
From B-physics anomalies to 
model building and direct searches

David Marzocca

1

Genova,  9/05/2018

Sezione di Trieste



• Introduction 

• Recap: B-physics anomalies 

• Combined EFT fit of the anomalies 

• Simplified models & direct searches of the mediators 

• UV example: a composite Higgs model with scalar LQ.  
     - direct searches of other states

2

Outline



3

Introduction
The hierarchy problem of the EW scale suggests                  Λ ≲ TeV 
The strong bounds from flavour physics require instead       Λ ≫ TeV*

* for arbitrary flavour structure

To have NP at the TeV scale, the common lore suggested that it should be 
almost flavour diagonal (MFV-like).

Abundance of new resonances at the LHC!!! 

Boring flavour physics…

Many theorists believed the LHC era would give:

Instead we ended up with:

No direct signal of new particles…

Exciting anomalies in flavour physics!!!
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b → s µ+ µ-  vs.  b → s e+ e-

The LHCb experiment measured:

Semi-leptonic b to s decays
FCNC: occurs only at loop-level in the SM 
            + CKM suppressed


Semi-leptonic effective Lagrangian:

L =
4GF
p
2

↵

4⇡
V ⇤
tbVts

X

i

CiOi + C 0
iO

0
i

Deviations from SM in several observables

• Angular distributions in B → K*µµ 

• Various branching ratios B(s) → Xs µµ 

• LFU in R(K) and R(K*) (very clean prediction!)


~ 20% NP contribution to LH current

Globally 5-6σ

b s

ℓ

ℓ̄

Vtb V ∗

ts

W

Z, γ
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Coe↵. best fit 1� 2� pull

Cµ
9 �1.59 [�2.15, �1.13] [�2.90, �0.73] 4.2�

Cµ
10 +1.23 [+0.90, +1.60] [+0.60, +2.04] 4.3�

Ce
9 +1.58 [+1.17, +2.03] [+0.79, +2.53] 4.4�

Ce
10 �1.30 [�1.68, �0.95] [�2.12, �0.64] 4.4�

Cµ
9 = �Cµ

10 �0.64 [�0.81, �0.48] [�1.00, �0.32] 4.2�

Ce
9 = �Ce

10 +0.78 [+0.56, +1.02] [+0.37, +1.31] 4.3�

C0µ
9 �0.00 [�0.26, +0.25] [�0.52, +0.51] 0.0�

C0µ
10 +0.02 [�0.22, +0.26] [�0.45, +0.49] 0.1�

C0 e
9 +0.01 [�0.27, +0.31] [�0.55, +0.62] 0.0�

C0 e
10 �0.03 [�0.28, +0.22] [�0.55, +0.46] 0.1�

TABLE I. Best-fit values and pulls for scenarios with NP in
one individual Wilson coe�cient.

and the corresponding Wilson coe�cients C
`
i , with ` =

e, µ. We do not consider other dimension-six operators
that can contribute to b ! s`` transitions. Dipole oper-
ators and four-quark operators [46] cannot lead to vio-
lation of LFU and are therefore irrelevant for this work.
Four-fermion contact interactions containing scalar cur-
rents would be a natural source of LFU violation. How-
ever, they are strongly constrained by existing measure-
ments of the Bs ! µµ and Bs ! ee branching ra-
tios [47, 48]. Imposing SU(2)L invariance, these bounds
cannot be avoided [49]. We have checked explicitly that
SU(2)L invariant scalar operators cannot lead to any ap-
preciable e↵ects in RK(⇤) (cf. [50]).

For the numerical analysis we use the open source code
flavio [51]. Based on the experimental measurements
and theory predictions for the LFU ratios RK(⇤) and
the LFU di↵erences of B ! K

⇤
`
+
`
� angular observ-

ables DP 0
4,5

(see below), we construct a �
2 function that

depends on the Wilson coe�cients and that takes into
account the correlations between theory uncertainties of
di↵erent observables. The experimental uncertainties are
presently dominated by statistics, so their correlations
can be neglected. For the SM we find �

2
SM = 24.4 for 5

degrees of freedom.
Tab. I lists the best fit values and pulls, defined as thep
��2 between the best-fit point and the SM point for

scenarios with NP in one individual Wilson coe�cient.
The plots in Fig. 1 show contours of constant ��

2 ⇡
2.3, 6.2, 11.8 in the planes of two Wilson coe�cients for
the scenarios with NP in C

µ
9 and C

µ
10 (top), in C

µ
9 and

C
e
9 (center), or in C

µ
9 and C

0 µ
9 (bottom), assuming the

remaining coe�cients to be SM-like.
The fit prefers NP in the Wilson coe�cients corre-

sponding to left-handed quark currents with high sig-
nificance ⇠ 4�. Negative C

µ
9 and positive C

µ
10 decrease

both B(B ! Kµ
+
µ

�) and B(B ! K
⇤
µ

+
µ

�) while pos-

FIG. 1. Allowed regions in planes of two Wilson coe�cients,
assuming the remaining coe�cients to be SM-like.

Altmannshofer, Stangl, Straub 2017

➡ see Nazila’s talk

Neutral-current anomalies

› Results consistently lower than SM predictions

Differential Branching Fractions
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› First full angular analysis of B0→K*0µµ: measured all CP-averaged
angular terms and CP-asymmetries
› Can construct less form-factor dependent ratios of observables

Angular Analyses
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Experimental hints on NP in FCNC B-decays
 B → K*μμ angular analysis 

S. Bifani

Branching Fractions

“Clean” LFU ratios b → s μ μ anomalies

- Differential distributions in B → K* µ+µ- 

- Branching ratios of b → s µ+µ-transitions
Challenging SM prediction

R(K(⇤)) =
B(B ! K

(⇤)
µ
+
µ
�)

B(B ! K(⇤)e+e�)
(1)

�1,s⌧ ⇠ ��3,s⌧ ⇠ (few)⇥ Vcb (2)

(CT + CS)�bs(b̄L�µsL)(⌧̄L�
µ
⌧L) (3)
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gHmW

gmV

(13)

RV V ⌘
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(14)
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⇠
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F
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SM�µf
j

SM) (17)

|Bdi(3,1,�1/3) / |QLLi ⇠ dR (18)

R
⌧/`

D⇤ =
B(B ! D

⇤
⌧⌫)exp/B(B ! D

⇤
⌧⌫)SM

B(B ! D⇤`⌫)exp/B(B ! D⇤`⌫)SM
= 1.25± 0.08 , (19)

R
⌧/`

D
=

B(B ! D⌧⌫)exp/B(B ! D⌧⌫)SM
B(B ! D`⌫)exp/B(B ! D`⌫)SM

= 1.32± 0.17 , (20)
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Lepton Flavour Universality ratios

Clean SM prediction
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Figure 1: Deviations from the SM value RK = RK⇤ = 1 due to the various chiral operators
possibly generated by new physics in the muon (left panel) and electron (right panel) sector.
Both ratios refer to the [1.1, 6] GeV2

q
2-bin. We assumed real coe�cients, and the out-going

(in-going) arrows show the e↵ect of coe�cients equal to +1 (�1). For the sake of clarity we
only show the arrows for the coe�cients involving left-handed muons and electrons (except for
the two magenta arrows in the left-side plot, that refer to C

BSM
9,µ = (CBSM

bLµL
+ C

BSM
bLµR

)/2 = ±1).

BSM corrections. RK⇤ , in a given range of q
2, is defined in analogy with eq. (8):

RK⇤ [q2min, q
2
max] ⌘

R
q
2
max

q
2
min

dq
2
d�(B ! K

⇤
µ
+
µ
�)/dq

2

R
q2max

q
2
min

dq2 d�(B ! K⇤µ+µ�)/dq2
, (16)

where the di↵erential decay width d�(B ! K
⇤
µ
+
µ
�)/dq

2 actually describes the four-body
process B ! K

⇤(! K⇡)µ+
µ
�, and takes the compact form

d� (B ! K
⇤
µ
+
µ
�)

dq2
=

3

4
(2Is

1 + I
c

2) �
1

4
(2Is

2 + I
c

2) . (17)

The angular coe�cients I
a=s,c

i=1,2 in eq. (17) can be written in terms of the so-called transversity
amplitudes describing the decay B ! K

⇤
V

⇤ with the B meson decaying to an on-shell K
⇤

and a virtual photon or Z boson which later decays into a lepton-antilepton pair. We refer
to [29] for a comprehensive description of the computation. In the left panel of figure 2 we
show the di↵erential distribution d�(B ! K

⇤
µ
+
µ
�)/dq

2 as a function of the dilepton invariant
mass q

2. The solid black line represents the SM prediction, and we show in dashed (dotted)
red the impact of BSM corrections due to the presence of non-zero C

BSM
bLµL

(CBSM
bRµL

) taken at the
benchmark value of 1.

We now focus on the low invariant-mass range q
2 = [0.045, 1.1] GeV2, shaded in blue with

diagonal mesh in the left panel of fig 2. In this bin, the di↵erential rate is dominated by

7

D’Amico et al. 2017; Geng et al. 2017, 
Altmannshofer et al. 2017, …
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Neutral-current anomalies
The SM contribution is aligned along the effective operator (s̄L�

⌫
bL)(µ̄L�⌫µL) (1)

�1,s⌧ ⇠ ��3,s⌧ ⇠ (few)⇥ Vcb (2)

(CT + CS)�bs(b̄L�µsL)(⌧̄L�
µ
⌧L) (3)

(CT � CS)�bs(b̄L�µsL)(⌫̄⌧�
µ
⌫⌧ ) (4)

⇠
3y2t
16⇡2

log
M

2
X

m
2
t

CT

v2
(H†

�
a
i

$
Dµ H)(L̄3

L�
µ
�
a
L
3
L) (5)

�
CT

v2
(Q̄3

L�µ�
a
Q

3
L)(L̄

3
L�

µ
�
a
L
3
L) (6)

CT ⇠ g
2
X

v
2

M
2
X

(7)

Q
3
L = (V ⇤

tb
tL + V

⇤
cb
cL + V

⇤
ub
uL, bL)

T
(8)

R
D(⇤) ⌘ R(D(⇤))/R(D(⇤))SM = 1.234± 0.052 (9)

OVL = (b̄L�µcL)(⌫̄L�
µ
⌧L) + h.c. (10)

⇠
3y2t
16⇡2

GF
p
2
�
`

ijR0 log

✓
⇤2

m
2
t

◆
(H†

T
a
i

$
DµH)L̄i�µ�

a
L
j

(11)

R0 ⌘
g`gq

g2

m
2
W

m
2
V

' 0.13 (12)

✏H =
gHmW

gmV

(13)

RV V ⌘
�(⌘ ! V V )

�(⌘ ! ��)
=
�(pp ! ⌘ ! V V )

�(pp ! ⌘ ! ��)
(14)

L⇢BB = g⇢a
⇢

 
B̄ �

µ
⌧
a
B ⇢

a

µ (15)

L
e↵

⇠
1

⇤2
F

   �  
SM

(16)

c
ij

f

⇤2
F

( ̄TC�µ TC)(f̄
i

SM�µf
j

SM) (17)

|Bdi(3,1,�1/3) / |QLLi ⇠ dR (18)

R
⌧/`

D⇤ =
B(B ! D

⇤
⌧⌫)exp/B(B ! D

⇤
⌧⌫)SM

B(B ! D⇤`⌫)exp/B(B ! D⇤`⌫)SM
= 1.25± 0.08 , (19)

R
⌧/`

D
=

B(B ! D⌧⌫)exp/B(B ! D⌧⌫)SM
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1

→ all deviations are consistent 
→ 4 - 6 σ deviation in global fits 
→ Best fit with NP in LH current
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• Loop, CKM, and GIM 
suppression

Where is the scale of NP in b → s l l?

Left-handed currents

4

first row of Eq. (1) (see for example [25]). Moreover, the
triplet operator could at the same time solve the anomalies
in charged-currrent (RD(⇤) ) , see e.g. Refs. [26,27,28].

Matching at the tree level this operator to the standard
effective weak Hamiltonian describing b ! s transitions,
one finds

DCµ
9 =�DCµ

10 =
p

aVtbV ⇤
ts

Cbsµ , (9)

where a is the electromagnetic fine structure constant while
|Vts| = (40.0± 2.7)⇥ 10�3 and |Vtb| = 1.009± 0.031 are
CKM matrix elements [29].

The recent combined fit of Ref. [18] reported the best
fit value and 1s preferred range

DCµ
9 =�DCµ

10 =�0.61±0.12 . (10)

Using this result and Eq. (9), one can estimate the scale of
the relevant new physics by defining Cbsµ = g2

⇤v2/L 2, ob-
taining L/g⇤ ⇡ 32+4

�3 TeV. Depending on the value of g⇤,
i.e. from the particular UV origin of the operator, the scale
of new physics L can be within or out of the reach of LHC
direct searches. We show that even in the latter case, under
some assumptions it can be possible to observe an effect
in the dimuon high energy tail. When comparing low and
high-energy measurements, the renormalisation group ef-
fects should in principle be taken into account. Since these
effects are small in this case, we neglect it in what follows
(see for example [25]).

We concentrate on UV models in which new particles
are above the scale of threshold production at the LHC,
such that the EFT approach is applicable in the most en-
ergetic dilepton events. We stress however that even for
models with light new physics these searches can be rele-
vant.

Let us discuss the flavour structure of the CD(U)µ
i j matri-

ces in Eqs. (6,7). New physics aligned only to the strange-
bottom coupling Cbsµ will not be probed at the LHC, in
fact the present (projected) 95% CL limits from the 13 TeV
ATLAS pp ! µ+µ� analysis with 36 fb�1 (3000 fb�1) of
luminosity are
����

p
aVtbV ⇤

ts
Cbsµ

����< 100 (39) , (11)

which should be compared with the value extracted from
the global flavour fits in Eq. (10). Such a peculiar flavour
structure is possible, but not very motivated from the model
building point of view.

On the other hand, taking the b! sµ+µ� flavour anoma-
lies at face value provides a measurement of the Cbsµ coef-
ficient (via Eq. (9)). In most flavour models flavour-violating
couplings are related (by symmetry or dynamics) to flavour-
diagonal one(s). In this case we can use the LHC upper

Fig. 3 Present and projected 95% CL limits from pp ! µ+µ� in the
MFV case defined by Eq. (14).

limit on |Cqµ | from the dimuon high-pT tail in order to set
a lower bound on |l q

bs|, defined as the ratio

l q
bs ⌘Cbsµ/Cqµ . (12)

In the following we study such limits for several particu-
larly interesting scenarios.

1) Minimal flavour violation
Under this assumption [30] the only source of flavour vio-
lation are the SM Yukawa matrices Yu ⌘ V †diag(yu,yc,yt)
and Yd ⌘ diag(yd ,ys,yb). Using a spurion analysis one can
estimate

c(3,1)Qi jL22
⇠
⇣

1+aYuY †
u +bYdY †

d

⌘

i j
, (13)

where a,b ⇠O(1), which implies the following structure:

Cuµ =Ccµ =Ctµ ⌘CUµ ,

Cdµ =Csµ =Cbµ ⌘CDµ ,
(14)

while flavour-violating terms are expected to be CKM sup-
pressed, for example |Cbsµ | ⇠ |VtbV ⇤

tsy2
t CDµ |. In this case

the contribution to rare B meson decays has a Vts sup-
pression, while the dilepton signal at high-pT receives an
universal contribution dominated by the valence quarks in
the proton. The flavour fit in Eq. (10) combined with this
flavour structure would imply a value of |CDµ | ⇠ 1.4 ⇥
10�3 which, as can be seen from the limits in Fig. 3, is
already probed by the ATLAS dimuon search [11] depend-
ing on the origin of the operator (i.e. from the SU(2) sin-
glet or triplet structure) and will definitely be investigated
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No suppression: 
MFV or U(2):    
Loop + MFV:   

What is the scale of NP?

ci = Vts/4π  →   Λ ~ 0.5 TeV
ci = Vts       →   Λ ~ 6 TeV
ci = 1         →   Λ ~ 31 TeV

Adding SM gauge invariance:  New Physics in at least one of these operators J
H
E
P
1
1
(
2
0
1
7
)
0
4
4

3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale

Leff = LSM− 1

v2
λq
ijλ

ℓ
αβ

[
CT (Q̄i

Lγµσ
aQj

L)(L̄
α
Lγ

µσaLβ
L) + CS (Q̄i

LγµQ
j
L)(L̄

α
Lγ

µLβ
L)
]
, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

ℓ
µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)
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Semi-leptonic b to c decays

Charged-current interaction: tree-level effect 
in the SM, with mild CKM suppression


 
LFU ratios:
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• RH & scalar currents disfavoured 


• SM predictions robust: form factors 
cancel in the ratio (to a good extent)


• Consistent results by three very different 
experiments, in different channels


• Large backgrounds & systematic errors

~ 20% enhancement in LH currents  
~ 4σ from SM
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b to c transition in τν final state. 
Tree-level SM process with Vcb suppression.

LFU ratio to reduce QCD uncertainties
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While μ/e universality tested at % level.

~ 20% enhancement from the SM

~ 4σ from the SM
Robust SM prediction
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g`,qmW

gmV

(39)

✏⌧ 1 (40)
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The tree-level SM contribution is mediated by:
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ee ⌧ �`

µµ (22)

�L = �
g2
`

2m2
V

�`

µµ(⌧̄L�µµL)(⌫̄⌧�
µ⌫µ) (23)

�L = �
g2
`

4m2
V

�`

⌧µ�
`

µµ(⌧̄L�µµL)(µ̄L�
µµL) (24)

gq
g`

=
✏q
✏`
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V a

µ �
�

Z 0
µ , W 0
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�
(26)
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◆
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BR(Z 0
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2g2
`
+ 6g2q + extra
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R⌧/`

D
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D⇤ Rµ/e

D
. 10%R⌧/`

D
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�MBs

�MBd

=
�MBs

�MBd

����
SM

(34)

BR(⌧ ! µ⌫⌫̄)

BR(⌧ ! e⌫⌫̄)
(35)

�Cµ

9 (36)

R(D(⇤)) ⌘
B(B0

! D(⇤)+⌧⌫)

B(B0 ! D(⇤)+`⌫)
, ` = µ, e (37)
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R(D(⇤)) ⌘
B(B0

! D(⇤)+⌧⌫)

B(B0 ! D(⇤)+`⌫)
, ` = µ, e (37)
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Adding SU(2)L gauge invariance:  New Physics in this operator J
H
E
P
1
1
(
2
0
1
7
)
0
4
4

3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale

Leff = LSM− 1

v2
λq
ijλ

ℓ
αβ

[
CT (Q̄i

Lγµσ
aQj

L)(L̄
α
Lγ

µσaLβ
L) + CS (Q̄i

LγµQ
j
L)(L̄

α
Lγ

µLβ
L)
]
, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

ℓ
µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)

– 4 –
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FIG. 1. Goodness-of-fit for the coe�cients of individual operators from the measured R(D) and R(D⇤) ratios. Besides the
fits to the unprimed operators in Table II (left), we also show fits to primed operators not related by simple rescalings (right).
Faded regions for CSL indicate good fits to the observed rates excluded by the measurement of the q2 spectrum [2]. Note that
the �2 includes experimental and SM theory uncertainties, but not theory uncertainties on NP.
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FIG. 2. Goodness-of-fit for coe�cients of operators which can be generated from dimension-6 operators with fermion bilinears
having the same SM quantum numbers. The plots show 1-, 2-, and 3� allowed regions. Approximate regions of parameter
space excluded by the measurement of the q2 spectrum [2] are presented as faded regions, as in Fig. 1.

as rough guides only.)

As noted earlier, certain mediators can generate two
contributing operators simultaneously. Fig. 2 shows the
three such two-dimensional �2 fits. While any two rates
can be explained by fitting two operator coe�cients, the
existence of a solution consistent with all other con-
straints with a given flavor structure is nontrivial and
is the topic of the following section. A summary of all
coe�cients of best fit points with �2

min
< 5 and accept-

able q2 spectra is provided in Table III.

