\beta}\right)\right]
$$

Tree-level mediators

First attempts on UV models for both vector and scalar LQ.
Scalar LQ can be naturally lighter than other mediators of flavour effects if they arise as pseudo-NGB of a strongly coupled sector. Allows to address also the Higgs hierarchy problem.

Thank you!

Backup

$\mathrm{U}(2)$ flavour symmetry

Keeping only the third-generation Yukawa couplings, the SM enjoys an approximate SU(2)5 flavor symmetry

$$
\begin{gathered}
G_{F}=\mathrm{SU}(2)_{q} \times \mathrm{SU}(2)_{u} \times \mathrm{SU}(2)_{d} \times \mathrm{SU}(2)_{l} \times \mathrm{SU}(2)_{e} \\
\left.\psi_{i}=\left(\psi_{1} \quad \psi_{2}\right) \psi_{3}\right)
\end{gathered}
$$

One can assume this is

$$
\begin{aligned}
\Delta Y_{u} & =(\mathbf{2}, \overline{\mathbf{2}}, \mathbf{1}, \mathbf{1}, \mathbf{1}), & \Delta Y_{d} & =(\mathbf{2}, \mathbf{1}, \overline{\mathbf{2}}, \mathbf{1}, \mathbf{1}), \quad \Delta Y_{e}=(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2}, \overline{\mathbf{2}}) \\
V_{q} & =(\mathbf{2}, \mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{1}), & V_{l} & =(\mathbf{1}, \mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{1})
\end{aligned}
$$

minimally broken by the spurions:

The Yukawa matrices get this structure:

$$
y_{u} \sim y_{t}\left(\begin{array}{cc}
\Delta Y_{u} & V_{q} \\
0 & 1
\end{array}\right), \quad y_{d} \sim y_{b}\left(\begin{array}{cc}
\Delta Y_{d} & V_{q} \\
0 & 1
\end{array}\right), \quad y_{e} \sim y_{\tau}\left(\begin{array}{cc}
\Delta Y_{e} & V_{l} \\
0 & 1
\end{array}\right)
$$

The doublet spurions regulate the mixing of the third generation with the lighter ones:

$$
\begin{array}{rr}
V_{q}=a_{q}\binom{V_{t d}^{*}}{V_{t s}^{*}} & V_{l} \approx\binom{0}{\lambda_{\tau \mu}} \\
\text { CKM } & \text { unknowns }
\end{array}
$$

Problems from RG effects

Feruglio, Paradisi, Pattori [1606.00524]

Problems with LFU in τ decays at 1-loop

$$
R_{\tau}^{\tau / \ell_{1,2}}=\frac{\mathcal{B}\left(\tau \rightarrow \ell_{2,1} \nu \bar{\nu}\right)_{\exp } / \mathcal{B}\left(\tau \rightarrow \ell_{2,1} \nu \bar{\nu}\right)_{\mathrm{SM}}}{\mathcal{B}(\mu \rightarrow e \nu \bar{\nu})_{\exp } / \mathcal{B}(\mu \rightarrow e \nu \bar{\nu})_{\mathrm{SM}}}
$$

$$
\begin{aligned}
R_{\tau}^{\tau / \mu} & =1.0022 \pm 0.0030 \\
R_{\tau}^{\tau / e} & =1.0060 \pm 0.0030
\end{aligned}
$$

$$
\Rightarrow
$$

$$
R_{0}=0,017 \pm 0,023
$$

$$
\text { our fit: } R_{0}=0,13 \pm 0,03
$$

Need a ~ 20\% tuning with some other contribution (from 1-loop or direct from another dim-6 operator)

Di-muon tail \& R(K(*))

[Greljo, D.M. 1704.09015]

$$
\frac{1}{\Lambda_{q q \mu}^{2}}\left[\lambda_{b s}^{q}\left(\bar{s}_{L} \gamma_{\mu} b_{L}\right)+\left(\bar{q}_{L} \gamma_{\mu} q_{L}\right)\right]\left(\bar{\mu}_{L} \gamma^{\mu} \mu_{L}\right) \quad \lambda_{b s}^{\mu} \ll 10
$$