Besides the branching ratios, additional model discrim-
ination comes from the q2 spectra (especially in B̄ !
D⌧ ⌫̄), which are consistent with SM expectations [2, 3].
It is not possible to do a combined fit with publicly avail-
able data, because correlations among di↵erent q2 bins
are unavailable. We follow Ref. [2] in eliminating cer-
tain models by comparing their predicted q2 spectra with
the measurement. It was observed that two of the four
solutions in the CSR–CSL plane (Fig. 2, left plot) are

Coe�cient(s) Best fit value(s) (⇤ = 1 TeV)

CVL 0.18± 0.04, �2.88± 0.04

CT 0.52± 0.02, �0.07± 0.02

C00
SL

�0.46± 0.09

(CR, CL) (1.25,�1.02), (�2.84, 3.08)

(C0
VR

, C0
VL

) (�0.01, 0.18), (0.01,�2.88)

(C00
SR

, C00
SL

) (0.35,�0.03), (0.96, 2.41),

(�5.74, 0.03), (�6.34,�2.39)

TABLE III. Best-fit operator coe�cients with acceptable
q2 spectra and �2

min < 5. For the 1D fits in Fig. 1 we in-
clude the ��2 < 1 ranges (upper part), and show the central
values of the 2D fits in Fig. 2 (lower part).

excluded [2], as indicated by the faded regions. In the
C 0

VR
–C 0

VL
plane (middle plot), we find the measured q2

spectra exclude regions that provide good fits to the total

The V-A operator gives the best fit
Freytsis, Ligeti, Ruderman 2015

General BSM EFT fit

LBSM =
2c

⇤2
(c̄L�µbL)(⌧̄L�

µ
⌫⌧ ) + h.c. (1)

1

⇤2
bsµ

=
�
q

bs

⇤2
qqµ

(2)

Cbsµ

v2
=

�
q

bs

v2
Cqµ (3)

1

⇤2
bsµ

(s̄L�µbL)(µ̄L�
µ
µL) (4)

�
µ

bs
⌧ 1 ⇤qqµ ⌧ ⇤bsµ Cbsµ =

v
2

⇤2
bsµ

(5)

1

⇤2
qqµ

⇥
�
q

bs
(s̄L�µbL) + (q̄L�µqL)

⇤
(µ̄L�

µ
µL) (6)

L � ci

⇤2
(s̄L�

↵
bL)(µ̄L�↵µL) + h.c. (7)

�C
µ

9 = ��C
µ

10 = �0.61± 0.12 (8)

R(K(⇤)) =
B(B ! K

(⇤)
µ
+
µ
�)

B(B ! K(⇤)e+e�)
(9)

�1,s⌧ ⇠ ��3,s⌧ ⇠ (few)⇥ Vcb (10)

(CT + CS)�bs(b̄L�µsL)(⌧̄L�
µ
⌧L) (11)

(CT � CS)�bs(b̄L�µsL)(⌫̄⌧�
µ
⌫⌧ ) (12)

⇠ 3y2t
16⇡2

log
M

2
X

m
2
t

CT

v2
(H†

�
a
i

$
Dµ H)(L̄3

L�
µ
�
a
L
3
L) (13)

� CT

v2
(Q̄3

L�µ�
a
Q

3
L)(L̄

3
L�

µ
�
a
L
3
L) (14)

CT ⇠ g
2
X

v
2

M
2
X

(15)

Q
3
L = (V ⇤

tb
tL + V

⇤
cb
cL + V

⇤
ub
uL, bL)

T
(16)

R
D(⇤) ⌘ R(D(⇤))/R(D(⇤))SM = 1.234± 0.052 (17)

OVL = (b̄L�µcL)(⌫̄L�
µ
⌧L) + h.c. (18)

⇠ 3y2t
16⇡2

GFp
2
�
`

ijR0 log

✓
⇤2

m
2
t

◆
(H†

T
a
i

$
DµH)L̄i�µ�

a
L
j

(19)

R0 ⌘
g`gq

g2

m
2
W

m
2
V

' 0.13 (20)

1

What is the scale of NP?

ci = Vcb       →   Λ ~ 0.7 TeV
ci = Vcb/4π  →  Λ ~ 0.2 TeV

ci = 1          →   Λ ~ 3.7 TeVNo suppression: 
MFV or U(2):    
Loop + MFV:   
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To summarise
Quark sector

→   Λττ ~ 0.7 TeV 

→   Λµµ ~  6 TeV

New Physics in 3-2 transition (bs and bc)

Lepton sector

Large effect in ττ 

Smaller effect in μμ 

Negligible effect in ee

ci ~ VcbLet me take
* very well motivated in concrete flavour setups: MFV, U(2), etc

Best SMEFT operators to fit the anomalies J
H
E
P
1
1
(
2
0
1
7
)
0
4
4

3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale

Leff = LSM− 1

v2
λq
ijλ

ℓ
αβ

[
CT (Q̄i

Lγµσ
aQj

L)(L̄
α
Lγ

µσaLβ
L) + CS (Q̄i

LγµQ
j
L)(L̄

α
Lγ

µLβ
L)
]
, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

ℓ
µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)

– 4 –

CC & NC

Strongest effect in third generation fermions, smaller for second, negligible for first. 
Very similar to SM fermion masses pattern!

NC
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Flavour Universality
Since fermions from different generations have same gauge quantum numbers, 

gauge interactions in the SM are accidentally flavour-universal.

Lepton Flavour Universality

• (Lepton) flavour universality is an accidental property of the gauge 
Lagrangian, not a fundamental symmetry of nature


• The only non-gauge interaction in the SM violates LFU maximally


• LFU approximately satisfied in SM processes because Yukawa 
couplings are small 

➡ natural to expect LFU and flavour violations in BSM physics

Lgauge = i
3X

j=1

X

q,u,d,`,e

 ̄j /D j

LYuk = q̄LYuuRH
⇤ + d̄LYddRH + ¯̀

LYeeRH Yu,d,e ⇡ diag(0, 0, 1)

y⌧ ⇡ 10�2yµ ⇡ 10�3

Accidental global symmetry   U(3)5

The only other fermionic interactions in the SM (Yukawa interactions) 
completely break this symmetry  and violate universality maximally!

Lepton Flavour Universality

• (Lepton) flavour universality is an accidental property of the gauge 
Lagrangian, not a fundamental symmetry of nature


• The only non-gauge interaction in the SM violates LFU maximally


• LFU approximately satisfied in SM processes because Yukawa 
couplings are small 

➡ natural to expect LFU and flavour violations in BSM physics

Lgauge = i
3X

j=1

X

q,u,d,`,e

 ̄j /D j

LYuk = q̄LYuuRH
⇤ + d̄LYddRH + ¯̀

LYeeRH Yu,d,e ⇡ diag(0, 0, 1)

y⌧ ⇡ 10�2yµ ⇡ 10�3

Since ye ≪ yμ ≪ yτ ~ 10-2, in most high-energy SM processes 
Lepton-Flavour-Universality is a good approximate symmetry. 

Notably, this is absolutely not the case in Higgs physics.

BSM interactions are expected to violate this.



New Physics in 3rd generation

11

In many motivated models:

New Physics 3rd generation fermions

Top quark has biggest mass

Rare B decays are very sensitive probes 
of such New Physics scenarios

Suppressed in the SM 
by loop factor, GIM, 
and small mixing angles

biggest coupling to the Higgs. 
Maybe 3rd family is particularly 
related to EW scale dynamics. 

e.g.:  top partners.
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Future Prospects

Table 1: The luminosity scenarios considered along with the estimated number of bb-pairs

produced inside the acceptance of the experiments are given. The LHCb cross sections are

taken from Ref. [25] assuming a linear increase in bb-production cross section with LHC beam

energy. For Belle II only e+e� ! ⌥(4S) ! BB̄ data sets are estimated.

‘Milestone I’ ‘Milestone II’ ‘Milestone III’
year 2012 2020 2024 2030
LHCb L [ fb�1 ] 3 8 22 50

n(bb) 0.3⇥ 1012 1.1⇥ 1012 37⇥ 1012 87⇥ 1012
p
s 7/8TeV 13TeV 14TeV 14TeV

Belle (II) L [ ab�1 ] 0.7 5 50 -
n(BB̄) 0.1⇥ 1010 0.54⇥ 1010 5.4⇥ 1010 -
p
s 10.58GeV 10.58GeV 10.58GeV -

LHC Shutdown

LHC Shutdown~ 22 fb-1

LHC Shutdown

2017
Q1 Q2 Q3 Q4

2018
Q1 Q2 Q3 Q4

2019
Q1 Q2 Q3 Q4

2020
Q1 Q2 Q3 Q4

2021
Q1 Q2 Q3 Q4

2022
Q1 Q2 Q3 Q4

2023
Q1 Q2 Q3 Q4

2024
Q1 Q2 Q3 Q4

2025
Q1 Q2 Q3 Q4

2026
Q1 Q2 Q3 Q4

2027
Q1 Q2 Q3 Q4

2028
Q1 Q2 Q3 Q4

2029
Q1 Q2 Q3 Q4

2030
Q1 Q2 Q3 Q4

Belle II

LHCb

Start of Data taking period

~ 50 ab-1

~ 8 fb-1

~ 50 fb-1

Belle II

LHCb

LHCb

~ 5 ab-1

Milestone I

Milestone II

Milestone III

End of Data taking period

Run 2

Run 3

Run 4

Figure 1: An overview of the expected Belle II and LHCb timelines along with their estimated

integrated luminosities at each milestone. The scenarios compared in this manuscript are

shown in bold. For more details of the expected luminosities and number of produced bb-pairs

at each milestone see Table 1. The LHCb phase 1 upgrade [27] is currently scheduled for

the duration of the LHC shutdown between 2019 – 2020. The LHCb experiment has recently

expressed its interest to continue running past the phase 1 upgrade until the end of the funded

LHC Run in 2035 [30].

which summarises the main findings.

4

Albrecht et al 1709.10308

R(D)

R
(D

*)

0.3 0.35 0.4 0.450.24

0.26

0.28
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0.32

0.34

LHCb Belle II
Future WA SM predictionSM

σ1

σ3

σ5

σ7

σ9

-18fb

-122fb

-150fb

-15ab
-150ab

Figure 7: Future prospects for measurements of R(D) and R(D⇤). The SM and future ex-

pected uncertainties at milestone III are combined to predict the significance with which a

given point can be excluded if the current central values remain the same (red lines). The

expected uncertainties from Belle II (green) and LHCb (blue) alone are shown as the shaded

bands. The relatively small size of the SM uncertainty compared to the current experimental

constraints can be seen in Fig. A.10, where the uncertainties are shown separately.

uncertainties are assumed to be negligible in this study. The development of
theoretical uncertainties is much harder to predict. For quantities accessible
to lattice QCD, the expected improvment in computing power allows to safely
assume significant improvements on the five to ten year time scale considered
here. In semi-leptonic decays, this concerns in particular the hadronic form
factors. Even though current lattice calculations of B ! K

⇤ form factors also
face systematic uncertainties due to the finite K

⇤ lifetime, a solution of this
challenge is realistic in the near future [55]. For B ! K form factors, this
problem is absent. It thus seems realistic to assume a reduction of all form
factor uncertainties by a factor of two by the time of reaching milestone II [28]
and we assume this in our numerics. For the remaining uncertainties, in par-
ticular systematic uncertainties due to non-factorizable hadronic contributions,
we conservatively assume they will stay the same as at present, even though
data-driven methods might allow to reduce them in the future [56, 57].

For b! s`
+
`
� and radiative b! s� transitions, the effective Hamiltonian

can be expressed as

He↵ = �
4GF
p

2
�t

X

i

(CiOi + C
0
iO

0
i) + h.c., (1)

where GF is the Fermi constant and �t = VtbV
⇤
ts is a CKM factor. In a large

class of new physics models, the most important new physics effects in these
transitions appear in the Wilson coefficients Ci of the following dimension-6

13

Experimental Timeline Charged-current

Neutral-current
Assuming present central value, 
LHCb will measure R(K) and 
R(K*) 
at >5σ by Milestone I (2020), 
~15σ at Milestone III (2030). 

Also Belle-II will reach 7-8σ by 
Milestone II (2025).

+ very precise measurements on 
many other related observables.

In just a few years we will know if 
these are genuine NP signals or not.

+ LHCb will also measure R(D)
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SM EFT fit

Let us assume these anomalies are due to New 
Physics. 

Can we find at least one consistent solution?
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Our EFT framework

J
H
E
P
1
1
(
2
0
1
7
)
0
4
4

3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale

Leff = LSM− 1

v2
λq
ijλ

ℓ
αβ

[
CT (Q̄i

Lγµσ
aQj

L)(L̄
α
Lγ

µσaLβ
L) + CS (Q̄i

LγµQ
j
L)(L̄

α
Lγ

µLβ
L)
]
, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

ℓ
µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)
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3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.
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where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ
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αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
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diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ
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µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)
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3. A particularly restrictive scenario, that can be implemented both in the case of LQ or

colour-less mediators, is the so-called pure-mixing scenario, i.e. the hypothesis that

there exists a flavour basis where the NP interaction is completely aligned along the

flavour singlets. For both mediators, in this specific limit one arrives to the prediction

λℓ
µµ > 0.

In order to reduce the number of free parameters, in eq. (2.1) we assume the same

flavour structure for the two operators. This condition is realised in specific simplified

models, but it does not hold in general. The consequences of relaxing this assumption are

discussed in section 3 in the context of specific examples. Finally, motivated by the absence

of deviations from the SM in CP-violating observables, we assume all the complex phases,

except the CKM phase contained in the Vq spurion, to vanish (as shown in appendix A,

this implies λq
bs = λq

sb and λℓ
τµ = λℓ

µτ ).

2.2 Fit of the semi-leptonic operators

To quantify how well the proposed framework can accommodate the observed anomalies,

we perform a fit to low-energy data with four free parameters: CT , CS , λ
q
sb, and λℓ

µµ, while

for simplicity we set λℓ
τµ = 0.1 The set of experimental measurements entering the fit,

together with their functional dependence on the fit parameters, is discussed in length in

appendix B. In particular, we take into account the LFU tests in the charged-current semi-

leptonic observables Rτℓ
D(∗) and Rµe

b→c, global fits of b → sµµ processes (including the LFU

ratios Rµe
K(∗) and the angular observables) along the direction ∆Cµ

9 = −∆Cµ
10 [36–42], and

limits on B(B → K∗νν̄) [43]. We also include a set of observables sensitive to the purely-

leptonic and electroweak operators generated by the renormalisation-group running of the

semi-leptonic operators from the scale Λ down to the electroweak scale. The most notable

effects are the corrections to the Z → τ τ̄ effective couplings, to the invisible Z decay width,

and to the LFU (Rτℓ
τ ) and LFV (τ → 3µ) tests in τ decays [34, 35]. The matching scale

is set to Λ = 2TeV in the fit. The results change only slightly using Λ = 1TeV instead,

relaxing the impact of the loop-induced constraints. The observables considered in the

fit are summarised in table 1, together with their approximate dependence on the EFT

parameters. In order to fulfil the condition in eq. (2.3) we impose |λq
sb| < 5|Vcb|.

We minimise the total χ2 function to find the best-fit point and the corresponding

confidence level intervals. The result are presented as 2D plots after marginalising over the

other two parameters (see figure 1). The main observations can be summarised as follows.

1. Because of radiative constraints, the fit favours sizeable values of λq
sb/V

∗
ts ≈ −λq

sb/Vcb,

which allow to lower the value of CT,S (i.e. to increase the scale of NP) keeping

fixed the contribution to Rτℓ
D(∗) (see the bottom-right panel of figure 1). This can

be understood from the approximated expression for Rτℓ
D(∗) (see appendix B for the

exact formula used in the numerical fit),

Rτℓ
D(∗) ≈ 1 + 2CT

(
1− λq

sb

V ∗
tb

V ∗
ts

)
= 1.237± 0.053 , (2.4)

1We explicitly verified that a nonzero λτµ has no impact on the fit results.
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1

MX ~ 700 GeV  (for gX ~ 1)

Assuming a tree-level mediator (required for having such a large effect):

The low-energy operator receives two contributions:

(we work in the down quark mass basis)
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With a tree-level mediator

MX ~ 700 GeV for gX ~1.

Problems with direct searches at LHC 
in bb→ττ for all mediators.

Greljo, Isidori, DM 2015; Faroughy, Greljo, Kamenik 2016

High-pT

RGE effects and EWPT

 

Problems in well measured (per-mille) Zττ couplings 
at LEP-1  and LFU in τ decays.
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Ferruglio, Paradisi, Pattori  2016-2017

Challenge: to fit R(D(*))

b τ

b τ

CT ~ 0.12
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Solution: ‘large mixing’
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3. A particularly restrictive scenario, that can be implemented both in the case of LQ or

colour-less mediators, is the so-called pure-mixing scenario, i.e. the hypothesis that

there exists a flavour basis where the NP interaction is completely aligned along the

flavour singlets. For both mediators, in this specific limit one arrives to the prediction

λℓ
µµ > 0.

In order to reduce the number of free parameters, in eq. (2.1) we assume the same

flavour structure for the two operators. This condition is realised in specific simplified

models, but it does not hold in general. The consequences of relaxing this assumption are

discussed in section 3 in the context of specific examples. Finally, motivated by the absence

of deviations from the SM in CP-violating observables, we assume all the complex phases,

except the CKM phase contained in the Vq spurion, to vanish (as shown in appendix A,

this implies λq
bs = λq

sb and λℓ
τµ = λℓ

µτ ).

2.2 Fit of the semi-leptonic operators

To quantify how well the proposed framework can accommodate the observed anomalies,

we perform a fit to low-energy data with four free parameters: CT , CS , λ
q
sb, and λℓ

µµ, while

for simplicity we set λℓ
τµ = 0.1 The set of experimental measurements entering the fit,

together with their functional dependence on the fit parameters, is discussed in length in

appendix B. In particular, we take into account the LFU tests in the charged-current semi-

leptonic observables Rτℓ
D(∗) and Rµe

b→c, global fits of b → sµµ processes (including the LFU

ratios Rµe
K(∗) and the angular observables) along the direction ∆Cµ

9 = −∆Cµ
10 [36–42], and

limits on B(B → K∗νν̄) [43]. We also include a set of observables sensitive to the purely-

leptonic and electroweak operators generated by the renormalisation-group running of the

semi-leptonic operators from the scale Λ down to the electroweak scale. The most notable

effects are the corrections to the Z → τ τ̄ effective couplings, to the invisible Z decay width,

and to the LFU (Rτℓ
τ ) and LFV (τ → 3µ) tests in τ decays [34, 35]. The matching scale

is set to Λ = 2TeV in the fit. The results change only slightly using Λ = 1TeV instead,

relaxing the impact of the loop-induced constraints. The observables considered in the

fit are summarised in table 1, together with their approximate dependence on the EFT

parameters. In order to fulfil the condition in eq. (2.3) we impose |λq
sb| < 5|Vcb|.

We minimise the total χ2 function to find the best-fit point and the corresponding

confidence level intervals. The result are presented as 2D plots after marginalising over the

other two parameters (see figure 1). The main observations can be summarised as follows.

1. Because of radiative constraints, the fit favours sizeable values of λq
sb/V

∗
ts ≈ −λq

sb/Vcb,

which allow to lower the value of CT,S (i.e. to increase the scale of NP) keeping

fixed the contribution to Rτℓ
D(∗) (see the bottom-right panel of figure 1). This can

be understood from the approximated expression for Rτℓ
D(∗) (see appendix B for the

exact formula used in the numerical fit),

Rτℓ
D(∗) ≈ 1 + 2CT

(
1− λq

sb

V ∗
tb

V ∗
ts

)
= 1.237± 0.053 , (2.4)

1We explicitly verified that a nonzero λτµ has no impact on the fit results.

– 5 –

Allow the natural value   λqsb ∼ (few) × |Vts|.

R(D(*))

λqsb
CT

Buttazzo, Greljo, Isidori, DM  2017

With λqsb ≈ 3 |Vts|  CT can be smaller by 
a factor of 4 →  MX larger by a factor of 2.
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Figure 1. Fit to the semi-leptonic and purely leptonic (radiatively generated) observables in table 1,
in the framework of the triplet and singlet V −A operators (see eq. (2.1)), imposing |λq

sb| < 5|Vcb|.
In green, yellow, and gray, we show the ∆χ2 ≤ 2.3 (1σ), 6.2 (2σ), and 11.8 (3σ) regions, respectively,
after marginalising over all other parameters. In the bottom-right plot we fix CT = CS and perform
a fit with and without the radiatively induced observables.

of points within the 1σ preferred region (∆χ2 < 2.3). As can be seen, the upper bound set

on |λq
sb| is strongly correlated to the maximal allowed NP contribution to Rτℓ

D(∗) .

Analysing the correlations among the observables entering the fit, we find that more

precise tests of LFU in τ decays and tighter constraints on the invisible Z decay width would

help in determining the sign of CT +CS . We also find a non-trivial correlation among the

Zτ τ̄ couplings and the B → K(∗)νν̄ branching ratio. These results motivate further tests

of LFU in Z and τ decays, as well the search for b → sνν̄ transitions. However, the smoking

gun of the preferred solution of the EFT fit, that we denote the large λq
bs scenario, is a

huge enhancement of b → sτ τ̄ transitions — between two and three orders of magnitude

with respect to the SM — as shown in figure 2 (right). Such large values might be within

the experimental sensitivity of Belle II, which is expected to be of the order of 10−4 on the

– 7 –

A posteriori, this also solves the direct searches 
problems: allows heavier mediators.

EWPT (∝ CT,S) are crucial to select this region.
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Other effects of large mixing

This can generate too large corrections O(1) to  
B → K* νν
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Requires the singlet operator with  CT ~ CS
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Figure 2. Left: prediction for∆Cµ
9 = −∆Cµ

10 (following from Rµe
K(∗)) and Rτℓ

D(∗) for a randomly cho-
sen set of points within the 1σ preferred region of the EFT fit: the blue points are obtained setting
|λq

sb| < 5|Vcb|, while the green points are obtained setting the tighter condition |λq
sb| < 2|Vcb| in the

fit. The red cross denotes the 1σ experimental constraint. Right: expectations for B(B → K(∗)νν̄)
and B(B → K(∗)τ τ̄) within the 1σ preferred values of the EFT fit, again for λq

sb < 5Vcb (blue) and
λq
sb < 2Vcb (green).

branching ratio [44]. The size of the enhancement is clearly correlated with the maximal

allowed value of λbs. The expected deviations from the SM in Rµe
b→c turn out to be well

below the present sensitivity.

2.3 Beyond semi-leptonic operators: high-pT searches and ∆F = 2

As we have shown, for reasonable values of the free parameters the effective Lagrangian in

eq. (2.1) provides a good fit of both the Rτℓ
D(∗) and b → sµµ anomalies, being at the same

time consistent with all available low-energy constraints. The remaining two questions to

address, which go beyond the simple EFT approach so far adopted, are the compatibility of

the underlying model with high-pT searches, and bounds on pure-quark and pure-leptonic

four-fermion operators. Before analysing these questions in specific simplified models, it is

worth trying to address them in general terms.

As far as high-pT searches are concerned, particularly stringent bounds are set by

pp → τ τ̄ + X [33]. While the form of the NP signal depends on the specific mediator

(e.g. colour-less vector or leptoquark), the overall strength is controlled by the values of

CT and CS via the following effective interaction:

∆Lbbττ = − 1

Λ2
0

(
b̄LγµbL

)
(τ̄LγµτL) , Λ2

0 =
v2

CS + CT
. (2.5)

The present bounds on the EFT scale Λ0 were derived in [33] recasting different ATLAS

searches for τ τ̄ resonances, and read Λ0 > 0.62TeV. The fit discussed above implies

Λ0 ≈ 1.2TeV, which is well within the experimental limit. Despite being a relatively low

NP scale, this value is also high enough to pass the present constraints in most explicit

– 8 –

Huge corrections O(>102) in   B → K* ττ.

Also, depending on the UV model, there might 
be problems with Bs mixing (see later).
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Figure 1. Fit to the semi-leptonic and purely leptonic (radiatively generated) observables in table 1,
in the framework of the triplet and singlet V −A operators (see eq. (2.1)), imposing |λq

sb| < 5|Vcb|.
In green, yellow, and gray, we show the ∆χ2 ≤ 2.3 (1σ), 6.2 (2σ), and 11.8 (3σ) regions, respectively,
after marginalising over all other parameters. In the bottom-right plot we fix CT = CS and perform
a fit with and without the radiatively induced observables.

of points within the 1σ preferred region (∆χ2 < 2.3). As can be seen, the upper bound set

on |λq
sb| is strongly correlated to the maximal allowed NP contribution to Rτℓ

D(∗) .

Analysing the correlations among the observables entering the fit, we find that more

precise tests of LFU in τ decays and tighter constraints on the invisible Z decay width would

help in determining the sign of CT +CS . We also find a non-trivial correlation among the

Zτ τ̄ couplings and the B → K(∗)νν̄ branching ratio. These results motivate further tests

of LFU in Z and τ decays, as well the search for b → sνν̄ transitions. However, the smoking

gun of the preferred solution of the EFT fit, that we denote the large λq
bs scenario, is a

huge enhancement of b → sτ τ̄ transitions — between two and three orders of magnitude

with respect to the SM — as shown in figure 2 (right). Such large values might be within

the experimental sensitivity of Belle II, which is expected to be of the order of 10−4 on the

– 7 –

[See also Sebastien’s talk from Tuesday]
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EFT Fit - Results
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Figure 1. Fit to the semi-leptonic and purely leptonic (radiatively generated) observables in table 1,
in the framework of the triplet and singlet V −A operators (see eq. (2.1)), imposing |λq

sb| < 5|Vcb|.
In green, yellow, and gray, we show the ∆χ2 ≤ 2.3 (1σ), 6.2 (2σ), and 11.8 (3σ) regions, respectively,
after marginalising over all other parameters. In the bottom-right plot we fix CT = CS and perform
a fit with and without the radiatively induced observables.

of points within the 1σ preferred region (∆χ2 < 2.3). As can be seen, the upper bound set

on |λq
sb| is strongly correlated to the maximal allowed NP contribution to Rτℓ

D(∗) .

Analysing the correlations among the observables entering the fit, we find that more

precise tests of LFU in τ decays and tighter constraints on the invisible Z decay width would

help in determining the sign of CT +CS . We also find a non-trivial correlation among the

Zτ τ̄ couplings and the B → K(∗)νν̄ branching ratio. These results motivate further tests

of LFU in Z and τ decays, as well the search for b → sνν̄ transitions. However, the smoking

gun of the preferred solution of the EFT fit, that we denote the large λq
bs scenario, is a

huge enhancement of b → sτ τ̄ transitions — between two and three orders of magnitude

with respect to the SM — as shown in figure 2 (right). Such large values might be within

the experimental sensitivity of Belle II, which is expected to be of the order of 10−4 on the

– 7 –

J
H
E
P
1
1
(
2
0
1
7
)
0
4
4

1σ

2σ

3σ

30 25 20 15 10 5 0

4

2

0

2

4

λμμℓ ⨯103

λ s
bq
/V

cb

Figure 1. Fit to the semi-leptonic and purely leptonic (radiatively generated) observables in table 1,
in the framework of the triplet and singlet V −A operators (see eq. (2.1)), imposing |λq

sb| < 5|Vcb|.
In green, yellow, and gray, we show the ∆χ2 ≤ 2.3 (1σ), 6.2 (2σ), and 11.8 (3σ) regions, respectively,
after marginalising over all other parameters. In the bottom-right plot we fix CT = CS and perform
a fit with and without the radiatively induced observables.

of points within the 1σ preferred region (∆χ2 < 2.3). As can be seen, the upper bound set

on |λq
sb| is strongly correlated to the maximal allowed NP contribution to Rτℓ

D(∗) .

Analysing the correlations among the observables entering the fit, we find that more

precise tests of LFU in τ decays and tighter constraints on the invisible Z decay width would

help in determining the sign of CT +CS . We also find a non-trivial correlation among the

Zτ τ̄ couplings and the B → K(∗)νν̄ branching ratio. These results motivate further tests

of LFU in Z and τ decays, as well the search for b → sνν̄ transitions. However, the smoking

gun of the preferred solution of the EFT fit, that we denote the large λq
bs scenario, is a

huge enhancement of b → sτ τ̄ transitions — between two and three orders of magnitude

with respect to the SM — as shown in figure 2 (right). Such large values might be within

the experimental sensitivity of Belle II, which is expected to be of the order of 10−4 on the
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Observable Experimental bound Linearised expression

Rτℓ
D(∗) 1.237± 0.053 1 + 2CT (1− λq

sbV
∗
tb/V

∗
ts)(1− λℓ

µµ/2)

∆Cµ
9 = −∆Cµ

10
−0.61± 0.12 [36] − π

αemVtbV ∗
ts
λℓ
µµλ

q
sb(CT + CS)

Rµe
b→c − 1 0.00± 0.02 2CT (1− λq

sbV
∗
tb/V

∗
ts)λ

ℓ
µµ

BK(∗)νν̄
0.0± 2.6 1 + 2

3
π

αemVtbV ∗
tsC

SM
ν

(CT − CS)λ
q
sb(1 + λℓ

µµ)

δgZτL
−0.0002± 0.0006 0.033CT − 0.043CS

δgZντ −0.0040± 0.0021 −0.033CT − 0.043CS

|gWτ /gWℓ | 1.00097± 0.00098 1− 0.084CT

B(τ → 3µ) (0.0± 0.6)× 10−8 2.5× 10−4(CS − CT )2(λℓ
τµ)

2

Table 1. Observables entering in the fit, together with the associated experimental bounds (as-
suming the uncertainties follow the Gaussian distribution) and their linearised expressions in terms
of the EFT parameters. The full expressions used in the fit can be found in appendix B.

where a smaller value for CT can be compensated by a larger one for λq
sb. The

preferred values of λq
sb are still consistent with the general expectation in eq. (2.3).

As we discuss below, the substantial increase in the effective NP scale is also beneficial

in improving the agreement with the high-pT searches pointed out in [33].

2. The upper bound on B(B → K∗νν̄), as well as radiative constraints, strongly favour

equal magnitudes of triplet and singlet operators (CT ∼ CS). Nevertheless, at the 1σ

level this relation has to be satisfied only at the 30% level, and therefore requires no

fine tuning.

3. The flavour symmetry plays a non-trivial role in avoiding significant constraints on

the value of λq
sb from b → u transitions, in particular from B(B → τν), enforcing the

relation Rτℓ
b→u = Rτℓ

D(∗) (see appendix B).

4. The measured value of ∆Cµ
9 = −∆Cµ

10, together with the size of λq
sb and CT,S from

points 1 and 2, requires a value of λℓ
µµ ≈ O(10−2), perfectly consistent with the

hypothesis of a small breaking of the U(2)ℓ flavour symmetry. The measured values

of Rµe
K(∗) fix also the relative sign of λℓ

µµ and λℓ
ττ which must be opposite, strongly

disfavouring the pure mixing hypothesis.

5. We do not include λℓ
τµ in the fit, but we point out that values of |λℓ

τµ| ∼ |λℓ
µµ|1/2 ∼ 0.1

are perfectly compatible with the limits from LFV in τ decays, even after taking into

account radiatively-induced effects [35]. We nevertheless list the related observable

in table 1 since it is relevant for some of the simplified models, such as the scalar

leptoquark, where λℓ
τµ cannot be set to zero.

The best-fit region is consistent with both Rµe
K(∗) and Rτℓ

D(∗) anomalies. To illustrate

this fact, in figure 2 we show the values of the two observables for a randomly chosen set

– 6 –

J
H
E
P
1
1
(
2
0
1
7
)
0
4
4

|λsb
q |< 5 Vcb

|λsb
q |< 2 Vcb

SM

1.0 1.1 1.2 1.3 1.4 1.5
1.0

0.8

0.6

0.4

0.2

0.0

RD(*) / RD(*)
SM

Δ
C
9μ
=

Δ
C
10μ

Δχ2 < 2.3

Figure 2. Left: prediction for∆Cµ
9 = −∆Cµ

10 (following from Rµe
K(∗)) and Rτℓ

D(∗) for a randomly cho-
sen set of points within the 1σ preferred region of the EFT fit: the blue points are obtained setting
|λq

sb| < 5|Vcb|, while the green points are obtained setting the tighter condition |λq
sb| < 2|Vcb| in the

fit. The red cross denotes the 1σ experimental constraint. Right: expectations for B(B → K(∗)νν̄)
and B(B → K(∗)τ τ̄) within the 1σ preferred values of the EFT fit, again for λq

sb < 5Vcb (blue) and
λq
sb < 2Vcb (green).

branching ratio [44]. The size of the enhancement is clearly correlated with the maximal

allowed value of λbs. The expected deviations from the SM in Rµe
b→c turn out to be well

below the present sensitivity.

2.3 Beyond semi-leptonic operators: high-pT searches and ∆F = 2

As we have shown, for reasonable values of the free parameters the effective Lagrangian in

eq. (2.1) provides a good fit of both the Rτℓ
D(∗) and b → sµµ anomalies, being at the same

time consistent with all available low-energy constraints. The remaining two questions to

address, which go beyond the simple EFT approach so far adopted, are the compatibility of

the underlying model with high-pT searches, and bounds on pure-quark and pure-leptonic

four-fermion operators. Before analysing these questions in specific simplified models, it is

worth trying to address them in general terms.

As far as high-pT searches are concerned, particularly stringent bounds are set by

pp → τ τ̄ + X [33]. While the form of the NP signal depends on the specific mediator

(e.g. colour-less vector or leptoquark), the overall strength is controlled by the values of

CT and CS via the following effective interaction:

∆Lbbττ = − 1

Λ2
0

(
b̄LγµbL

)
(τ̄LγµτL) , Λ2

0 =
v2

CS + CT
. (2.5)

The present bounds on the EFT scale Λ0 were derived in [33] recasting different ATLAS

searches for τ τ̄ resonances, and read Λ0 > 0.62TeV. The fit discussed above implies

Λ0 ≈ 1.2TeV, which is well within the experimental limit. Despite being a relatively low

NP scale, this value is also high enough to pass the present constraints in most explicit
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Very good fit
natural values of parameters 

- small overall coefficient:  
higher NP scale 

- no special alignment required 
- R(K) can be easily fit by a 

suitable value of λμμ ~10-2 

- λτμ ~ 0.1 is OK for LFV bounds.
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Simplified Models
Strong assumptions: 

- both anomalies are due to the same mediator(s). 
- LL operators give the leading contribution.
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Tree-level mediators
Buttazzo, Greljo, Isidori, DM 2017

The Singlet and Triplet operators can be 
generated at the tree-level by:

The size of R(D) anomaly suggests a tree-level mediator.

Colorless vectors

V3 = W’ = (1, 3, 0), 
V1 = B’  = (1, 1, 0),

U1 = (3, 1, 2/3), 
U3 = (3, 3, 2/3),

Vector Leptoquarks

S1 = (3,̅ 1, 1/3), 
S3 = (3,̅ 3, 1/3),

Scalar Leptoquarks
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3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale

Leff = LSM− 1

v2
λq
ijλ

ℓ
αβ

[
CT (Q̄i

Lγµσ
aQj

L)(L̄
α
Lγ

µσaLβ
L) + CS (Q̄i

LγµQ
j
L)(L̄

α
Lγ

µLβ
L)
]
, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

ℓ
µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)

– 4 –
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Figure 3. The lines show the correlations among triplet and singlet operators in single-mediator
models. Colour-less vectors are shown in green, coloured scalar in blue, while coloured vectors in
red. Electroweak singlet mediators are shown with the solid lines while triplets with dashed.

The plot in figure 3 clearly singles out the case of a vector LQ, Uµ
1 , which we closely

examine in the next subsection, as the best single-mediator case. However, it must be

stressed that there is no fundamental reason to expect the low-energy anomalies to be

saturated by the contribution of a single tree-level mediator. In fact, in many UV com-

pletions incorporating one of these mediators (for example in composite Higgs models, see

section 4), these states often arise with partners of similar mass but different electroweak

representation, and it is thus natural to consider two or more of them at the same time.

For this reason, and also for illustrative purposes, in the following subsections we consider

two representative cases with more than one mediator at work: two colour-less vectors,

SU(2)L triplet and singlet, and two coloured scalars, also electroweak triplet and singlet.

3.1 Scenario I: vector leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is

that of an SU(2)L-singlet vector leptoquark, Uµ
1 ≡ (3,1, 2/3), coupled to the left-handed

quark and lepton currents

LU = −1

2
U †
1,µνU

1,µν +M2
UU

†
1,µU

µ
1 + gU (J

µ
UU1,µ + h.c.) , (3.1)

Jµ
U ≡ βiα Q̄iγ

µLα . (3.2)

Here β(0)
iα = δ3iδ3α up to U(2)q × U(2)ℓ breaking terms, as shown in eq. (A.3), and the

flavour structure used in the general fit is recovered by means of the relations (A.5). After

integrating out the leptoquark field, the tree-level matching condition for the EFT is

Leff ⊃ − 1

v2
CU βiαβ

∗
jβ

[
(Q̄i

Lγµσ
aQj

L)(L̄
β
Lγ

µσaLα
L) + (Q̄i

LγµQ
j
L)(L̄

β
Lγ

µLα
L)
]
, (3.3)
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U1 = (3, 1, 2/3), 
U3 = (3, 3, 2/3),

Vector Leptoquarks

Colorless vectors
W’ = (1, 3, 0), 
B’  = (1, 1, 0),

S1 = (3,̅ 1, 1/3), 
S3 = (3,̅ 3, 1/3),

Scalar Leptoquarks

Notable: 
The U1 can fit perfectly the 

anomalies as a single mediator. 

Combinations of mediators are 
also OK

Each mediator generates a specific combination of the 
singlet and triplet operators:

Triplet

Singlet
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Colorless Vectors

This generates also 4-Lepton and 4-Quark operators. 
Tree-level contribution to Bs mixing

W’ = (1, 3, 0), 
B’  = (1, 1, 0)

Large-mixing, Small CT,SλqsbCT

This corresponds to the fit shown previously. 
Direct searches and EWPT are OK. 

However

Bs mixing is too large by a factor ~ 500. 
Requires a tuning of ~ 10-4 level with 
additional contributions (e.g. from RH currents)

Small-mixing, Large CT,SλqsbCT
Now Bs mixing can be OK. 

RGE effects into EWPT are large, but can be 
tuned with additional (extra) contributions: 
10% tuning 

However
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Figure 3: Cross-sections for single on-shell Z0 production via
bottom-bottom fusion at the 13 TeV LHC. The predictions
obtained in the 5-flavor scheme at LO and NLO in QCD are
shown in green and red shaded bands, respectively. See text
for details.

and findings are consistent with those that have recently
appeared in the literature for specific Z

0 masses and SM-
like couplings [44]. Similar results are found for 8TeV
pp colisions. In setting bounds, we therefore rescale the
LO simulation results to NLO production cross-section
by applying the corresponding K-factor shown in Fig. 3
(bottom) at the lower factorization, renormalization and
68% CL PDF uncertainty ranges.

The resulting 95% CL upper limits on the |gbg⌧ | ⇥

v
2
/M

2
Z0 for a given Z

0 mass and total decay width, after
recasting ATLAS 8 TeV [36] (upper plot), 13 TeV with
3.2 fb�1 [37] (middle plot) and 13 TeV with 13.2 fb�1 [39]
(lower plot) ⌧

+
⌧
� searches, respectively, are shown in

Fig. 4 and marked with red isolines. Note that this
way of presenting results is independent of the assump-
tion on the existence of extra Z

0 decay channels. The
white region with gray border is not constrained since
the assumed total width there is smaller than the mini-
mum possible sum of the partial widths to bb̄ and ⌧

+
⌧
�

computed at the current experimental upper bound on
|gbg⌧ |/M

2
Z0 . These exclusions are to be compared with

the preferred value from the fit to the R(D(⇤)) anomaly,
|gbg⌧ | ⇥ v

2
/M

2
Z0 = (0.13 ± 0.03), indicated in green (1�)

and yellow (2�) shaded regions in the plot.

To conclude, for relatively heavy vectors MW 0 &
500 GeV within the vector triplet model, the resolution of
the R(D(⇤)) anomaly and consistency with existing ⌧

+
⌧
�

resonance searches at the LHC require a very large Z
0 to-

tal decay width. Perturbative calculations arguably fail
in this regime. In other words, within the weakly cou-
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Figure 4: Recast of ATLAS ⌧
+
⌧
� searches at 8 TeV [36] (up-

per plot) 13 TeV with 3.2 fb�1 [37] (middle plot) and 13 TeV
with 13.2 fb�1 [39] (lower plot) as exclusion limits on the
bb̄ induced spin-1 ⌧

+
⌧
� resonance (bb̄ ! Z

0 ! ⌧⌧). Iso-
lines shown in red represent upper limits on the combination
|gbg⌧ |⇥ v

2
/M

2
Z0 as a function of the Z

0 mass and total width.
The R(D(⇤)) preferred regions |gbg⌧ |⇥v

2
/M

2
Z0 = (0.13±0.03)

at 68% and 95% CL are shaded in green and yellow, respec-
tively.

pled regime of this setup the resolution of the R(D(⇤))
anomalies cannot be reconciled with existing LHC ⌧

+
⌧
�

searches. On the other hand, interestingly, a light Z
0

resonance with MZ0 . 400 GeV, a relatively small width
and couplings compatible with the W

0 resolution of the
R(D(⇤)) anomaly is not excluded by our ⌧+⌧� search re-
cast. Note, however, that our analysis is by no means

the Z’ is excluded by 
direct searches, unless it 
has a very large width

+ +
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Vector Leptoquark U1 = (3, 1, 2/3)
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Figure 4. Fit to semi-leptonic and radiatively-generated purely leptonic observables in table 1, for
the vector leptoquark Uµ, imposing |βsµ,sτ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we
show the ∆χ2 ≤ 2.3 (1σ), 6.0 (2σ), and 11.6 (3σ) regions, respectively. The dashed and solid blue
lines represent the 1 and 2σ limits in the case where radiative constraints are removed from the fit.

where CU = v2|gU |2/(2M2
U ) > 0. Note that in this case the singlet and triplet operators

have the same flavour structure and, importantly, the relation CS = CT is automatically

fulfilled at the tree-level. Furthermore, as already stressed, the flavour-blind contraction

involving light fermions (flavour doublets) is automatically forbidden by the U(2)q ×U(2)ℓ
symmetry. Last but not least, this LQ representation does not allow baryon number violat-

ing operators of dimension four. These features, and the absence of a tree-level contribution

to Bs(d) meson-antimeson mixing, makes this UV realisation, originally proposed in [17],

particularly appealing: the best fit points of the general fit in section 2.2 can be recovered

essentially without tuning of the model parameters.

In figure 4 we show the results of the flavour fit in this parametrisation (using the

βiα rather than the λq(ℓ)
ij(αβ) as free parameters). When marginalising we let βsτ and βsµ

vary between ±5|Vcb| and impose |βbµ| < 0.5. We find very similar conclusions to the

previous fit, in particular a reduced value of CU thanks to the extra contribution to Rτℓ
D(∗)

proportional to βsτ , with both this parameter and βsµ of O(|Vcb|).
Despite being absent at the tree level, a contribution to∆F = 2 amplitudes is generated

in this model at the one-loop level. The result thus obtained is quadratically divergent and

therefore strongly dependent on the UV completion. Following the analysis of ref. [17],

i.e. setting a hard cut-off Λ on the quadratically divergent ∆F = 2 (down-type) amplitudes,

leads to

∆L(∆B=2) = C(U)
0

(V ∗
tbVti)2

32π2v2
(
b̄Lγµd

i
L

)2
, C(U)

0 = C2
U

(
λq
bs

Vts

)2
Λ2

2v2
. (3.4)

As already pointed out in section 2.3, the value of C(U)
0 should not exceed O(10%) given

the experimental constraints on ∆MBs,d (for comparison, C(SM)
0 = (4πα/s2W )S0(xt) ≈ 1.0,
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Requiring a single mediator, the vector LQ is the simplest solution. 
It easily provides a good fit since dynamically CS = CT.
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Figure 3. The lines show the correlations among triplet and singlet operators in single-mediator
models. Colour-less vectors are shown in green, coloured scalar in blue, while coloured vectors in
red. Electroweak singlet mediators are shown with the solid lines while triplets with dashed.

The plot in figure 3 clearly singles out the case of a vector LQ, Uµ
1 , which we closely

examine in the next subsection, as the best single-mediator case. However, it must be

stressed that there is no fundamental reason to expect the low-energy anomalies to be

saturated by the contribution of a single tree-level mediator. In fact, in many UV com-

pletions incorporating one of these mediators (for example in composite Higgs models, see

section 4), these states often arise with partners of similar mass but different electroweak

representation, and it is thus natural to consider two or more of them at the same time.

For this reason, and also for illustrative purposes, in the following subsections we consider

two representative cases with more than one mediator at work: two colour-less vectors,

SU(2)L triplet and singlet, and two coloured scalars, also electroweak triplet and singlet.