$\tau \rightarrow \mu \gamma \&(g-2) \mu$

The S1 LQ in general couples to both LH and RH fermions:

$$
\mathcal{L}_{S_{1}} \supset \bar{t}^{c}\left[g_{1} \beta_{1, b \alpha} P_{L}+g_{1}^{u} \beta_{1, t \alpha}^{u} P_{R}\right] \ell^{\alpha} S_{1}+h . c .
$$

This induces an mt-enhanced contribution to $\tau \rightarrow \mu \gamma$ and $(g-2)_{\mu}$

$$
\begin{aligned}
& \mathcal{B}(\tau \rightarrow \mu \gamma) \approx\left(7.0 \times 10^{-2}\right) \frac{\left|\epsilon_{1}\right|^{2}}{0.01}\left|\epsilon_{1}^{u}\right|^{2}\left(\frac{\left|\beta_{1, b \mu}\right|^{2}}{0.1^{2}}+\frac{\left|\beta_{1, t \mu}^{u}\right|^{2}}{0.1^{2}}\right)<4.4 \times 10^{-8} \\
&\left|\epsilon_{1}^{u}\right|^{2} \lesssim 10^{-6} \quad \epsilon_{1}^{u}=\frac{g_{1}^{u} v}{2 m_{S_{1}}}
\end{aligned}
$$

Requires $g_{1}^{u} \lesssim 10^{-2} g_{1}$
Introducing an extra approximate $U(1)$ e symmetry for the RH leptons to protect the T Yukawa would give:

$$
g_{1}^{u} / g_{1} \sim y_{\tau} / y_{t} \sim 10^{-2}
$$

$\delta a_{\mu} \approx\left(7.9 \times 10^{-11}\right) \times \frac{\epsilon_{1}^{u}}{10^{-3}} \frac{\epsilon_{1}}{0.1} \frac{\beta_{1, b \mu}}{0.1} \frac{\beta_{1, t \mu}^{u}}{0.1} \quad$ too small to fit the anomaly $\quad\left(\delta a_{\mu}\right)_{\text {exp }}=(2.8 \pm 0.9) \times 10^{-9}$

Direct Searches

Buttazzo, Greljo, Isidori, DM 2017

Limits and prospects from
π final state (t-channel exchange)

Limits and prospects from pair production of 3rd gen. LQ

Gauge Vector LQ

Di Luzio, Greljo, Nardecchia 2017; Calibbi, Crivellin, Li 2017; Bordone, Cornella, Fuentes-Martin, Isidori 2017
The U_{1} LQ gives the best fit of the anomalies with smallest number of param.
The massive vector of Pati-Salam has same quantum numbers as $U_{1} L Q$.

$$
S U(4)_{P S} \times U(1)^{\prime} \rightarrow S U(3)_{C} \times U(1)_{Y} \quad U_{1}=(\mathbf{3}, \mathbf{1}, 2 / 3)
$$

But in PS $\mathrm{Mu} \approx 10^{3} \mathrm{TeV}$ due to coupling with light generations.

Need to add extra (vectorlike) fermions or extra gauge bosons (or both) so that it mainly couples only to third generation.
$S U(4) \times S U(3)^{\prime} \times S U(2)\left\llcorner\times U(1)^{\prime} \rightarrow S U(3)_{C} \times S U(2)\left\llcorner\times U(1)_{Y}\right.\right.$
Di Luzio, Greljo, Nardecchia 2017
There are also massive color-octed and massive Z^{\prime}.
Crucial to avoid large FCNC effects and direct searches limits.

Field	$S U(4)$	$S U(3)^{\prime}$	$S U(2)_{L}$	$U(1)^{\prime}$
$q_{L}^{\prime i}$	1	3	2	$1 / 6$
$u_{R}^{\prime i}$	1	3	1	$2 / 3$
d_{R}^{i}	1	3	1	$-1 / 3$
ℓ_{L}^{i}	1	1	2	$-1 / 2$
$e_{R}^{\prime i}$	1	1	1	-1
Ψ_{L}^{i}	4	1	2	0
Ψ_{R}^{i}	4	1	2	0

All these constraint point to strong gauge couplings, at the limit of perturbativity.

Doesn't address the EW hiearchy problem.