3.1 Scenario I: vector leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is

that of an SU(2)L-singlet vector leptoquark, Uµ
1 ≡ (3,1, 2/3), coupled to the left-handed

quark and lepton currents

LU = −1

2
U †
1,µνU

1,µν +M2
UU

†
1,µU

µ
1 + gU (J

µ
UU1,µ + h.c.) , (3.1)

Jµ
U ≡ βiα Q̄iγ

µLα . (3.2)

Here β(0)
iα = δ3iδ3α up to U(2)q × U(2)ℓ breaking terms, as shown in eq. (A.3), and the

flavour structure used in the general fit is recovered by means of the relations (A.5). After

integrating out the leptoquark field, the tree-level matching condition for the EFT is

Leff ⊃ − 1

v2
CU βiαβ

∗
jβ

[
(Q̄i

Lγµσ
aQj

L)(L̄
β
Lγ

µσaLα
L) + (Q̄i

LγµQ
j
L)(L̄

β
Lγ

µLα
L)
]
, (3.3)
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Figure 4. Fit to semi-leptonic and radiatively-generated purely leptonic observables in table 1, for
the vector leptoquark Uµ, imposing |βsµ,sτ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we
show the ∆χ2 ≤ 2.3 (1σ), 6.0 (2σ), and 11.6 (3σ) regions, respectively. The dashed and solid blue
lines represent the 1 and 2σ limits in the case where radiative constraints are removed from the fit.

where CU = v2|gU |2/(2M2
U ) > 0. Note that in this case the singlet and triplet operators

have the same flavour structure and, importantly, the relation CS = CT is automatically

fulfilled at the tree-level. Furthermore, as already stressed, the flavour-blind contraction

involving light fermions (flavour doublets) is automatically forbidden by the U(2)q ×U(2)ℓ
symmetry. Last but not least, this LQ representation does not allow baryon number violat-

ing operators of dimension four. These features, and the absence of a tree-level contribution

to Bs(d) meson-antimeson mixing, makes this UV realisation, originally proposed in [17],

particularly appealing: the best fit points of the general fit in section 2.2 can be recovered

essentially without tuning of the model parameters.

In figure 4 we show the results of the flavour fit in this parametrisation (using the

βiα rather than the λq(ℓ)
ij(αβ) as free parameters). When marginalising we let βsτ and βsµ

vary between ±5|Vcb| and impose |βbµ| < 0.5. We find very similar conclusions to the

previous fit, in particular a reduced value of CU thanks to the extra contribution to Rτℓ
D(∗)

proportional to βsτ , with both this parameter and βsµ of O(|Vcb|).
Despite being absent at the tree level, a contribution to∆F = 2 amplitudes is generated

in this model at the one-loop level. The result thus obtained is quadratically divergent and

therefore strongly dependent on the UV completion. Following the analysis of ref. [17],

i.e. setting a hard cut-off Λ on the quadratically divergent ∆F = 2 (down-type) amplitudes,

leads to

∆L(∆B=2) = C(U)
0

(V ∗
tbVti)2

32π2v2
(
b̄Lγµd

i
L

)2
, C(U)

0 = C2
U

(
λq
bs

Vts

)2
Λ2

2v2
. (3.4)

As already pointed out in section 2.3, the value of C(U)
0 should not exceed O(10%) given

the experimental constraints on ∆MBs,d (for comparison, C(SM)
0 = (4πα/s2W )S0(xt) ≈ 1.0,
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• Leading new (FV) dynamics: 
Semileptonic operators with left-handed doublets Q and L

2

at both LEP-1 and LHC (see e.g. Ref. [13]). Also, such ef-
fects are not enhanced at high energies, scaling like ⇠ v2/L 2,
where v ' 246 GeV.

For these reasons we neglect them and focus on the
four-fermion interactions which comprise of four classes
depending on the chirality: (L̄L)(L̄L), (R̄R)(R̄R), (R̄R)(L̄L),
and (L̄L)(R̄R). In particular, the relevant set of operators is:

L
SMEFT �

c(3)Qi jLkl

L 2 (Q̄igµ saQ j)(L̄kgµ saLl)+
c(1)Qi jLkl

L 2 (Q̄igµ Q j)(L̄kgµ Ll)+

cui jekl

L 2 (ūigµ u j)(ēkgµ el)+
cdi jLkl

L 2 (d̄igµ d j)(ēkgµ el)+

cui jLkl

L 2 (ūigµ u j)(L̄kgµ Ll)+
cdi jLkl

L 2 (d̄igµ d j)(L̄kgµ Ll)+

cQi jekl

L 2 (Q̄igµ Q j)(ēkgµ el) (1)

where i, j,k, l are flavour indices, Qi =(V ⇤
jiu

j
L,d

i
L)

T and Li =

(n i
L,`

i
L)

T are the SM left-handed quark and lepton weak
doublets, while di, ui, ei are the right-handed singlets. V
is the CKM flavour mixing matrix and sa are the Pauli
matrices acting on SU(2)L space.

An equivalent classification of the possible contact in-
teractions can be obtained by studying directly the q q̄ !
`�`+ scattering amplitude:

A (qi
p1

q̄ j
p2
! `�p01

`+p02
) = i Â

qL,qR
Â
`L,`R

(q̄igµ q j) ( ¯̀gµ`) Fq`(p2) ,

(2)

where p ⌘ p1 + p2 = p01 + p02, and the form factor Fq`(p2)
can be expanded around the physical poles present in the
SM (photon and Z boson propagators), leading to

Fq`(p2) = d i j e2QqQ`

p2 +d i j gq
Zg`Z

p2 �m2
Z + imZGZ

+
eq`

i j

v2 . (3)

Here, Qq(`) is the quark (lepton) electric charge, while gq(`)
Z

is the corresponding coupling to Z boson: in the SM
g f

Z = 2mZ
v (T 3

f �Q f sin2 qW ). The contact terms eq`
i j are related

to the EFT coefficients in Eq. (1) by simple relations ex =
v2

L 2 cx. The only constraint on the contact terms imposed by

SU(2)L invariance are edLek
R

i j = euLek
R

i j = cQi jekk v2/L 2.
The dilepton invariant mass spectrum can be written as

(see Appendix A),

ds
dt

=

✓
ds
dt

◆

SM
⇥ Âq,`Lqq̄(t,µF)|Fq`(ts0)|2

Âq,`Lqq̄(t,µF)|FSM
q` (ts0)|2

, (4)

where t ⌘ m2
`+`�/s0 and

p
s0 is the proton-proton center

of mass energy. The sum is over the left- and right-handed
quarks and leptons as well as the quark flavours accessible
in the proton. Note that, since we are interested in the high-
energy tails (away from the Z pole), the universal higher-
order radiative QCD corrections factorise to a large extent.

SM

!4 TeV"!2!Q3ΓΑQ3"!L2ΓΑL2"

!!30 TeV"!2!Q1ΓΑΣaQ1"!L2ΓΑΣaL2"

!4 TeV"!2!Q2ΓΑQ2"!L2ΓΑL2"

500 1000 1500 2000 2500 3000 3500 4000
0.7

0.8

0.9

1.0

1.1

1.2

1.3

m !% !! #GeV$

R
Μ%
Μ!
%e% e!

dΣ !pp" Μ$Μ%" # dΣ !pp" e$e%" , s0 & !13 TeV"2

Fig. 1 Rµ+µ�/e+e� as a function of the dilepton invariant mass m`+`�

for three new physics benchmark points. See text for details.

Therefore, consistently including those corrections in the
SM prediction is enough to achieve good theoretical accu-
racy. It is still useful to define the differential LFU ratio,

Rµ+µ�/e+e�(m``)⌘
dsµµ
dm``

/
dsee

dm``
=

=
Âq,µ Lqq̄(m2

``/s0,µF)|Fqµ(m2
``)|2

Âq,e Lqq̄(m2
``/s0,µF)|Fqe(m2

``)|2
,

(5)

which is a both theoretically and experimentally cleaner
observable. In fact, in the SM both QCD and electroweak
corrections are universal among muons and electrons, pre-
dicting RSM

µ+µ�/e+e�(m``) ' 1 with very high accuracy. As
an illustration, we show in Fig. 1 the predictions for this
observable at

p
s0 = 13 TeV, assuming new physics in three

benchmark operators. The parton luminosities used to de-
rive these predictions are discussed in the next chapter.

A goal of this work is to connect the high-pT dilepton
tails measurements with the recent experimental hints on
lepton flavour universality violation in rare semileptonic B
meson decays. The pattern of observed deviations can be
explained with a new physics contribution to a single four-
fermion bsµµ contact interaction. As discussed in more
details in Section 3, a good fit of the flavour anomalies
can be obtained with a left-handed chirality structure. For
this reason, when discussing the connection to flavour in
Section 3, we limit our attention to the (L̄L)(L̄L) oper-
ators with muons given in the first line of Eq. (1).1 For
this purpose, it is useful to rearrange the terms relevant to
p p ! µ+µ� as:2

L
eff �

CUµ
i j

v2 (ūi
Lgµ u j

L)(µ̄Lgµ µL)+
CDµ

i j

v2 (d̄i
Lgµ d j

L)(µ̄Lgµ µL) , (6)

1Note that similar conclusions apply also for solutions of the flavour
anomalies involving operators with different chirality structure.
2The down and up couplings are given by two orthogonal combina-
tions of the triplet and singlet operators in the first line of Eq. (1):
CD(U)µ

i j = v2/L 2(c(1)Qi jL22
± c(3)Qi jL22

).
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Scalar Leptoquarks S1 = (3,̅ 1, 1/3), 
S3 = (3,̅ 3, 1/3)

J
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7
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Figure 5. Present and future-projected LHC constraints on the vector leptoquark model of
section 3.1. The 1σ and 2σ preferred regions from the low-energy fit are shown in green and
yellow, respectively.

3.2 Scenario II: scalar leptoquarks

We introduce two scalar leptoquarks S1 = (3,1, 1/3) and S3 = (3,3, 1/3). The relevant

interaction Lagrangian is given by [46]

L ⊃ g1β1 iα(Q̄
c i
L ϵLα

L)S1 + g3β3 iα(Q̄
c i
L ϵσaLα

L)S
a
3 + h.c., (3.5)

where ϵ = iσ2, Qc
L = CQ̄T

L, and Sa
3 are the components of the S3 leptoquark in SU(2)L

space. A model with the same field content was recently proposed in [26] as a possible

solution of the B-physics anomalies. However, the flavour structure postulated in [26]

leads to large cancellations in b → sνν̄ and potential tuning also in b → u charged-

current transitions. Contrary to the vector LQ case, baryon number conservation is not

automatically absent in the renormalisable operators built in terms of S1,3 and must be

imposed as an additional symmetry of the theory.

Integrating out the leptoquark states at tree-level and matching to the effective theory,

we find the following semi-leptonic operators

Leff ⊃ − 1

v2
(
C1β1,iββ

∗
1,jα − C3β3,iββ

∗
3,jα

)
(Q̄i

Lγµσ
aQj

L)(L̄
α
Lγ

µσaLβ
L)

− 1

v2
(
−C1β1,iββ

∗
1,jα − 3C3β3,iββ

∗
3,jα

)
(Q̄i

LγµQ
j
L)(L̄

α
Lγ

µLβ
L) ,

(3.6)

where C1,3 = v2|g1,3|2/(4M2
S1,3

) > 0. Enforcing a minimally broken U(2)q × U(2)ℓ flavour

symmetry the two mixing matrices β1,iα and β3 iα follow the decomposition presented in

appendix A and have a hierarchical structure similar to the βiα of the vector LQ case.

These two flavour matrices are, in general, different. However, for the sake of simplicity, in

the fit we fix β3,sµ = β1,sµ and β1,bµ = β3,bµ, keeping only the two s− τ elements different

– 13 –
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(since this is required for the fit to work). The matching of the overall scale with the

notation of eq. (2.1) is given by

CS = −C1 − 3C3 , CT = C1 − C3 . (3.7)

The relation to the various observables used in the fit can be found in appendix B. The

leading contributions to the flavour observables in table 1 are

Rτ/ℓ
D(∗) ≈ 1 + 2(C1 − C3) + 2(C1β1,sτ − C3β3,sτ )

Vcs

Vcb
,

∆C9 = −∆C10 =
4π

αVtbVts
C3βsµβbµ ,

Rµ/e
b→c ≈ 1 + 2(C1 − C3)βbµ

(
βbµ + βsµ

Vcs

Vcb

)
,

BK∗νν − 1 ∝ (C1β1,sτ + C3β3,sτ ) ,

(3.8)

while the contributions to the radiatively generated ones can be derived simply using

eq. (3.7). The results of the fit of semi-leptonic flavour observables, as well as radiatively

generated contributions to Z → τ τ̄ , νν̄ and τ decays, are illustrated in figure 6.

A good fit can be obtained for C1 ∼ C3 (to pass the limits from τ LFU decays, which

are proportional to CT ), β1,sτ ∼ −β3,sτ ∼ (few)×Vcb > 0 (to pass BK∗νν̄ and fit RD∗), and

βsµβbµ > 0 (to fit ∆Cµ
9 ). In particular, in this limit the leading contributions to BK∗νν and

τ LFU observables vanish. However, radiative corrections to Z → τ τ̄ , νν̄ observables are

enhanced by the factor of 3 in eq. (3.7), which in turn forces the size of C1,3 to be smaller

than what expected from the EFT fit, implying a ∼ 1.5σ tension in RD(∗) (since we fix

an upper limit on the size of β1(3),sτ ). Allowing a cancellation of the radiative corrections

to Z couplings with a very mild tuning (at the ∼ 30% level), for example due to some

genuine UV contributions, the tension disappears and all flavour anomalies can be fitted

at the same time. Pure four-quark and four-lepton operators are instead generated at the

one-loop level and turn out to be negligible. The greatest virtue of this scenario is the

natural absence of significant constraints from ∆F = 2 processes due to the smallness of

the corresponding (finite) loop amplitudes (see for example figure 3 of ref. [55]).

Let us finally comment on the importance of single LQ + lepton production process in

high-pT LHC searches. For illustrative purposes, we implement in FeynRules [56] the scalar

LQ field S with the coupling L ⊃ −gbτ b̄RτL S +h.c. . We use MadGraph5 aMC@NLO [57]

with the NNPDF2.3 [58] NLO PDF set, to calculate the relevant cross sections at LO in

QCD in the 5-flavor scheme. The results are shown in figure 7, where the solid black line

is the QCD-induced LQ pair production cross section as a function of the LQ mass MS .

Pair production is (to a good approximation) insensitive on the LQ-b-τ coupling, unlike

the single LQ + τ production (gb → Sτ at the partonic level). By fitting the B-physics

anomalies, this coupling is essentially fixed for a given value of the LQ mass, so the cross

section for pp → Sτ can be predicted in terms of the LQ mass only. Shown in dashed blue

and red lines are representative examples favoured by the low-energy data, gbτ = MS/1TeV

and gbτ = MS/2TeV, respectively. Clearly, for LQ mass ! 1TeV, single LQ + τ becomes

an important production mechanism at the LHC.
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5.2 Charged-current processes

The observed deviations in charged-current b ! c⌧⌫ transitions require the largest new
physics contribution. The e↵ective operators at the B-meson mass scale relevant for this
model are

L
b!c⌧̄ ⌫̄⌧
e↵ � �

2

v2
Vcb

⇥
(1 + c⌧VL

)O⌧
VL

� c⌧ST
O

⌧
T � c⌧SL

O
⌧
SL

⇤
+ h.c. , (5.5)

where

O
⌧
VL

= (c̄L�µbL)(⌧̄L�
µ⌫⌧ ) , O

⌧
T = (c̄R�µ⌫bL)(⌧̄R�

µ⌫⌫⌧ ) , O
⌧
SL

= (c̄RbL)(⌧̄R⌫⌧ ) , (5.6)

Matching at the tree-level with the SMEFT operators generated by integrating out the
S1 and S3 fields, Eq. (3.24), one has:

c⌧VL
= (c(3)lq )⌧⌧33 + (c(3)lq )⌧⌧32

Vcs

Vcb
= (|✏1|

2
� |✏3|

2)� (|✏1|
2�1,s⌧ � |✏3|

2�3,s⌧ )
V ⇤
tb

V ⇤
ts

,

c⌧T = (c(3)lequ)⌧⌧32 =
✏u1✏

⇤
1

4

�u
1,c⌧

Vcb

c⌧SL
= (c(1)lequ)⌧⌧32 = �4cT = �✏u1✏

⇤
1

�u
1,c⌧

Vcb
.

(5.7)

Due to the bound in Eq. (5.3), one can safely neglect the contributions to the tensor and
scalar operators proportional to ✏u1 and keep only the vector operator. The new physics
dependence of RD(⇤) is then simply given by:

RD/R
SM
D = RD⇤/RSM

D⇤ ⇡ 1 + 2c⌧VL
= 1.237± 0.0053 . (5.8)

The B�
c ! ⌧ ⌫̄⌧ branching ratio is very sensitive to the scalar operator OSL

and the Bc

lifetime can be used to put an upper limit on such terms [113]. However, in this setup
the constraint from ⌧ ! µ� makes c⌧SL

completely negligible.
Deviations from lepton flavour universality in b ! cµ(e)⌫ transitions are constrained

at the ⇠ O(1)% level [114]. In this model they are given by [45]

Rµe
b!c ⇡ 1 + 2(|✏1|

2
� |✏3|

2)�2
bµ

✓
1 +

�sµ

�bµ

Vcs

Vcb

◆
, (5.9)

where I neglected the scalar and tensor contributions. In the natural region of parameter
space of the model, this is well within the experimental limit.

5.3 Neutral-current processes

- B ! K(⇤)µ+µ�

The relevant coe�cients of the e↵ective Hamiltonian at the B meson scale and their
tree-level matching to the model are (see also Refs. [34, 59, 111,115]):

�Cµ
9 = ��Cµ

10 = �
⇡

↵VtbV ⇤
ts

⇣
(c(1)lq )µµ23 + (c(3)lq )µµ23

⌘
=

4⇡

↵VtbV ⇤
ts

|✏3|
2 �3,bµ�3,sµ =

⇡ �0.69
|✏3|2

0.01

�3,bµ

0.1

�3,sµ

0.4|Vts|
= �0.61± 0.12

(5.10)
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and the Bc

lifetime can be used to put an upper limit on such terms [113]. However, in this setup
the constraint from ⌧ ! µ� makes c⌧SL

completely negligible.
Deviations from lepton flavour universality in b ! cµ(e)⌫ transitions are constrained

at the ⇠ O(1)% level [114]. In this model they are given by [45]
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where I neglected the scalar and tensor contributions. In the natural region of parameter
space of the model, this is well within the experimental limit.

5.3 Neutral-current processes

- B ! K(⇤)µ+µ�

The relevant coe�cients of the e↵ective Hamiltonian at the B meson scale and their
tree-level matching to the model are (see also Refs. [34, 59, 111,115]):
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5.2Charged-currentprocesses

Theobserveddeviationsincharged-currentb!c⌧⌫transitionsrequirethelargestnew
physicscontribution.Thee↵ectiveoperatorsattheB-mesonmassscalerelevantforthis
modelare
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- B ! K(⇤)⌫⌫̄

The relevant e↵ective Lagrangian for this process is [116,117]

L
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L )PL +�C↵�
R PR]b
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⌫̄↵
L�

µ⌫�
L

⌘
, (5.11)

where CSM
L = �6.38± 0.06 [116, 117]. The contribution from the leptoquarks is (see also

Refs. [59, 111])

�C↵�
L = �

⇡

↵VtbV ⇤
ts

((c(1)lq )↵�23 � (c(3)lq )↵�23) =
2⇡

↵VtbV ⇤
ts

�
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2 �3,s↵�3,b�

�
.

(5.12)
The relevant observables depend on the EFT coe�cient as [116,117]:
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where

�c⌧⌧L ⌘
�C⌧⌧

L

CSM
L

⇡ 1.3

✓
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◆
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and for simplicity I included only the leading correction due to the tau neutrinos. The
90% CL limit is taken from Ref. [59].

- B � B̄ mixing

New physics contributions toB0
�B

0
mixing via an e↵ective LL operator can be parametrised

as
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0 )
(VtbV ⇤

ti )
2
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2 , (5.15)

where i = d, s and CSM
0 = 4⇡↵S0(xt) ⇡ 1.0. A loop of the S1 and S3 leptoquarks

contributes as (see also Refs. [111, 118] for the individual contributions)
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◆
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where I neglected SM fermion masses, f(x) = x
x2�1 log x

2 (note that f(x) 2 [0, 1] and
f(1) = 1), and took into account that, for Bd mixing, �1(3),d⌧/V ⇤

td = �1(3),s⌧/V ⇤
ts according

to the U(2)q symmetry structure. The new physics contributions should not exceed⇠ 10%
of the SM one, in order to be safe from experimental limits,8

(�MBs
)S1+S3

(�MBs
)SM

=
⌘LL(mS3)C

S1+S3
0

CSM
0

⇡ ⌘LL(mS3) C
S1+S3
0 . 10% . (5.17)

8A recent update of lattice calculations is responsible for a shift in the SM prediction which results
in a slight tension with the measurement, (�MBs)

exp/(�MBs)
SM = �0.11 ± 0.06. Even though with

purely imaginary couplings, Arg(g1,3) = ±⇡/2, it can be possible to fit this tension, I will not pursue it
here since this is an issue still to be settled. See Ref. [119] for a recent detailed discussion.
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1

the RGE equations from [120] and the results from Ref. [43] one gets

�g⌧L ⇡
Ncy2t
16⇡2

log
mLQ

mt

⇣
(C(3)

lq )⌧⌧33 � (C(1)
lq )⌧⌧33

⌘
⇡ 0.08(|✏1|

2 + |✏3|
2) = (0.16± 0.58)⇥ 10�3 ,

�g⌧R ⇡
Ncy2t
16⇡2

log
mLQ

mt
(Ceu)⌧⌧33 ⇡ �0.08|✏u1 |

2 = (0.39± 0.62)⇥ 10�3 , (5.20)
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(C(3)

lq )⌧⌧33 ⇡ �0.08(|✏1|
2
� |✏3|

2) = (0.97± 0.98)⇥ 10�3 ,

where in the numerical evaluation I set mLQ = 1.5 TeV, neglected the subleading elec-
troweak contributions, and used the limits from the global fit of Ref. [121] for Z⌧⌧ and
from Ref. [122] for the LFU constraints in ⌧ -decays (see the Appendix of Ref. [45] for
more details). The deviation in the Z⌫⌫ coupling is related by gauge invariance to
�g⌫⌧ = �g⌧L + �gW⌧ .

An analogous radiative contribution is generated to lepton-flavour violating (LFV)
Z⌧µ couplings, which can then mediate LFV ⌧ decays [45]:

B(⌧ ! 3µ) ⇡ 5⇥ 10�4(|✏1|
2 + |✏3|

2)2�2
bµ < 1.2⇥ 10�8 . (5.21)

5.5 Fitting the B-meson anomalies

The SU(2)q⇥SU(2)l flavour structure of the left-handed couplings is well suited to fit the
B-physics anomalies, as described in Ref. [45]. Since, as shown above, the relevant e↵ects
are very similar to those studied in Ref. [45], I do not repeat a full numerical global fit
here. Instead, the preferred region in parameter space can be easily understood as follows:

• The electroweak constraints put an upper limit |✏1|2 ⇡ |✏3|2 . 10�2.

• Fitting the R(D(⇤)) excess while begin at the same time consistent with R⌫⌫ then
requires �1,s⌧ ⇡ ��3,s⌧ ⇡ (few)⇥ |Vts| > 0. If one limits the size of these o↵-diagonal
terms to (few)⇥ |Vts|, the EWPT contraints do not allow to completely recover the
anomaly [45]. Furthermore, the constraint from Bs mixing (5.18) makes this tension
even stronger if it is not addressed by tuning with some other contribution.

• The suppression in B ! K(⇤)⌫⌫̄ corresponds to an enhancement in B ! K(⇤)⌧+⌧�.
As shown for example in Ref. [45], the expected signal could be hundreds of times
the SM prediction, bringing it possibly within the expected reach of Belle-II.

• The fit to the neutral-current b ! sµµ anomalies fixes the remaining parame-
ters: �3,bµ ⇡ 0.1 and �3,sµ ⇡ �3,bµ�1,s⌧ , consistently with the flavour structure of
Eq. (3.23). The analogous couplings of S1 are expected to be of the same order
since the two have the same flavour structure. This value of �bµ and the size of
|✏1,3|2 make the contribution to LFV ⌧ decays much smaller than the present sensi-
tivity.

• The experimental limit from ⌧ ! µ� imposes the constraint |✏u1 |
2 . 10�6. In terms

of couplings this corresponds to gu1 . 10�2g1,3. This can be naturally linked to the
hierarchy y⌧/yt by charging the right-handed leptons with an additional approximate
U(1)e symmetry.
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EFT fit

→ The flavor structure of the two LQ has to be misaligned:

where aq = O(1). As will be shown below, in order to fit the flavor anomalies while
avoiding dangerous e↵ects involving electrons, the left-handed lepton spurion can be taken
approximately as

V` ⇡

✓
0
�⌧µ

◆
, (17)

where �⌧µ ⇠ O(0.1) (this comes from the global fit of the B-anomalies of [1]). The other
spurions are instead unconstrained at this level and, since they are in principle completely
independent of Vq,`, they could be much smaller in size, rendering their phenomenological
e↵ect subleading.

3.2 S1,3 LQ couplings

After condensation, the couplings of both scalar LQ to SM fermions arising from the
operators in Eq. (12,13) can be written as

LS1,3 = g1�1,i↵(q̄
c i
L ✏`↵L)S1 + g3�3,i↵(q̄

c i
L ✏�a`↵L)S

a
3
+ gu

1
�u
1,i↵(ū

c i
R e

↵
R)S1 + h.c. . (18)

The flavor structure of the couplings with left-handed fermions is the same, up to O(1)
coe�cients, for both LQ. These are given by

�1,3 ⇠

✓
VqV

†
` Vq

V †
` 1

◆
, �u

1
⇠

✓
VuV †

e Vu

V †
e 1

◆
, (19)

where we also included the terms quadratic in the spurions, since they are relevant to the
b ! sµµ anomalies. The flavor structure of the left-handed couplings is ideal to fit the
B-physics anomalies, as described in the fit of Ref. [1], which finds a good fit for

�1,s⌧ ⇡ ��3,s⌧ ⇡ (few)⇥ |Vts| > 0, �1(3),bµ ⇡ 0.1 , �1(3),sµ ⇡ �1(3),bµ�1,s⌧ . (20)

The coupling of the S1 LQ to the right-handed current ūc
ReR generates also scalar

and tensor operators contributing to charged-current b ! c⌧⌫ transition, and various
operators (right-handed, scalar, and tensor) contributing to b ! s`` transitions [27]. All
these extra contributions can be easily subleading if |(Vu)2| ⌧ |Vts|. The only unavoidable
large e↵ect (suppressed only by v2/m2

LQ) involves the right-handed top, which however is
not well tested experimentally.

Write the SMEFT operators obtained when integrating out the LQ.

3.3 R̃2 LQ coupling

The couplings of the R̃2 state derived from Eq. (14) can be parametrized by the Lagrangian

LR̃2
= gR�R,i↵R̃2✏(d̄

i
R`

↵
L) + h.c. . (21)

10

→ Some residual tension at the ~1.5σ level between Zττ and R(D)

→ Bs-mixing is calculable and in tension with R(D):

where ⌘LL(mS3) ⇡ 0.79 encodes the renormalisation group e↵ects down to mb.
In the limit g1 = g3, mS1 = mS3 , and �1,s⌧ = ��3,s⌧ & |Vts| one can approximately

relate the deviation in Bs mixing to the one in RD(⇤) :

(�MBs
)S1+S3

(�MBs
)SM

⇡ 0.74
⇣ mS1,3

1 TeV

⌘2
✓
RD(⇤)/RSM

D(⇤) � 1

0.23

◆2

, (5.18)

where in the numerical expression I normalised RD(⇤) to its best-fit value. Since the
LQ masses cannot be below 1 TeV due to present limits from direct searches (see Sec-
tion 6.3.1), the Bs mixing constraint allows only to partially reproduce the charged-current
anomalies when taken at face value. In order to improve the fit, some mild cancellation
with other contributions to Bs mixing is required. As can be seen from the expression
above, the required tuning would be of one part in ⇠ 10 or less, for LQ masses not much
above 1 TeV. One possibility could be to give complex phases to the LQ couplings in
Eq. (5.16) and tune the various terms against each other, or to cancel the LQ contribu-
tions with extra ones from the UV theory.

Further contributions to these �B = 2 operators can arise via tree-level exchange of
heavy resonances at the scale ⇤HC , coupled to SM fermions via UV four-fermion operators
such as the one in Eq. (3.6). The flavour symmetry protects these e↵ects, giving an MFV-
like suppression. The estimate is

CUV
0 ⇠ g2⇢ 

16⇡2v2

⇤2
HC

⇠ g2⇢ ⇠. (5.19)

For g⇢ ⇠ O(1/4⇡) these e↵ects are well below the experimental limits. For larger values
of the coupling it could be possible to use these extra contributions to partially cancel the
one arising at one-loop from the leptoquarks. Also from Eq. (3.6), another contribution
to the same operator can arise via the flavour-violating ZbLsL coupling. The coupling
can be estimated by NDA to be ⇠ gwVts⇠/4⇡, plus a further suppression should be added
due to the Zbb constraint. This gives a contribution to Bs-mixing: CZ

0 ⇠ ⇠2. Due to
the present limits on ⇠, this is well below the flavour limit. A stronger constraint can
be obtained from lepton-universal contributions to bs`+`� operators, where the deviation
due to this coupling scales like �C`

9 ⇠ ⇠/↵. As the ZbLbL constraint, also this shows that
the vector operators in Eq. (3.6) must be suppressed.

5.4 Radiative corrections to EWPT and ⌧ decays

Another relevant set of constraints arise due to renormalization group evolution from mLQ

down to the electroweak scale of the semileptonic operators in Eq. (3.25) to operators
which modify the Z and W couplings to fermions [42, 43]. In particular, the leading
e↵ects are those a↵ecting the ⌧ and ⌫⌧ leptons proportionally to the top Yukawa. Using
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- B ! K(⇤)⌫⌫̄

The relevant e↵ective Lagrangian for this process is [116,117]

L
b!s⌫̄⌫
e↵ =

↵

⇡v2
VtbV

⇤
ts

⇣
s̄�µ[(C

SM
L �↵� +�C↵�

L )PL +�C↵�
R PR]b

⌘⇣
⌫̄↵
L�

µ⌫�
L

⌘
, (5.11)

where CSM
L = �6.38± 0.06 [116, 117]. The contribution from the leptoquarks is (see also

Refs. [59, 111])

�C↵�
L = �

⇡

↵VtbV ⇤
ts

((c(1)lq )↵�23 � (c(3)lq )↵�23) =
2⇡

↵VtbV ⇤
ts

�
|✏1|

2 �1,s↵�1,b� + |✏3|
2 �3,s↵�3,b�

�
.

(5.12)
The relevant observables depend on the EFT coe�cient as [116,117]:

R⌫⌫ =
B(B ! K(⇤)⌫̄⌫)

B(B ! K(⇤)⌫̄⌫)SM
⇡

1

3

�
2 + |1 + �c⌧⌧L |

2� < 2.7 , (5.13)

where

�c⌧⌧L ⌘
�C⌧⌧

L

CSM
L

⇡ 1.3

✓
|✏1|2�1,s⌧ + |✏3|2�3,s⌧

0.01|Vts|

◆
, (5.14)

and for simplicity I included only the leading correction due to the tau neutrinos. The
90% CL limit is taken from Ref. [59].

- B � B̄ mixing

New physics contributions toB0
�B

0
mixing via an e↵ective LL operator can be parametrised

as

�L�B=2 = �(CSM
0 + CNP

0 )
(VtbV ⇤

ti )
2

32⇡2v2
(b̄L�µd

i
L)

2 , (5.15)

where i = d, s and CSM
0 = 4⇡↵S0(xt) ⇡ 1.0. A loop of the S1 and S3 leptoquarks

contributes as (see also Refs. [111, 118] for the individual contributions)

CS1+S3
0 = g21✏

2
1

✓
�1,s⌧

VtbV ⇤
ts

◆2

+ 5g23✏
2
3

✓
�3,s⌧

VtbV ⇤
ts

◆2

+ 2g1g3✏1✏3
�1,s⌧�3,s⌧

(VtbV ⇤
ts)2

f

✓
mS3

ms1

◆
, (5.16)

where I neglected SM fermion masses, f(x) = x
x2�1 log x

2 (note that f(x) 2 [0, 1] and
f(1) = 1), and took into account that, for Bd mixing, �1(3),d⌧/V ⇤

td = �1(3),s⌧/V ⇤
ts according

to the U(2)q symmetry structure. The new physics contributions should not exceed⇠ 10%
of the SM one, in order to be safe from experimental limits,8

(�MBs
)S1+S3

(�MBs
)SM

=
⌘LL(mS3)C

S1+S3
0

CSM
0

⇡ ⌘LL(mS3) C
S1+S3
0 . 10% . (5.17)

8A recent update of lattice calculations is responsible for a shift in the SM prediction which results
in a slight tension with the measurement, (�MBs)

exp/(�MBs)
SM = �0.11 ± 0.06. Even though with

purely imaginary couplings, Arg(g1,3) = ±⇡/2, it can be possible to fit this tension, I will not pursue it
here since this is an issue still to be settled. See Ref. [119] for a recent detailed discussion.
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Requires a tuning with extra 
contributions at the ~10% level.
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Figure 6. Fit to the semi-leptonic and radiatively-generated purely leptonic observables in table 1,
for the scalar leptoquarks S1 and S3, imposing |βsµ,sτ | < 5|Vcb| and C1,3 > 0. In green, yellow, and
gray, we show the ∆χ2 ≤ 2.3 (1σ), 6.2 (2σ), and 11.8 (3σ) regions, respectively. In the lower-right
panel we show the preferred values of the fit in the RD(∗), ∆Cµ

9 plane, compared with the 1σ
experimental measurements (red box). Removing Z → τ τ̄ , νν̄ radiative constraints from the fit, the
1- and 2σ preferred regions in this case are shown with solid and dashed blue lines.

3.3 Scenario III: colour-less vectors

In this section, generalising the model in ref. [13], we assume that the effective operators

in eq. (2.1) are obtained by integrating out heavy colour-less triplet, W ′
µ ≡ (1,3, 0), and

singlet, B′
µ ≡ (1,1, 0), vector resonances, coupled respectively to the SM fermion triplet

and singlet currents (see [13] for the details on the model Lagrangian). The effective

Lagrangian obtained by integrating out these fields at the tree-level includes a set of four-

fermion operators, given by

∆LT
4f = − 2

v2
Ja
µJ

a
µ , ∆LS

4f = − 2

v2
J0
µJ

0
µ , (3.9)
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Figure 5. Present and future-projected LHC constraints on the vector leptoquark model of
section 3.1. The 1σ and 2σ preferred regions from the low-energy fit are shown in green and
yellow, respectively.

3.2 Scenario II: scalar leptoquarks

We introduce two scalar leptoquarks S1 = (3,1, 1/3) and S3 = (3,3, 1/3). The relevant

interaction Lagrangian is given by [46]

L ⊃ g1β1 iα(Q̄
c i
L ϵLα

L)S1 + g3β3 iα(Q̄
c i
L ϵσaLα

L)S
a
3 + h.c., (3.5)

where ϵ = iσ2, Qc
L = CQ̄T

L, and Sa
3 are the components of the S3 leptoquark in SU(2)L

space. A model with the same field content was recently proposed in [26] as a possible

solution of the B-physics anomalies. However, the flavour structure postulated in [26]

leads to large cancellations in b → sνν̄ and potential tuning also in b → u charged-

current transitions. Contrary to the vector LQ case, baryon number conservation is not

automatically absent in the renormalisable operators built in terms of S1,3 and must be

imposed as an additional symmetry of the theory.

Integrating out the leptoquark states at tree-level and matching to the effective theory,

we find the following semi-leptonic operators

Leff ⊃ − 1

v2
(
C1β1,iββ

∗
1,jα − C3β3,iββ

∗
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)
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− 1
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j
L)(L̄

α
Lγ

µLβ
L) ,

(3.6)

where C1,3 = v2|g1,3|2/(4M2
S1,3

) > 0. Enforcing a minimally broken U(2)q × U(2)ℓ flavour

symmetry the two mixing matrices β1,iα and β3 iα follow the decomposition presented in

appendix A and have a hierarchical structure similar to the βiα of the vector LQ case.

These two flavour matrices are, in general, different. However, for the sake of simplicity, in

the fit we fix β3,sµ = β1,sµ and β1,bµ = β3,bµ, keeping only the two s− τ elements different

– 13 –
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where I defined all in the 3 of color and the 1 (3) su�x represents the electroweak multiplet
they belong to. The NDA estimate puts their mass in the ⇠ 1.5� 2.5 TeV range, with s3
being possibly slightly heavier than s1 due to a larger electroweak correction to its mass.
The splitting within the electroweak multiplets is subleading. The Bs mixing constraint
(5.18) favours light leptoquarks. In presence of EWSB, the s1,� 1

3
and s3,� 1

3
states have

a small mass mixing. Expanding the SU(2)w structure of the interaction Lagrangian of
Eq. (3.22) one gets

LLQ = g1s
†
1,� 1

3

�
t̄cL⌧L � b̄cL⌫⌧

�
+ g3s

†
3,� 1

3

�
�t̄cL⌧L � b̄cL⌫⌧

�
+ h.c.

+
p
2g3

⇣
s†
3, 23

t̄cL⌫⌧ � s†
3,� 4

3

b̄cL⌧L
⌘
+ h.c. ,

(6.5)

where I neglected flavour-suppressed couplings to light generation fermions as well as
those of S1 to right handed fields, due to the ⌧ ! µ� constraint discussed in Section 5.1.
The phenomenology of S3 with coupling to muons has been studied in Ref. [125].

The following discussion of the collider bounds on these leptoquarks can be also applied
to weakly coupled models where these leptoquarks are elementary, since it is only based
on the Lagrangian in Eq. (6.5). Neglecting SM fermion masses, the total decay widths

are �S1,3 = |g1,3|2
8⇡ mS1,3 [111]. The two leptoquarks with charge 1

3 have equal branching
ratio of 1/2 into the two channels t⌧ and b⌫⌧ , while s3, 23 and s3,� 4

3
decay to t⌫ and b⌧ ,

respectively, with unity branching ratio. The deviations from these branching ratios due
to multi-body decays, such as those discussed later on and shown in Fig. 4, are suppressed
both by the phase space and by the small ⇠ parameter and can thus be safely neglected.

The main production modes at the LHC are pair production via QCD interactions, or
single production via the coupling to the b quark. While the former is model-independent,
the latter depends on the couplings g1,3. For g1,3 = 1, the single production cross section,
via the bottom coupling, becomes larger than pair production for masses mS1,3 & 1.4 TeV
at 13 TeV, in which case �(pp ! ss†) ⇡ �(pp ! s†`+s¯̀) ⇡ 0.37 fb [126]. The present ex-
perimental limit from CMS [127] with 12.9fb�1 of integrated luminosity on pair-produced
scalar leptoquarks in the final state bb̄⌧+⌧� is ms

3,� 4
3

> 855 GeV at 95% CL. This is

shown as a solid red line in Fig. 2. Very recently, the CMS collaboration updated also the
searches in the ⌧⌧ tt [128], ⌫⌫tt, and ⌫⌫bb final states [129] with 35.9 fb�1 of luminosity.
Taking into account the branching ratios described above, the resulting 95% CL limits in
this model are: m1(3),� 1

3
> 564 GeV from t⌧ , m1(3),� 1

3
> 795 GeV from b⌫ (green vertical

line in Fig. 2), and m3, 23
> 1018 GeV from t⌫ (blue line).

The present limit from single-production, in the b⌧ channel [130], is shown as a solid
purple line in Fig. 2. At present it becomes the most important one for couplings 1.5 .
g1,3 . 3.

Another relevant search channel for s3,� 4
3
is in the ⌧+⌧� final state, where the lepto-

quark can be exchanged in the t-channel [41]. The corresponding 95% CL limit is shown
with a solid gray line in Fig. 2 and dominates for large couplings g1,3 & 3. The analogous
e↵ect in the µ+µ� tail is further suppressed by the small coupling to second generation
leptons [131].

All these limits are collected in Fig. 2, where I also show estimates for the prospects for
300 fb�1 (dashed lines) and 3000 fb�1 (dotted lines) of luminosity, obtained by rescaling
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S1 = (3,̅ 1, 1/3),    S3 = (3,̅ 3, 1/3)

[D.M. 1803.10972]

the more general case other mixing terms arise for non-zero ✓. A more detailed discussion
of this point can be found in [68].

6.2 pNGB anomalous couplings

Some pNGBs can have a non-zero coupling to two SM gauge bosons via the axial anomaly.
These interactions are fully described at the chiral Lagrangian level by the Wess-Zumino-
Witten term [123,124]. From that one can extract the relevant coupling of one pNGB to
two gauge bosons, which in the class of theories considered here is given by

LWZW � �
g�g�
16⇡2

�↵

f
2NHCA

�↵

��F
�
µ⌫
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�� = Tr
h
T ↵T �

SMT �
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i
, (6.2)

where eF �µ⌫ = 1
2✏

µ⌫⇢�F �
⇢�, T

↵ is the generator corresponding to the pNGB �↵ while g�,

T �
SM , and F �

µ⌫ are the couplings, generators, and field strenght, respectively, of the A�
µ

gauge field (as defined in Eq. C.10). The complete list of anomalous couplings for the
pNGBs in the theory is the following:
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, (6.3)

where d↵�� are the SU(3)c symmetric structure constants. Measuring a process involving
these coupling would provide information on NHC/f . An independent measurement of f
(i.e. of ⇠) could instead be obtained, for example, via Higgs couplings measurements or
pNGB scattering.

6.3 Collider signatures of the pNGBs

Here I discuss some of the main aspects of the collider phenomenology of the various
pNGBs, listed in Eq. (2.7), in particular their possible production channels and decay
modes. I also present the present bounds and future prospects for the most interesting
cases.

6.3.1 S1 and S3 Leptoquarks

Due to their linear couplings to SM fermions, the S1 and S3 leptoquarks have a rich
phenomenology. The various states are classified under the electromagnetic U(1)em as:

s1,� 1
3
, s3,� 4

3
, s3,� 1

3
, s3, 23 , (6.4)
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~ 3 of SU(3)c

For LHC only the interactions with the third generation are relevant:

QCD pair production single production off-shell

σ depends only on mS

σ ∝ |g1,3|2 

More sensitive at high masses
For high masses: 

σ ∝ ( |g1,3|2 / mS2)2 ∝ (C1,3)2
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Figure 2: Present and future expected exclusion limits at 95% CL on the S1 and S3 LQ.
Vertical bounds are from various pair-production modes, purple is from single production in the
b⌫ channel while gray is from the o↵-shell ⌧⌧ tail. Dashed and dotted lines are 13 TeV LHC
expected limits for 300 and 3000 fb�1 of integrated luminosity, respectively. The diagonal green
region is the 1�-favoured one from the flavour fit.

the expected cross section limits with the square root of the luminosity ratios. The
green region is the 1� preferred one from the flavour fit [45], which assumes that the LQ
contribution to Bs-mixing is cancelled by some extra terms. Some conclusions can be
drawn:

• The region relevant for the B-physics anomalies and in the mass range 1.5� 2 TeV
will not be tested by the LHC, even with high luminosity. The 28 TeV HE-LHC or
FCC-hh would be needed.

• For lighter LQ masses and in the region preferred by the flavour fit, the most relevant
bound will always come from pair production. The most promising channels are t⌫t⌫
and b⌧b⌧ , since the charge-2/3 and charge-4/3 LQ decay in these channels with unity
branching ratio.

6.3.2 Singlets

The two SM singlets ⌘1,2 are expected to have a mass close to 800 GeV, Eqs. (4.4,4.21),
while ⌘3 can be heavier since its mass depends on mQ. The anomalous couplings in
Eq. (6.3) mediate decays of the singlets to pairs of SM gauge bosons. Assuming these are
the leading decay widths, the branching ratios for ⌘1 and ⌘2 are

Br gg �� Z� ZZ W+W�

⌘1 0 0.58 0.36 0.06 0
⌘2 0 0 0.21 0.15 0.64

, (6.6)
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Limits and prospects 
from LQ pair production.