Composite Models

Vector LQ as Composite Resonance

The vector LQ can be considered as a composite resonance of a new strongly coupled sector, of which the Higgs arises as a pNGB.
$\wedge \sim g_{\rho} f \sim 10 \mathrm{TeV}$ other resonances Flavor-mediators

Barbieri, Isidori, Pattori, Senia 2015; Barbieri, Murphy, Senia 2016;
Buttazzo, Greljo, Isidori, D.M. 2017; Barbieri, Tesi 2017

$$
m_{V L Q} \sim \Lambda
$$

- The theory is fully strongly coupled at that scale: no calculability
- Many other vector resonances (Z', G') are expected with similar mass and with same flavour-violating couplings: expect very strong bounds from tree-level contribution to Bs mixing.

B and L conservation

I assign a combination of B and $L, F+=3 B+L$, to the $H C$ fermions such that the Higgs Yukawas and LQ couplings are allowed:

$$
\begin{aligned}
& \left(\bar{q}_{L} u_{R}+\bar{d}_{R} q_{L}+\bar{e}_{R} l_{L}\right)\left(\bar{\Psi}_{N} \Psi_{L}\right), \quad\left(\bar{q}_{L} u_{R}+\bar{d}_{R} q_{L}+\bar{e}_{R} l_{L}\right)\left(\bar{\Psi}_{L} \Psi_{E}\right) \\
& \left(\bar{q}_{L}^{c} l_{L}+\bar{e}_{R}^{c} u_{R}\right)\left(\bar{\Psi}_{Q} \Psi_{L}\right), \quad\left(\bar{q}_{L}^{c} \sigma^{a} l_{L}\right)\left(\bar{\Psi}_{Q} \sigma^{a} \Psi_{L}\right), \\
& F_{+}\left(\Psi_{L}\right)=F_{+}\left(\Psi_{N}\right)=F_{+}\left(\Psi_{E}\right)=F_{L}, \quad F_{+}\left(\Psi_{Q}\right)=F_{L}+2
\end{aligned}
$$

These operators are then automatically forbidden

$$
\left(\bar{q}_{L}^{c} q_{L}+\bar{u}_{R}^{c} d_{R}\right)\left(\bar{\Psi}_{L} \Psi_{Q}\right), \quad\left(\bar{d}_{R} l_{L}\right)\left(\bar{\Psi}_{E} \Psi_{Q}\right), \quad\left(\bar{l}_{L}^{c} l_{L}\right)\left(\bar{\Psi}_{E} \Psi_{N}\right)
$$

EWSB and Higgs mass

Better to change basis in the two Higgs doublets: $\quad H_{1}=\frac{i \tilde{H}_{1}+\tilde{H}_{2}}{\sqrt{2}}, \quad H_{2}=\frac{-i \tilde{H}_{1}+\tilde{H}_{2}}{\sqrt{2}}$
so that only one Higgs takes a vev

$$
\tilde{H}_{1}=\left(G^{+}, \frac{v_{h}+h+i G^{0}}{\sqrt{2}}\right)^{T}, \quad \tilde{H}_{2}=\left(H^{+}, \frac{h_{2}+i A_{0}}{\sqrt{2}}\right)^{T}
$$

'eaten NGB' and light Higgs Heavy Higgs couples linearly to fermions no linear couplings to SM and SM gauge bosons

Effective potential for the light Higgs vev:

$$
\begin{gathered}
V(\theta)=-C_{m} f^{4} \cos \theta-C_{g} f^{4} \cos 2 \theta-2 C_{t} f^{4} \sin ^{2} \theta \quad \theta=v_{h} / \sqrt{2} f \\
C_{m}=\frac{2 B_{0}}{f^{2}}\left(m_{E}+m_{L}\right), \quad C_{g}=\frac{3 \Lambda_{H C}^{2}}{16 \pi^{2} f^{2}}\left(\frac{3}{4} c_{w} g_{w}^{2}+\frac{1}{4} c_{Y} g_{Y}^{2}\right), \quad C_{t}=\frac{N_{c} y_{t}^{2} c_{t} \Lambda_{H C}^{2}}{16 \pi^{2} f^{2}} \\
\frac{v^{2}}{f^{2}} \equiv \xi=2 \sin ^{2} \theta_{\min }=2-\frac{C_{m}^{2}}{8\left(C_{t}-C_{g}\right)^{2}} \quad m_{h}^{2}=\left(C_{t}-C_{g}\right) f^{2} \xi \sim N_{c} c_{t} m_{t}^{2}-3 c_{w} m_{W}^{2}
\end{gathered}
$$