Limits and prospects from 
ττ final state (t-channel exchange 
of s3,-4/3)

Region fitting B-
anomalies 
(assuming Bs 
mixing is tuned)

where I defined all in the 3 of color and the 1 (3) su�x represents the electroweak multiplet
they belong to. The NDA estimate puts their mass in the ⇠ 1.5� 2.5 TeV range, with s3
being possibly slightly heavier than s1 due to a larger electroweak correction to its mass.
The splitting within the electroweak multiplets is subleading. The Bs mixing constraint
(5.18) favours light leptoquarks. In presence of EWSB, the s1,� 1

3
and s3,� 1

3
states have

a small mass mixing. Expanding the SU(2)w structure of the interaction Lagrangian of
Eq. (3.22) one gets

LLQ = g1s
†
1,� 1

3
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t̄cL⌧L � b̄cL⌫⌧
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+ g3s

†
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+ h.c.

+
p
2g3

⇣
s†
3, 23

t̄cL⌫⌧ � s†
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3

b̄cL⌧L
⌘
+ h.c. ,

(6.5)

where I neglected flavour-suppressed couplings to light generation fermions as well as
those of S1 to right handed fields, due to the ⌧ ! µ� constraint discussed in Section 5.1.
The phenomenology of S3 with coupling to muons has been studied in Ref. [125].

The following discussion of the collider bounds on these leptoquarks can be also applied
to weakly coupled models where these leptoquarks are elementary, since it is only based
on the Lagrangian in Eq. (6.5). Neglecting SM fermion masses, the total decay widths

are �S1,3 = |g1,3|2
8⇡ mS1,3 [111]. The two leptoquarks with charge 1

3 have equal branching
ratio of 1/2 into the two channels t⌧ and b⌫⌧ , while s3, 23 and s3,� 4

3
decay to t⌫ and b⌧ ,

respectively, with unity branching ratio. The deviations from these branching ratios due
to multi-body decays, such as those discussed later on and shown in Fig. 4, are suppressed
both by the phase space and by the small ⇠ parameter and can thus be safely neglected.

The main production modes at the LHC are pair production via QCD interactions, or
single production via the coupling to the b quark. While the former is model-independent,
the latter depends on the couplings g1,3. For g1,3 = 1, the single production cross section,
via the bottom coupling, becomes larger than pair production for masses mS1,3 & 1.4 TeV
at 13 TeV, in which case �(pp ! ss†) ⇡ �(pp ! s†`+s¯̀) ⇡ 0.37 fb [126]. The present ex-
perimental limit from CMS [127] with 12.9fb�1 of integrated luminosity on pair-produced
scalar leptoquarks in the final state bb̄⌧+⌧� is ms

3,� 4
3

> 855 GeV at 95% CL. This is

shown as a solid red line in Fig. 2. Very recently, the CMS collaboration updated also the
searches in the ⌧⌧ tt [128], ⌫⌫tt, and ⌫⌫bb final states [129] with 35.9 fb�1 of luminosity.
Taking into account the branching ratios described above, the resulting 95% CL limits in
this model are: m1(3),� 1

3
> 564 GeV from t⌧ , m1(3),� 1

3
> 795 GeV from b⌫ (green vertical

line in Fig. 2), and m3, 23
> 1018 GeV from t⌫ (blue line).

The present limit from single-production, in the b⌧ channel [130], is shown as a solid
purple line in Fig. 2. At present it becomes the most important one for couplings 1.5 .
g1,3 . 3.

Another relevant search channel for s3,� 4
3
is in the ⌧+⌧� final state, where the lepto-

quark can be exchanged in the t-channel [41]. The corresponding 95% CL limit is shown
with a solid gray line in Fig. 2 and dominates for large couplings g1,3 & 3. The analogous
e↵ect in the µ+µ� tail is further suppressed by the small coupling to second generation
leptons [131].

All these limits are collected in Fig. 2, where I also show estimates for the prospects for
300 fb�1 (dashed lines) and 3000 fb�1 (dotted lines) of luminosity, obtained by rescaling
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Limits and prospects 
from single-production 
of LQ in bτ final state 
(for s3,-4/3)

[D.M. 1803.10972]

(All very similar for the vector LQ)

Faroughy et al. 1609.07138

CMS-PAS-EXO-17-029 

CMS 1703.03995, CMS 1803.02864. 
CMS-PAS-SUS-18-001 

Buttazzo et al. 1706.07808
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Tree-level mediators
for B anomalies

Colorless Vectors 

Scalar Leptoquarks 

Vector Leptoquark

Killed 
either by Bs mixing 
or direct searches.

Bs mixing still gives 
some tension with 
R(D)
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Connection with the Higgs
Is it an accident or is there a connection?

MLQ ~ TeV MBSM-Higgs hierarchy problem ~ TeV&

Two broad possibilities to build a “Natural” model

Compositeness:
Composite Higgs

Elementary:
SUSY

These mediators do not arise in the MSSM. 
Need much more complicated setups.

• Elementary scalar LQ 

• Elementary LQ gauge boson  

• Elementary W’, Z’ gauge bosons

Di Luzio, Greljo, Nardecchia 2017; Calibbi, Crivellin, Li 2017; 
Bordone, Cornella, Fuentes-Martin, Isidori 2017

Cline, Camalich 2017, Megias, Quiros, Salas, Panico [in 5D] 2017

Becirevic et al 2016; Dorsner et al 2017; Crivellin, Muller, Ota 2017; …

If we forget about naturalness:

[See Marzia’s talk]

• Scalar LQ as Goldstone bosons

• Composite Vector LQ 

• Composite W’, Z’ resonances
Buttazzo, Greljo, Isidori, D.M. 2016

Barbieri, Isidori, Pattori, Senia 2015; Barbieri, Murphy, Senia 2016;
Buttazzo, Greljo, Isidori, D.M. 2017; Barbieri, Tesi 2017

Gripaios, Nardecchia, Renner 2014; Buttazzo, Greljo, Isidori, D.M. 2017; 
D.M. 2018
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Vector LQ

Di Luzio, Greljo, Nardecchia 2017; Calibbi, Crivellin, Li 
2017; Bordone, Cornella, Fuentes-Martin, Isidori 2017

The U1 LQ gives the best fit of the anomalies with smallest number of param.

Barbieri, Isidori, Pattori, Senia 2015; Barbieri, Murphy, 
Senia 2016; Buttazzo, Greljo, Isidori, D.M. 2017; 
Barbieri, Tesi 2017

Both also predict massive color-octed and massive Z’, which couple to SM fermions. 

It is crucial to avoid large tree-level FCNC effects and direct searches limits on these.

- All these constraint point to strong gauge 
couplings, at the limit of perturbativity. 

- Doesn’t address the EW hiearchy problem.

The theory is fully strongly coupled at 
that scale: no calculability 

Gauge boson Composite vector
2 classes of UV completions

• a pair of scalar leptoquarks, S1 = (3̄,1, 1/3) and S3 = (3̄,3, 1/3),

where I show the representation under the SM gauge group GSM = SU(3)c ⇥ SU(2)w ⇥

U(1)Y .
Going beyond simplified models, embedding these leptoquarks (LQ) in a more com-

plete theory can o↵er further insight and new correlations with di↵erent observables, such
as direct searches of other particles predicted by the UV theory. A first observation to be
made when thinking about possible UV realisations is that the mass scale of the lepto-
quarks required to fit the B-physics anomalies is close to ⇠ 1 TeV, which corresponds also
to the scale where new physics related to the electroweak hierarchy problem is supposed
to be. This coincidence of scales is a strong motivation to look for UV theories which
address both issues in a coherent manner.

Some examples of embedding the vector LQ Uµ
1 in a more complete theory have

been presented in the literature. For example, it can be recognised as one of the heavy
gauge bosons in Pati-Salam unification, or variations thereof [46–50]. In these scenar-
ios, however, the naturalness problem remains unaddressed. Alternatively, Uµ

1 could
arise as a composite vector resonance of a new strongly coupled sector lying at the TeV
scale [33, 51, 52], from which also the Higgs boson arises as a pseudo-Nambu-Goldstone
boson (pNGB), as in composite Higgs models. In all these scenarios other states, such as
neutral or color-octet vectors, are necessarily present with a mass close to the LQ one.
They usually generate undesired too large e↵ects in �F = 2 processes and direct searches,
inducing some tension in the models. The problem can be summarised as the fact that
the mass scale of the other resonances contributing significantly to flavour is naturally at
the same scale as the vector LQ: mV LQ ⇠ ⇤.

The scalar leptoquarks S1 and S3, on the other hand, can be naturally lighter than
the other states in the theory if they arise as pNGB of some spontaneously broken global
symmetry of a new strongly coupled sector:

mSLQ ⌧ ⇤ . (1.1)

This splitting naturally explains why the e↵ects of the scalar leptoquarks in flavour ob-
servables are the leading ones. This idea was explored in Refs. [53,54] in an e↵ective field
theory (EFT) approach, where however only the neutral-current anomalies were consid-
ered. In such a setup it is natural to consider also the Higgs boson as a pNGB of the same
dynamics, thereby realising a composite Higgs model [55,56] and addressing the natural-
ness problem of the electroweak scale. The S1 and S3 LQs have already been considered,
also separately, as possible mediators for either the neutral- or charged-current anomalies
(or both) in Refs. [24, 28, 31, 34,37, 38,45,53,54, 57–60].

Following this route, in this work I present a natural model able to address at the same
time both the charged- and neutral-current B-physics anomalies via the exchange of the
S1 and S3 scalar leptoquarks. They arise as pNGB, together with the Higgs boson, from
a new strongly coupled sector at the ⇠ 10 TeV scale. Rather than employing an EFT-like
approach, in order to be more predictive and to provide a more realistic and UV-complete
setup I also specify the strong dynamics as a four-dimensional fermionic confining gauge
theory [61–69]. This puts strong constraints on the viable global symmetry-breaking
patterns, therefore on the low-energy chiral Lagrangian.

4

The issue is:
No parametric splitting between 

LQ and other states

U1 = (3, 1, 2/3)

The massive vector of Pati-Salam has same quantum numbers as U1 LQ.
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Composite Scalar LQ
One would like a mass splitting between the B anomalies mediator and other states: Z’, 
heavy gluons, etc..

A mass splitting in composite models is natural between the 
(pseudo) Goldstone bosons and the other resonances. 

Like between pions and ρ mesons in QCD.

-  Higgs

M

-  Λ ~ gρ f ~ 10 TeV
other resonances

-  f

- mpNGB ~ 1.5 TeV
Flavor-mediators

Gap

Fundamental description of the strong-sector 
QCD-like

Requirements:

Higgs boson and the two scalar LQ as Goldstones

Custodial symmetry

Scalar LQ as pseudo-Goldstone boson

• a pair of scalar leptoquarks, S1 = (3̄,1, 1/3) and S3 = (3̄,3, 1/3),

where I show the representation under the SM gauge group GSM = SU(3)c ⇥ SU(2)w ⇥

U(1)Y .
Going beyond simplified models, embedding these leptoquarks (LQ) in a more com-

plete theory can o↵er further insight and new correlations with di↵erent observables, such
as direct searches of other particles predicted by the UV theory. A first observation to be
made when thinking about possible UV realisations is that the mass scale of the lepto-
quarks required to fit the B-physics anomalies is close to ⇠ 1 TeV, which corresponds also
to the scale where new physics related to the electroweak hierarchy problem is supposed
to be. This coincidence of scales is a strong motivation to look for UV theories which
address both issues in a coherent manner.

Some examples of embedding the vector LQ Uµ
1 in a more complete theory have

been presented in the literature. For example, it can be recognised as one of the heavy
gauge bosons in Pati-Salam unification, or variations thereof [46–50]. In these scenar-
ios, however, the naturalness problem remains unaddressed. Alternatively, Uµ

1 could
arise as a composite vector resonance of a new strongly coupled sector lying at the TeV
scale [33, 51, 52], from which also the Higgs boson arises as a pseudo-Nambu-Goldstone
boson (pNGB), as in composite Higgs models. In all these scenarios other states, such as
neutral or color-octet vectors, are necessarily present with a mass close to the LQ one.
They usually generate undesired too large e↵ects in �F = 2 processes and direct searches,
inducing some tension in the models. The problem can be summarised as the fact that
the mass scale of the other resonances contributing significantly to flavour is naturally at
the same scale as the vector LQ: mV LQ ⇠ ⇤.

The scalar leptoquarks S1 and S3, on the other hand, can be naturally lighter than
the other states in the theory if they arise as pNGB of some spontaneously broken global
symmetry of a new strongly coupled sector:

mSLQ ⌧ ⇤ . (1.1)

This splitting naturally explains why the e↵ects of the scalar leptoquarks in flavour ob-
servables are the leading ones. This idea was explored in Refs. [53,54] in an e↵ective field
theory (EFT) approach, where however only the neutral-current anomalies were consid-
ered. In such a setup it is natural to consider also the Higgs boson as a pNGB of the same
dynamics, thereby realising a composite Higgs model [55,56] and addressing the natural-
ness problem of the electroweak scale. The S1 and S3 LQs have already been considered,
also separately, as possible mediators for either the neutral- or charged-current anomalies
(or both) in Refs. [24, 28, 31, 34,37, 38,45,53,54, 57–60].

Following this route, in this work I present a natural model able to address at the same
time both the charged- and neutral-current B-physics anomalies via the exchange of the
S1 and S3 scalar leptoquarks. They arise as pNGB, together with the Higgs boson, from
a new strongly coupled sector at the ⇠ 10 TeV scale. Rather than employing an EFT-like
approach, in order to be more predictive and to provide a more realistic and UV-complete
setup I also specify the strong dynamics as a four-dimensional fermionic confining gauge
theory [61–69]. This puts strong constraints on the viable global symmetry-breaking
patterns, therefore on the low-energy chiral Lagrangian.
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Fermionic Composite Higgs
Buttazzo, Greljo, Isidori, D.M. 2017; D.M. 1803.10972

2 An explicit model

Point 6 of the list above suggests to consider the case of complex representations. This
also has the advantage that, introducing vectorlike fermions, the model is automatically
safe from anomalies. The Higgs sector of this model has already been studied in [6].

As sketched already in [1], and in analogy with [7], we add a new non-abelian gauge
group GHC = SU(NHC), assumed to confine at a scale ⇤HC ⇠ 10 TeV, and a vectorlike
set of fermions in the fundamental of this new gauge group and charged under the SM
group as well. In particular, the extra matter content considered in this work is classified
in the following representations under SU(NHC)⇥ SU(3)c ⇥ SU(2)w ⇥ U(1)Y :

 L = (NHC,1,2)YL
,  Q = (NHC,3,2)YL� 1

3
,

 N = (NHC,1,1)YL+
1
2
,

 E = (NHC,1,1)YL� 1
2
,

(1)

where we use the Dirac notation for the fermions. The kinetic term of the Lagrangian for
the theory above ⇤HC reads

LHC = �
1

4

X

X=HC,c,w,Y

FX
µ⌫F

Xµ⌫ +
X

j=L,N,E,Q

 ̄ji�
µDµ j , (2)

whereDµ = @µ�igHCtaAa
µ�i

P
x2c,w,Y gSMx tx

SM
ASM,x

µ and ta are the generators of SU(NHC)
in the fundamental representation while tx

SM
are the generators of the SM gauge groups.

To this Lagrangian one should also add the ✓ terms for QCD and for the HC group. The
former experimentally has to be very small while the latter might induce new sources
of CP violation and might also address the strong CP problem [8]. We will not pursue
further this point in the following.

As will be clear below, the fields  L,  N , and  E are required in order to have a Higgs
as a pNGB, after the theory condenses, as well as custodial symmetry. This setup as a
fundamental composite Higgs model was studied in Ref. [6] and is the minimal one for
a theory with HC fermions in a complex representation of GHC . Finally, the field  Q is
required in order to have also the scalar leptoquarks S1 and S3 as pNGBs.1 Even though
an extension of the matter content in Eq. (1) to a complete copy of the SM multiplets is
tempting, for the sake of minimality we will keep only the strictly necessary fields, as well
as leaving YL free.

Since we need the HC gauge interaction to confine at the scale ⇤HC , we should require
it to be asymptotically free in the ultraviolet. In App. B we show that, with the field
content in Eq. (1), this is true for any NHC � 2. Also, we show that, depending on YL

1Note that another solution, with same number of flavors, could be obtained by substituting  Q with:
 U = (NHC,3,1)YU +  T = (NHC,1,3)YU+ 1

3
, in which case the LQs are given by S3 ⇠ ( ̄U T ),

S1 ⇠ ( ̄U E,N ). In the following we will consider only the case described in the main text, since it is
more minimal in the sense of requiring less representations.

5

Gauge group:

Extra 
HC Dirac 
fermions:

SU(NHC) confines at ΛHC ~ 10 TeV

"HyperColor"

and NHC , the SM gauge couplings can be kept to be perturbative up to the Planck scale.
However, it should be kept in mind that the need to introduce some new dynamics slightly
above the scale ⇤HC , in order to generate the top Yukawa and the leptoquark couplings,
is expected to alter the RG evolution of the gauge couplings.

2.1 Condensate and pNGBs

This theory is expected to form a condensate [9–11]

h ̄i ji = �B0f
2�ij . (3)

Since the total number of flavors is 10, in the absence of SM gauging and other explicit
breakings the global symmetry group of the theory is G = SU(10)L ⇥ SU(10)R ⇥ U(1)X ,
spontaneously broken to the diagonal subgroup H = SU(10)D⇥U(1)X . This spontaneous
symmetry breaking generates a set of 99 (real) pseudo Nambu-Goldstone bosons (pNGB)
transforming in the adjoint of SU(10)D. Under GSM = SU(3)c⇥SU(2)w⇥U(1)Y they are
arranged in the following irreps:

valence irrep. valence irrep. d.o.f.
H1 = ( ̄L N) (1,2)1/2 Hc

2
= ( ̄L E) (1,2)�1/2 4 + 4

!± = ( ̄N E) (1,1)�1 ⇧L = ( ̄L�a L) (1,3)0 2 + 3
S1 = ( ̄Q L) (3̄,1)1/3 S3 = ( ̄Q�a L) (3̄,3)1/3 6 + 18
R̃2 = ( ̄Q E) (3̄,2)�1/6 T2 = ( ̄Q N) (3̄,2)5/6 12 + 12
⇡̃1 = ( ̄QTA Q) (8,1)0 ⇡̃3 = ( ̄QTA�a Q) (8,3)0 8 + 24
⇧Q = ( ̄Q�a Q) (1,3)0 ⌘i = 3⇥ ( ̄i i) (1,1)0 3 + 3

. (4)

In particular, we see that the pNGB include two Higgs doublets H1,2 as well as the two
leptoquarks S1,3.

All the pNGB can be described in terms of the matrix U [�(x)],

U [�(x)] = exp

✓
2i
�↵(x)

f
T ↵

◆
, (5)

where f is the NGB decay constant and T ↵ are the SU(10) generators normalised as
Tr[T ↵T �] = 1

2
�↵�. The complete list is provided in App. A.1. The pNGB matrix U

transforms under G as U ! gLUg†R. The connection between the basis of pNGB fields �↵

and the one into SM irreducible representations is given in App. A.3.
In order to estimate the size of various operators in the low energy chiral Lagrangian,

we assume NDA power counting [12] opportunely extended to the fermion sector (see
e.g. [13]):

L
e↵

⇠ ⇤2f 2

✓
⇤

4⇡f

◆2L ✓�a

f

◆E� ✓gVµ

⇤

◆EV
✓

 
p
⇤f

◆E ✓@µ
⇤

◆d ✓�, m̃

⇤

◆� ✓gf

⇤

◆2µ

, (6)

6

  f  ~ 1TeV

In absence of SM gauging, the strong sector has a global symmetry

G = SU(10)L × SU(10)R × U(1)V

H = SU(10)V × U(1)V

SU(NHC) SU(3)c SU(2)w U(1)Y
 L NHC 1 2 YL

 N NHC 1 1 YL + 1/2
 E NHC 1 1 YL � 1/2
 Q NHC 3 2 YL � 1/3

Table 1: Extra Dirac fermions charged under the hypercolor SU(NHC) gauge group. YL is a
free parameter.

The structure of the paper is as follows. In Section 2 I introduce the specific fun-
damental Composite Higgs model, its global symmetries and the low-energy pNGB field
content, which includes two Higgs doublets and the two scalar LQ among other fields.
In Section 3 I discuss the way by which elementary fermions couple to the composite
sector, thereby generating the Higgs Yukawa and leptoquark couplings. These couplings,
together with SM gauge interactions and fermion masses break explicitly the global sym-
metry of the strong sector. This generates a scalar potential for the pNGB, which is
studied in Section 4. This potential is responsible for the Higgs non-vanishing vacuum ex-
pectation value (vev) and for electroweak symmetry breaking (EWSB), Section 4.4. The
flavour phenomenology arising from the LQ couplings to fermions, including the fit to
the B-physics anomalies, is studied in Section 5. The most interesting collider signatures,
as well as the present limits from direct searches, are presented in Section 6. Finally, I
conclude in Section 7.

2 A fundamental Composite Higgs Model

The naturalness problem of the electroweak scale can be solved by assuming that the Higgs
boson is a composite state of a new strong dynamics at a scale ⇤ ⇠ TeV. Furthermore,
the splitting mh ⌧ ⇤, required by phenomenological constraints, can be naturally realised
if the Higgs arises as a pseudo Nambu-Goldstone boson from the spontaneous breaking
of an (approximate) global symmetry of the strong dynamics [55,56], in close analogy to
the pions in QCD.

Extending this idea to include the scalar leptoquarks S1 and S3, I construct a fermionic
fundamental description of a composite model, from which both the scalar LQ and the
Higgs arise as pNGBs. See App. A for a general discussion on the requirements such a
UV setup should satisfy.

2.1 The explicit model

As sketched already in Ref. [45], and in analogy with Refs. [27, 67, 68], I add a new non-
abelian gauge group GHC = SU(NHC), assumed to confine at a scale ⇤HC ⇠ 10 TeV, and
a vectorlike set of fermions in the fundamental (and anti-fundamental) representation of
this new gauge group and charged under the SM group as well. The extra matter content
considered in this work, classified in representations of SU(NHC) ⇥ SU(3)c ⇥ SU(2)w ⇥

U(1)Y , is shown in Table 1. The kinetic term of the Lagrangian for the theory above ⇤HC

5
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Goldstone Bosons
G = SU(10)L × SU(10)R × U(1)V H = SU(10)V × U(1)V

Two Higgs doublets:        H1,2 ~ (1,2)1/2

Singlet and Triplet LQ:        S1 ~ (3,1)-1/3   +   S1 ~ (3,3)-1/3

Other coloured states:          R2 ~ (3,2)1/6   +   T2 ~ (3,2)-5/6

π̃1 ~ (8,1)0    +    π̃3 ~ (8,3)0

Other electroweak states:          ω ~ (1,1)1   +   ΠL,Q ~ (1,3)0

In terms of SM representations

resulting massless eigenvalues (i.e. the SM fermions) are partially composite, and a cou-
pling with the Higgs is obtained [93]. On the one hand, this setup usually requires light
composite fermionic top partners [94–96] as well as partners for each SM fermion. On the
other hand, in models with a fundamental fermionic description of the HC sector these
composite fermions are baryonic resonances, which are expected to have a mass near ⇤HC ,
far too heavy to be viable top partners in a partial compositeness setup. Furthermore,
devising a UV completion of this mechanism has proven to be challenging.3

For all these reasons, I assume instead that the bilinears of SM fermions couple to
scalar operators of the strong sector, which at low energy are interpolated by pNGB
fields such as the Higgses or the leptoquarks, as in original Technicolor models [100,101]:
L ⇠

P
 y  ̄SM SMO. These couplings can arise from four-fermion operators with two

SM and two HC-charged fermions:

L4�Fermi ⇠
c  
⇤d�1

t

 ̄SM SM ̄ 
E.⇤HC

�! ⇠ c  f

✓
⇤HC

⇤t

◆d�1

 ̄SM SM
�

f
, (3.1)

where the scaling dimension of the scalar operator ( ̄ ) is given by d = 3 � �, where
� > 0 is the anomalous dimension of the operator. At the scale ⇤t some dynamics
should be responsible for generating these operators. A sizeable part of the Technicolor
(TC) literature focussed on the study of such a dynamics: Extended TC, Walking TC,
etc.. See e.g. Refs. [102, 103] for reviews of this topic and a list of references. For
this first exploration of the model I take a bottom-up approach and do not discuss UV
completions of these operators, leaving it for a future dedicated analysis. Using simply
the NDA estimate of Eq. (2.8) with E4f = 1 one obtains that the final Yukawa coupling
is y � ⇠ O(1).

One of the main problems of such a setup is due to the fact that the dynamics respon-
sible for generating these operators is also likely to produce four-fermion operators of the
form

L4�Fermi �
c  
⇤2

t

 ̄SM SM  ̄SM SM +
c  
⇤2

t

 ̄  ̄ . (3.2)

The e↵ect of ( )4 operators is to generate further e↵ective contributions to the pNGB
masses in Eq. (4.1). Since these pNGB should be heavy enough to pass the phenomeno-
logical constraints, this is not an unwanted feature. On the contrary, if they generate
large enough masses for the singlets pNGBs, it could be possible to eliminate the need of
fundamental HC fermion masses. The ( SM)4 operators, instead, could generate danger-
ous e↵ects in flavour physics (particularly in meson-antimeson mixing and lepton flavour
violating processes).

If the strong sector is close to an interactive IR conformal fixed point above the scale
⇤HC , a sizeable value of the anomalous dimension � could allow to increase the gap
between ⇤HC and ⇤t, thus suppressing the flavour-violating operators. See e.g. Refs. [61,
71, 72] for modern realisations of this idea and for a discussion of the problems one may
encounter in this approach.

3Possible 4d UV completion of the partial compositeness scenario have been obtained by introducing
extra elementary HC-colored scalars [40,86,93] or in a supersymmetric setup [97,98]. Partial composite-
ness also arises naturally in extra-dimensional holographic Higgs models [99].
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Like QCD pions, the pNGB are composite states of HC-fermion bilinears:

D.M. 1803.10972

Three singlets:          η1,2,3  ~  (1,1)0

For energies E ≪ ΛHC the theory is described by a weakly coupled 
effective chiral Lagrangian. 

Structure driven by the symmetries and spurions.
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Yukawas & LQ couplings
Coupling with SM fermions from 4-Fermi operators

SM Yukawas + LQ couplings

A new sector responsible for these operators is necessary (as Extended Technicolor)

Imposing conservation of B & L such that the proton is stable, 
automatically allows only the Higgses Yukawas and LQ couplings.

L4�Fermi ⇠
c  

⇤2
t

 ̄SM SM ̄ 
E.⇤HC�! ⇠ y �  ̄SM SM �+ . . . (1)

⇤t & ⇤HC (2)

�B(B ! K
⇤
⌫⌫) / (3)

LBSM =
2c

⇤2
(c̄L�µbL)(⌧̄L�

µ
⌫⌧ ) + h.c. (4)

1

⇤2
bsµ

=
�
q

bs

⇤2
qqµ

(5)

Cbsµ

v2
=
�
q

bs

v2
Cqµ (6)

1

⇤2
bsµ

(s̄L�µbL)(µ̄L�
µ
µL) (7)

�
µ

bs
⌧ 1 ⇤qqµ ⌧ ⇤bsµ Cbsµ =

v
2

⇤2
bsµ

(8)

1

⇤2
qqµ

⇥
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q

bs
(s̄L�µbL) + (q̄L�µqL)

⇤
(µ̄L�

µ
µL) (9)

L � ci

⇤2
(s̄L�

↵
bL)(µ̄L�↵µL) + h.c. (10)

�C
µ

9 = ��C
µ

10 = �0.61± 0.12 (11)
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µ
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An approximate SU(2)5 flavor symmetry protects from unwanted flavor violation

If, instead, the anomalous dimension � is small, the scale ⇤t should be not much above
the compositeness scale ⇤HC in order to generate the required top Yukawa coupling. In
this case an approximate flavour symmetry is required in order to protect the theory
from unwanted flavour violation e↵ects. In the following I take this approach and assume
that the sector responsible for generating these four-fermion operators enjoys a global
approximate, possibly accidental, SU(2)5 flavour symmetry [104–106]:

GF = SU(2)q ⇥ SU(2)u ⇥ SU(2)d ⇥ SU(2)l ⇥ SU(2)e . (3.3)

I also assume that the UV dynamics is such that in the symmetric limit only the third
generation fermions are coupled to the strong sector. All other terms are generated via
small symmetry-breaking e↵ects. These are encoded in a small set of spurions. The mass
of the first two SM families can be generated by a set of bi-doublets:

�Yu = (2, 2̄,1,1,1) , �Yd = (2,1, 2̄,1,1) , �Ye = (1,1,1,2, 2̄) . (3.4)

The mixing between these and the third generation, instead, can be successfully described
by only two doublets:

Vq = (2,1,1,1,1) , Vl = (1,1,1,2,1) . (3.5)

While Vq is related to the CKM matrix elements, the leptonic spurion Vl is unconstrained.
Due to the smallness of the first two generation fermion masses, these two doublets provide
the leading e↵ects in most flavour observables. The smallness of the bottom and ⌧ Yukawa
couplings could be explained by introducing two approximate U(1)d ⇥U(1)e symmetries,
under which all the right-handed down quarks and leptons are charged [105]. The flavour
symmetry and this set of spurions also provide a good structure to fit the B-physics
anomalies [22, 26, 35, 45] while at the same protecting the model from other flavour and
high-pT constraints. Indeed, possible dangerous e↵ects of the 1

⇤2
t

( SM)4 operators are

suppressed by the GF symmetry and the large ⇤t scale.
Another class of possible bilinear operators are those built in terms of vector currents.

At low energies these are interpolated by vector resonances of the strong sector as well as
pNGB vector currents:

L �
c

⇤2
t

( ̄SM�
µ SM)( ̄a�µ b) ! g⇢ ( ̄SM�

µ SM)Tr(cabiU
†DµU + cab⇢µ) , (3.6)

where by NDA, Eq. (2.8) with E4f = 1, one has g⇢ ⇠ O(f/⇤) ⇠ O(1/4⇡). Their e↵ect
is discussed in Section 4.5.

3.1 HC-fermion bilinears

I construct the coupling of the SM fermions to the two Higgses and the S1,3 scalar lepto-
quarks via operators like  ̄SM SM ̄i j, where  ̄ j interpolates the pNGBs below ⇤HC .

In general, both baryon (B) and lepton (L) numbers are broken by adding non-
renormalizable operators (as happens in the SM EFT). In order to avoid proton decay
and other unwanted e↵ects, one could impose B and L conservation in the operators at
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Good structure to fit the flavour anomalies!
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Higgs Yukawas

At low energy:

UV effective Lagrangian:

3.2 SM Yukawas

The four-fermion operators generated at the scale ⇤t responsible for the SM Yukawas are

LF �
1

⇤2
t

⇣
ūRc

†
1,uqL + q̄Lc1,ddR ✏+ l̄Lc1,eeR ✏

⌘
( ̄L�5 N) +

+
1

⇤2
t

⇣
ūRc

†
2,uqL✏+ q̄Lc2,ddR + l̄Lc2,eeR

⌘
( ̄E�5 L) + h.c. ,

(3.11)

where flavour and gauge indices have been suppressed and ✏ ⌘ i�2 acts on SU(2)w. In
order to track the explicit breaking of the global symmetry G due to these operators one
can introduce a set of spurions �↵

H1,2
defined from (the explicit expression is in App. C.3)

 ̄↵
L�5 N = ✏↵� ̄i(�

�
H1
)ij�5 j ,  ̄E�5 

↵
L =  ̄i(�

↵
H2
)ij�5 j , (3.12)

where ↵, � = 1, 2 are SU(2)w indices. They transform under G as �↵,LR
H1,2

! gL�
↵,LR
H1,2

g†R,

�↵,RL
H1,2

! gR�
↵,RL
H1,2

g†L, with the identification �↵,LR
H1,2

= �↵,RL
H1,2

= �↵
H1,2

. Below the HC-
confinement scale the corresponding chiral operators can be written as

L
e↵
Yuk =

f

2

⇣
ūRỹ

†
1,uq

�
L✏

�↵ + q̄↵Lỹ1,ddR + l̄↵Lỹ1,eeR
⌘
Tr[�↵

H1
(U � U †)]+

+
f

2

⇣
ūRỹ

†
2,uq

�
L✏

�↵ + q̄↵Lỹ2,ddR + l̄↵Lỹ2,eeR
⌘
Tr[�↵

H2
(U � U †)] + h.c. ,

(3.13)

where ỹf ⇠
B0f
⇤2
t

cf . By expanding the pNGB matrix one gets

Tr[�↵
H1,2

(U � U †)] = i
2
p
2

f
H↵

1,2 +O(�2/f 2) , (3.14)

Substituting U with its EW symmetry-breaking vev, Eq. (2.10), one has Tr[�H1(2)
(hUi �

hU †
i)] = (�1)1(2)(0, 2 sin ✓)T . The SM fermion mass matrices are given by (in a f̄LmffR

notation)

mf = f sin ✓(ỹ1,f � ỹ2,f ) =
v
p
2
(ỹ1,f � ỹ2,f ) ⌘

v
p
2
yf , (3.15)

where f = u, d, e. As shown in Ref. [68], in order to avoid any undesired misalignment of
the pNGB vev in a custodial-breaking direction also the condition

ỹ1,f = �ỹ2,f =
yf
2

(3.16)

should be imposed. This condition can be obtained by imposing a symmetry under the
exchange PH : H1 $ �H2, which is automatically satisfied by the kinetic and gauge
terms, as well as by the HC-masses under the condition mE = mN . This symmetry is
instead broken by higher-order terms proportional to the LQ couplings to fermions which,
however, do not a↵ect the Higgs potential at this order in the chiral expansion.

Furthermore, to suppress dangerous tree-level flavour-changing neutral currents me-
diated by the Higgses, the two proto-Yukawa matrices should be aligned, see e.g. the
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ūRỹ

†
2,uq

�
L✏
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The spurion gives the Higgses as leading terms:

Fermion masses:

The Yukawa matrices of the two Higgses need to be identical to avoid 
flavour-violating couplings and custodial symmetry-breaking effects
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discussion in Ref. [89], so Eq. (3.16) is imposed at the matrix level. If also the scalar HC
currents were kept, a slightly more general condition can be derived, see Ref. [68] for a
detailed discussion of this point.

TheGF flavour symmetry and its spurions (3.4,3.5) dictate the structure of the Yukawa
matrices. At leading order in the spurions and up to possible O(1) factors multiplying
each term one has [104] (in L̄R notation):

yu ⇠ yt

✓
�Yu Vq

0 1

◆
, yd ⇠ yb

✓
�Yd Vq

0 1

◆
, ye ⇠ y⌧

✓
�Ye Vl

0 1

◆
. (3.17)

In the left-handed quark sector this can be put in correspondence with the CKM matrix
elements:

Vq = aq

✓
V ⇤
td

V ⇤
ts

◆
, (3.18)

where aq is an O(1) parameter. As shown in Section 5, in order to fit the flavour anomalies
while avoiding dangerous e↵ects involving electrons, the left-handed lepton spurion can
be taken approximately as

Vl ⇡

✓
0
�⌧µ

◆
, (3.19)

where �⌧µ ⌧ 1.

3.3 S1,3 LQ couplings

The operators responsible for generating the leptoquark couplings to fermions are

LF �
1

⇤2
t

⇥
(q̄cLc1,ql✏lL + ēcRc1,euuR) ( ̄Q�5 L) +

�
q̄cLc3,ql✏�

AlL
�
( ̄Q�5�

A L)
⇤
+ h.c. .

(3.20)

Also in this case one can introduce a set of spurions of G to keep track of the explicit
breaking of the global symmetry (see App. C.3):

 ̄a
Q�5 L =  ̄�a

S1
�5 ,

 ̄a
Q�

A�5 L =  ̄�A,a
S3

�5 ,
(3.21)

where the index a runs in the fundamental of SU(3)c while A is in the adjoint of SU(2)w.
Below ⇤HC one can write the couplings of both scalar LQ to SM fermions as6

L
e↵
LQ = i

f

4
(g1q̄

c,a
L �1✏lL + gu1 ē

c
R�

u
1u

a
R) Tr[�

a
S1
(U � U †)] + h.c.

+i
f

4

�
g3q̄

c,a
L �3✏�

AlL
�
Tr[�A,a

S3
(U � U †)] + h.c. = (3.22)

= �g1�1,i↵(q̄
c i
L ✏l↵L)S1 � gu1 (�

u
1 )

T
↵i(ē

c↵
R ui

R)S1 � g3�3,i↵(q̄
c i
L ✏�Al↵L)S

A
3 + h.c.+O(�2) ,

6In presence of EWSB, a factor of cos ✓

2 should muliply all terms in the last line of Eq. (3.22). Since
this is ⇡ 1 up to a small O(⇠) correction, I neglect it in the following.
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At low energy it becomes: spurions

where i and ↵ are quark and lepton flavour indices, respectively. The flavour structure
of the couplings is given by the GF symmetry and its breaking spurions. Up to O(1)
coe�cients one has

�1,3 ⇠

✓
V ⇤
q V

†
l V ⇤

q

V †
l 1

◆
, �u

1 ⇠

✓
0 (V †

q �Yu)T

V †
l �Ye 1

◆
, (3.23)

where, without loss of generality, the (33) element has been reabsorbed in the definition

of the overall couplings g(u)1,3 and I also show the terms quadratic in the spurions, since
they are relevant to the b ! sµµ anomalies. One can immediately notice that, with
this choice of flavour spurions, the o↵-diagonal entries in �u

1 are suppressed by the small
Yukawa couplings of the light fermions. By adding spurions transforming as doublets of
the right-handed fields, these terms might also be larger. For this reason I leave them
arbitrary in the flavour analysis.

Integrating out the two scalar leptoquarks at tree-level one generates a set of dimension-
6 operators, Le↵ = �

1
v2

P
x CxOx, with [107]

(C(1)
lq )↵�ij = �|✏1|

2 �⇤
1,i↵�1,j� � 3|✏3|

2 �⇤
3,i↵�3,j� ,

(C(3)
lq )↵�ij = |✏1|

2 �⇤
1,i↵�1,j� � |✏3|

2 �⇤
3,i↵�3,j� ,

(C(1)
lequ)↵�ij = �2✏u1✏

⇤
1 �

u
1,j��

⇤
1,i↵ ,

(C(3)
lequ)↵�ij =

1

2
✏u1✏

⇤
1 �

u
1,j��

⇤
1,i↵ ,

(Ceu)↵�ij = �2|✏u1 |
2 �u ⇤

1,i↵�
u
1,j� ,

(3.24)

where the corresponding operators are

(O(1)
lq )↵�ij = (l̄↵L�µl

�
L)(q̄

i
L�

µqjL) , (O(3)
lq )↵�ij = (l̄↵L�µ�

al�L)(q̄
i
L�

µ�aqjL) ,

(O(1)
lequ)↵�ij = (l̄↵Le

�
R)✏(q̄

i
Lu

j
R) , (O(3)

lequ)↵�ij = (l̄↵L�µ⌫e
�
R)✏(q̄

i
L�

µ⌫uj
R) ,

(Oeu)↵�ij = (ē↵R�µe
�
R)(ū

i
R�

µuj
R) ,

(3.25)

and the ✏i contain the relevant combinations of masses and couplings:

✏1 =
g1v

2mS1

, ✏3 =
g3v

2mS3

, ✏u1 =
gu1v

2mS1

. (3.26)

4 The pNGB potential

The compositeness scale ⇤HC ⇠ 4⇡f sets the mass of most of the resonances of the strong
sector. The exception are the pNGB, whose mass is proportional to the various explicit
symmetry-breaking terms: HC-fermion masses, SM gauging, and four-fermion operators.
In this section I present the leading operators in the chiral expansion which constitute the
pNGB potential and generate their masses, and discuss the conditions required to achieve
a successful EWSB.
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UV effective Lagrangian:

Flavour structure:

discussion in Ref. [89], so Eq. (3.16) is imposed at the matrix level. If also the scalar HC
currents were kept, a slightly more general condition can be derived, see Ref. [68] for a
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matrices. At leading order in the spurions and up to possible O(1) factors multiplying
each term one has [104] (in L̄R notation):

yu ⇠ yt

✓
�Yu Vq

0 1

◆
, yd ⇠ yb

✓
�Yd Vq

0 1

◆
, ye ⇠ y⌧

✓
�Ye Vl

0 1

◆
. (3.17)

In the left-handed quark sector this can be put in correspondence with the CKM matrix
elements:

Vq = aq

✓
V ⇤
td

V ⇤
ts

◆
, (3.18)

where aq is an O(1) parameter. As shown in Section 5, in order to fit the flavour anomalies
while avoiding dangerous e↵ects involving electrons, the left-handed lepton spurion can
be taken approximately as

Vl ⇡

✓
0
�⌧µ

◆
, (3.19)

where �⌧µ ⌧ 1.

3.3 S1,3 LQ couplings

The operators responsible for generating the leptoquark couplings to fermions are

LF �
1

⇤2
t

⇥
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breaking of the global symmetry (see App. C.3):
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where the index a runs in the fundamental of SU(3)c while A is in the adjoint of SU(2)w.
Below ⇤HC one can write the couplings of both scalar LQ to SM fermions as6
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a
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R ui
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2 should muliply all terms in the last line of Eq. (3.22). Since
this is ⇡ 1 up to a small O(⇠) correction, I neglect it in the following.
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The coupling of S1 to RH fermions induces an mt-enhanced contribution to τ→µγ.

m2
LQ/⇤

2
HC ⌧ 1. While this model can reproduce completely the flavour phenomenology

described in Ref. [45], the presence of the S1 coupling to right-handed currents makes the
present setup possibly richer. The SMEFT dimension-6 operators obtained by integrating
out the leptoquarks at the tree-level are described in Section 3.3. In this Section I discuss
the main aspects of the flavour phenomenology of the model.

5.1 Muon magnetic moment and ⌧ ! µ�

The presence of S1 couplings to both right- and left-handed top quarks allows the genera-
tion of mt-enhanced contributions to both ⌧ ! µ� and to the muon anomalous magnetic
moment. The relevant terms from Eq. (3.22) are

LS1 � t̄c
⇥
g1�1,b↵PL + gu1�

u
1,t↵PR

⇤
`↵S1 + h.c. , (5.1)

where `↵ = (e, µ, ⌧) and I recall that, by definition, �1,b⌧ = �u
1,t⌧ = 1. The chirally-

enhanced contribution from S1 to ⌧ ! µ� is given by (see e.g. Refs. [37,111] and references
therein)

B(⌧ ! µ�) =
1

�⌧

↵N2
cm

2
tm

3
⌧

64⇡4v4

✓
1�

m2
µ

m2
⌧

◆
|QS1gS(xt)� gF (xt)|

2
|✏1|

2
|✏u1 |

2
�
|�1,bµ|

2 + |�u
1,tµ|

2
�
=

⇡ (7.0⇥ 10�2)
|✏1|2

0.01
|✏u1 |

2

✓
|�1,bµ|

2

0.12
+

|�u
1,tµ|

2

0.12

◆
< 4.4⇥ 10�8 , (5.2)

where (QS1gS(xt) � gF (xt))
xt⌧1
⇡ 7/6 + 2/3 logm2

t/m
2
S1

and I used mS1 = 1.5 TeV. Since
the values |✏1|2 ⇡ 0.01 and |�1,bµ| ⇡ 0.1 are required to fit the B anomalies [45], this
observable puts a bound

|✏u1 |
2 . 10�6 , (5.3)

corresponding to gu1 . 10�2g1. From the point of view of the SU(2)5 flavour symmetry
gu1 and g1,3 are expected to be of the same order. It is interesting to note that by adding
the approximate U(1)e symmetry, under which all the right-handed leptons transform, in
order to suppress the ⌧ Yukawa coupling [105], the gu1 suppression would be automatic
since one could predict: gu1/g1 ⇠ y⌧/yt ⇠ 10�2.

The leading contribution to the muon anomalous magnetic moment from S1 is [111]

�aµ = �
Ncmµmt

12⇡2v2
✏u1✏1�1,bµ�

u
1,tµ

✓
7 + 4 log

m2
t

m2
S1

◆
=

⇡ (7.9⇥ 10�11)⇥
✏u1

10�3

✏1
0.1

�1,bµ

0.1

�u
1,tµ

0.1
,

(5.4)

while the observed anomaly is (�aµ)exp = (2.8 ± 0.9) ⇥ 10�9 [112]. One can see that
due to the limit in Eq. (5.3) the & 3� deviation from the SM observed in �aµ cannot be
explained. The same conclusion was reached in Ref. [37].
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while the observed anomaly is (�aµ)exp = (2.8 ± 0.9) ⇥ 10�9 [112]. One can see that
due to the limit in Eq. (5.3) the & 3� deviation from the SM observed in �aµ cannot be
explained. The same conclusion was reached in Ref. [37].
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Introducing an extra approximate U(1)e symmetry 
for the RH leptons to protect the τ Yukawa would give:

the scale ⇤t while assigning suitable quantum numbers to the HC fermions.4 Focussing in
particular on the  ̄SM SM ̄ e↵ective operators, an equally successful but more minimal
requirement is to impose conservation of a combination of B and L, such as for example
F+ = 3B + L or F� = 3B � L. Requiring only that the operators generating the Higgs
Yukawa couplings and the S1,3 leptoquark couplings to SM fermions are allowed provides
the following charge assignment for the HC fermions:

F+( L) = F+( N) = F+( E) = FL , F+( Q) = FL + 2 , (3.7)

where FL is an arbitrary charge. Assuming F� conservation, instead, all HC fermions
should have the same (arbitrary) F� charge.

The complete list of possible  ̄SM SM ̄ operators compatible with gauge symmetries
and F± conservation, given the assignment of Eq. (3.7), is (schematically):

(q̄LuR + d̄RqL + ēRlL)( ̄N L) , (q̄LuR + d̄RqL + ēRlL)( ̄L E) ,

(q̄cLlL + ēcRuR)( ̄Q L) , (q̄cL�
alL)( ̄Q�

a L) ,
(3.8)

where all indices have been suppressed. Comparing the HC bilinears with Eq. (2.7), one
recognises the Yukawa couplings for the two Higgs doublets in the first line, while the
second line corresponds to the desired couplings of the S1,3 leptoquarks to SM fermions.
Note that, given the assumptions above, also a coupling of S1 with right-handed fermions
ēcRuR is allowed.

The remaining scalar operators, allowed by gauge symmetries but forbidden by F±
conservation, are

(q̄cLqL + ūc
RdR)( ̄L Q) , (d̄RlL)( ̄E Q) , (l̄cLlL)( ̄E N) , (3.9)

corresponding to couplings of the S1,3 to diquark, of R̃2 to quarks and leptons, and of
! to di-leptons. It is remarkable that, once the F± quantum numbers are assigned to
the HC fermions to allow the desired Higgs and LQ couplings, automatically the B and
L-violating operators are forbidden and none of the other pNGBs is allowed to have a
linear coupling to SM fermions.5

For each of the interactions in Eq. (3.8) it is clearly possible to write two independent
terms, one for each chiral structure of the HC bilinears:  ̄i,L j,R or  ̄i,R j,L. By com-
paring Green functions in the high- and low-energy theory it is easily shown that the HC
fermions bilinears correspond to the following expressions below the scale ⇤HC (see e.g.
the QCD case in Ref. [85]):

 ̄i,L j,R ! �B0f
2U(�)ji ,  ̄i,R j,L ! �B0f

2U †(�)ji ,

 ̄i j ! �B0f
2
�
U(�) + U †(�)

�
ji

,  ̄i�5 j ! �B0f
2
�
U(�)� U †(�)

�
ji

,
(3.10)

where B0 is defined in Eq. (2.4). Upon expanding U(�) in powers of the pNGB, Eq. (2.6),
it is clear that only the pseudoscalar combination is linear in the pNGB and thus can
generate the desired couplings. The scalar combination can give some e↵ects in the
pNGB potential [68] but, in order to keep the discussion simple, I will set it to zero in
the following.

4For the purpose of this paper I neglect the non-perturbative breaking of B + L.
5On the contrary, requiring only B �L conservation would allow also the coupling of S1,3 to diquark,

which would mediate proton decay.
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Scalar Potential
The pNGB potential arises at 1-loop from all the explicit breaking terms

4.1 Potential from the HC fermion masses

The contribution to the pNGB potential from the explicit breaking due to the HC fermion
masses is controlled by the spurion M and the leading chiral operator describing this is
given in Eq. (2.9). Upon expanding U in powers of pNGBs one gets the mass terms which,
for the non-singlets pNGB is

m2
( ̄i j)

= B0(mi +mj) , (4.1)

where i, j = Q,L,N,E represent the valence fundamental HC fermion constituting the
pNGB, according to Eq. (2.7). I recall that mN = mE to avoid custodial symmetry
breaking. In particular, the contribution to the two Higgs doublets mass is

Vm = �
f 2

4
Tr[U †�+ �†U ] � B0(mE +mL)(|H1|

2 + |H2|
2) . (4.2)

In order to obtain the singlets masses one needs the expression of the 3 Cartan generators
of SU(10)D transforming as singlets of GSM . They are given in Appendix C, Eq. (C.9).
In the unbroken EW symmetry limit one gets:

m2
⌘1 = 2B0mE , M2

⌘2,⌘3 =

0

@ B0(mE +mL) �

q
3
5B0(mE �mL)

�

q
3
5B0(mE �mL)

1
5B0(3mE + 3mL + 4mQ)

1

A , (4.3)

where in general ⌘2 and ⌘3 mix with each other. For mE = mL the mixing vanishes and:

m2
⌘1 = m2

⌘2 = 2B0mL , m2
⌘3 =

2

5
B0(3mL + 2mQ) . (4.4)

Since this is the only contribution to the three singlets masses, the fundamental HC-
fermion masses are required in order to make them heavy enough to pass phenomenological
bounds (discussed in Section 6.3). A possible alternative could be if a su�ciently large
contribution is generated via the 1

⇤2
t

 4 operators as mentioned in Section 3. The e↵ect of

these operators in the potential has been briefly considered in Ref. [61], where it is argued
to be suppressed.

4.2 Potential from the SM gauging

The explicit breaking of the global symmetry G due to the gauging of the SM subgroup is
analogous to the one due to the QED gauging in the QCD chiral Lagrangian, responsible
for the ⇡± - ⇡0 mass splitting. It can be described in terms of spurions, defined from the
SM gauge interactions of the HC fermion currents, Eq. (2.1):

LHC � gsG
A
µJ

A
s,µ + gwW

i
µJ

i
w,µ + gYBµJ

Y
µ =

�
GA

µG
↵
s,A +W i

µG
↵
w,i +BµG

↵
Y

�
J↵
µ , (4.5)

where J↵
µ =  ̄L�µT ↵

L L+ ̄R�µT ↵
R R, T ↵

L,R are the generators of G, and the various G↵
X are

the spurions. They represent the embedding of the SM gauging within G (see App. C.1
for the explicit expression). One can define the generators associated with a given SM
gauge field as the combinations:

G
L,R
s,A ⌘ G

↵
s,AT

↵
L,R , G

L,R
w,i ⌘ G

↵
w,iT

↵
L,R , G

L,R
Y ⌘ G

↵
Y T

↵
L,R . (4.6)
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Their transformation properties under SU(10)L ⇥ SU(10)R are

G
L,R
X ! gL,R G

L,R
X g†L,R . (4.7)

Since the HC theory is vectorlike, the left and right spurions are identical. The leading
operator in the chiral Lagrangian built with these spurions is

VG = �
3f 2⇤2

HC

16⇡2

X

X

cXTr
⇥
G
L
XUG

R
XU

†⇤ = 3⇤2
HC

16⇡2

X

i,↵

cig
2
iC

i
2(�

↵) (�↵)2 +O(�3) , (4.8)

where the sum is over the three SM gauge groups, i = s, w, Y , ci are non-perturbativeO(1)
coe�cients, and C i

2(⇡
↵) is the Casimir of the pNGB �↵ under the SM gauge group i.7 The

coe�cients in front of the operator are estimated from Eq. (2.8) with L = 1 and µ = 1,
since it arises from one loop and requires insertions of symmetry-breaking spurions. Since
the coe�cients cl are expected to be positive [108], these terms give positive contributions
to the pNGBs mass squared. In the case of the Higgses one has

VG �
3⇤2

HC

8⇡2

✓
3

4
cwg

2
w +

1

4
cY g

2
Y

◆�
|H1|

2 + |H2|
2
�
+ . . . (4.9)

For all the pNGB irreps this corresponds numerically, up to O(1) factors, to:

�m2
! ⇡ (0.05⇤HC)

2 , �m2
H1,2

⇡ (0.08⇤HC)
2 , �m2

⇧L,Q
⇡ (0.13⇤HC)

2 ,

�m2
S1

⇡ (0.17⇤HC)
2 , �m2

S3
⇡ (0.21⇤HC)

2 . �m2
R̃2,T2

⇡ (0.19⇤HC)
2 .

�m2
⇡̃1

⇡ (0.26⇤HC)
2 , �m2

⇡̃3
⇡ (0.28⇤HC)

2 ,

(4.10)

For ⇤HC ⇡ 10 TeV it is immediate to read the numerical value of these contributions,
ranging from ⇡ 500 GeV for the !± state to ⇡ 2.8 TeV for the ⇡̃3.

4.3 Potential from the four-fermion operators

The last explicit symmetry-breaking terms to be discussed are due to the four-fermion
operators of Eqs. (3.11,3.20), responsible for the SM Yukawa and leptoquark couplings.
Since their e↵ect on pNGB masses is proportional to the coupling itself, the leading
contribution is due to the top quark and the LQ coupling to 3rd generation fermions.

The e↵ects on the pNGB potential from these breaking terms can be traced with the
spurions introduced in Eqs. (3.12,3.21). The leading chiral operator generated from the
top Yukawa, with its NDA estimate, is
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Their transformation properties under SU(10)L ⇥ SU(10)R are
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Since the HC theory is vectorlike, the left and right spurions are identical. The leading
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where the sum is over the three SM gauge groups, i = s, w, Y , ci are non-perturbativeO(1)
coe�cients, and C i

2(⇡
↵) is the Casimir of the pNGB �↵ under the SM gauge group i.7 The

coe�cients in front of the operator are estimated from Eq. (2.8) with L = 1 and µ = 1,
since it arises from one loop and requires insertions of symmetry-breaking spurions. Since
the coe�cients cl are expected to be positive [108], these terms give positive contributions
to the pNGBs mass squared. In the case of the Higgses one has
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where ct is an O(1) non-perturbative coe�cient and yt is the top Yukawa coupling. The
1/2

p
2 factor depends on the spurion’s normalisation. Although in this case the sign

is not fixed, a simple one-loop computation suggests that it could be negative. This is
also required to successfully obtain EWSB. Similar terms arise also from the S1 and S3

leptoquarks couplings to SM fermions:
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where also c(u)1,3 ⇠ O(1). Since the (positive) SM gauging contribution to the square pNGB
masses is smaller for the Higgs than for the leptoquarks, it is reasonable to expect that
these potentially negative terms due to SM fermion loops would be more important for
the Higgs than for the LQ, providing a good EWSB.

4.4 Electroweak Symmetry Breaking and Higgs mass

For what concerns the dynamics of EWSB, this model reduces to the SU(4)L⇥SU(4)R !

SU(4)D case studied in Ref. [68]. In fact, neither the LQ nor the other pNGB with valence
 Q HC-fermion enter in any aspect of EWSB. For this reason I can refer to [68] for most
of this discussion, of which I summarise here only the main aspects.

In the notation used until here, the two Higgs doublets,H1,2 = (H+
1,2, H

0
1,2)

T , are related
directly to the valence HC fermions and embedded in the pNGB matrix U ⌘ exp(i⇧) as
(see App. C for this definition)
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where I focussed only on the lower 4 ⇥ 4 block and set to zero the other fields. A more
convenient basis in the two Higgs doublets for studying EWSB is the one adopted in
Ref. [68]:

H1 =
iH̃1 + H̃2

p
2

, H2 =
�iH̃1 + H̃2

p
2

. (4.14)

Under PH one has H̃1 ! H̃1 and H̃2 ! �H̃2. In this notation the field which takes the
vev is hH̃1i = (0, vh/

p
2)T , corresponding to ✓ = vh/

p
2f in Eq. (2.10). Indeed, since the

negative top quark loop contribution to the Higgs potential, Eq. (4.11), is exactly along
the direction |H1 �H2|

2 = 2|H̃1|
2, this is the field which takes a vev. The physical fields

from the two Higgs doublets are

H̃1 =

✓
G+,

vh + h+ iG0

p
2

◆T

, H̃2 =

✓
H+,

h2 + iA0
p
2

◆T

, (4.15)

where G±,0 are those eaten by the SM W± and Z bosons, h is the physical SM-like
125 GeV Higgs as well as the only one which couples linearly to the EW gauge bosons.
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where G±,0 are those eaten by the SM W± and Z bosons, h is the physical SM-like
125 GeV Higgs as well as the only one which couples linearly to the EW gauge bosons.
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Their transformation properties under SU(10)L ⇥ SU(10)R are

G
L,R
X ! gL,R G

L,R
X g†L,R . (4.7)

Since the HC theory is vectorlike, the left and right spurions are identical. The leading
operator in the chiral Lagrangian built with these spurions is
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where the sum is over the three SM gauge groups, i = s, w, Y , ci are non-perturbativeO(1)
coe�cients, and C i

2(⇡
↵) is the Casimir of the pNGB �↵ under the SM gauge group i.7 The

coe�cients in front of the operator are estimated from Eq. (2.8) with L = 1 and µ = 1,
since it arises from one loop and requires insertions of symmetry-breaking spurions. Since
the coe�cients cl are expected to be positive [108], these terms give positive contributions
to the pNGBs mass squared. In the case of the Higgses one has
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For all the pNGB irreps this corresponds numerically, up to O(1) factors, to:
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For ⇤HC ⇡ 10 TeV it is immediate to read the numerical value of these contributions,
ranging from ⇡ 500 GeV for the !± state to ⇡ 2.8 TeV for the ⇡̃3.

4.3 Potential from the four-fermion operators

The last explicit symmetry-breaking terms to be discussed are due to the four-fermion
operators of Eqs. (3.11,3.20), responsible for the SM Yukawa and leptoquark couplings.
Since their e↵ect on pNGB masses is proportional to the coupling itself, the leading
contribution is due to the top quark and the LQ coupling to 3rd generation fermions.

The e↵ects on the pNGB potential from these breaking terms can be traced with the
spurions introduced in Eqs. (3.12,3.21). The leading chiral operator generated from the
top Yukawa, with its NDA estimate, is

Vt = �
y2tNcf 2⇤2

HC

16⇡2
ct
X

i

����
1

2
p
2
Tr

⇥
(�i

H1
��i

H2
)(U � U †)

⇤����
2

� �
cty2tNc⇤2

HC

16⇡2
|H1 �H2|

2 +O(�3)

(4.11)

7C2(F) =
N

2�1
2N for the fundamental and C2(Adj) = N for the adjoint of SU(N), while it corresponds

to Y 2 under U(1)Y .

16

The gauge contribution is positive and is larger for colored states. 
EW charges give subleading corrections.
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For ⇤HC ⇡ 10 TeV it is immediate to read the numerical value of these contributions,
ranging from ⇡ 500 GeV for the !± state to ⇡ 2.8 TeV for the ⇡̃3.
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~ 1 of SU(3)c

ΛHC ≳ 10 TeV

~ 3 of SU(3)c

~ 8 of SU(3)c
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Scalar Potential
The pNGB potential arises at 1-loop from all the explicit breaking terms

4.1 Potential from the HC fermion masses

The contribution to the pNGB potential from the explicit breaking due to the HC fermion
masses is controlled by the spurion M and the leading chiral operator describing this is
given in Eq. (2.9). Upon expanding U in powers of pNGBs one gets the mass terms which,
for the non-singlets pNGB is

m2
( ̄i j)

= B0(mi +mj) , (4.1)

where i, j = Q,L,N,E represent the valence fundamental HC fermion constituting the
pNGB, according to Eq. (2.7). I recall that mN = mE to avoid custodial symmetry
breaking. In particular, the contribution to the two Higgs doublets mass is

Vm = �
f 2

4
Tr[U †�+ �†U ] � B0(mE +mL)(|H1|

2 + |H2|
2) . (4.2)

In order to obtain the singlets masses one needs the expression of the 3 Cartan generators
of SU(10)D transforming as singlets of GSM . They are given in Appendix C, Eq. (C.9).
In the unbroken EW symmetry limit one gets:

m2
⌘1 = 2B0mE , M2
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0
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q
3
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3
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1
5B0(3mE + 3mL + 4mQ)

1

A , (4.3)

where in general ⌘2 and ⌘3 mix with each other. For mE = mL the mixing vanishes and:

m2
⌘1 = m2

⌘2 = 2B0mL , m2
⌘3 =

2

5
B0(3mL + 2mQ) . (4.4)

Since this is the only contribution to the three singlets masses, the fundamental HC-
fermion masses are required in order to make them heavy enough to pass phenomenological
bounds (discussed in Section 6.3). A possible alternative could be if a su�ciently large
contribution is generated via the 1

⇤2
t

 4 operators as mentioned in Section 3. The e↵ect of

these operators in the potential has been briefly considered in Ref. [61], where it is argued
to be suppressed.

4.2 Potential from the SM gauging

The explicit breaking of the global symmetry G due to the gauging of the SM subgroup is
analogous to the one due to the QED gauging in the QCD chiral Lagrangian, responsible
for the ⇡± - ⇡0 mass splitting. It can be described in terms of spurions, defined from the
SM gauge interactions of the HC fermion currents, Eq. (2.1):

LHC � gsG
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Y
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where J↵
µ =  ̄L�µT ↵

L L+ ̄R�µT ↵
R R, T ↵

L,R are the generators of G, and the various G↵
X are

the spurions. They represent the embedding of the SM gauging within G (see App. C.1
for the explicit expression). One can define the generators associated with a given SM
gauge field as the combinations:

G
L,R
s,A ⌘ G

↵
s,AT
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L,R
w,i ⌘ G

↵
w,iT
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↵
Y T

↵
L,R . (4.6)
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While the pNGB masses due to the gauging already provide large enough masses to
most of the pNGB in order to be largely safe from present collider searches, the three
singlets ⌘1,2,3 do not take a mass neither via the gauging nor via Yukawa couplings,
therefore the fundamental HC fermion masses are necessary in order to make them heavy
enough. The singlet ⌘3 has an anomalous coupling to gluons, therefore potentially a large
production cross section at the LHC. However, very small values of mL,Q are su�cient to
be safe, for example for mL = mE = mN = 50 GeV and mQ = 200 GeV we have, from
Eq. (37), m⌘1,2 ⇡ 1.4 TeV and m⌘3 ⇡ 2.1 TeV (using the QCD value B0 ⇡ 20f). The
choice mQ > mL,E,N also reinforces the fact that the positive square-mass contributions
are smaller for the Higgses than for the leptoquarks, consistently with the fact that the
Higgses take a vev while color remains unbroken.

4.2 Other resonances

All other composite resonances have masses at the ⇤HC ⇠ 4⇡f ⇠ 10 TeV scale. For
example, vector mesons |Viji = |( ̄i j)J=1i arise in the same gauge representations as the
pNGB in Eq. (4). Their mass is given by

m2

Vij
⇡ c2

0
(4⇡f)2 + c2

1
B0(m ̄i

+m j
) , (38)

where c0 and c1 are O(1) non-perturbative parameters [7]. This puts them well above
the reach of LHC direct searches as well as precision tests and, due to the SU(2) flavor
symmetry, they are also expected to be safe from the point of view of flavor observables.

On the other hand, an FCC at ⇡ 100 TeV should be able to study in detail the
spectroscopy of the new strong sector while the proposed HE-LHC at ⇡ 28 TeV might be
able to observe the colored states, which present the largest production cross section.

5 Electroweak Symmetry Breaking

A negative mass-squared for the two Higgs doublets can be obtained by tuning the positive
contribtions from mL and GSM with a negative one from the top Yukawa:

m2

H1,2
⇡ 2B0(mL +mE) +�m2

gauge
+�m2

Yuk
. (39)

In practice, EWSB is obtained radiatively thanks to the explicit symmetry breaking terms.
This argument can be made more quantitative by an analysis of the Coleman-Weinberg
potential for the pNGB Higgs, which would then also provide a handle on the Higgs
quartic coupling. See e.g. [32], which uses the same mechanism.

Estimate the quartic coupling, i.e. the final Higgs mass, from NDA. Is a tuning needed?
(probably yes)
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< 0

6 Phenomenology

6.1 Higgs couplings

Since the Higgs is the lightest of the pNGB, when studying its phenomenology, and EWSB,
we can set to zero the others and consider only the relevant part of the PNGB matrix
(see App. A):

p
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2
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2
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CCA , (40)

where Hu,d
1,2 are complex: Hu

1,2 = (H1

1,2+iH2

1,2)/
p
2, Hd

1,2 = (H3

1,2+iH4

1,2)/
p
2. Such a setup

is the same as the one in composite Higgs models with coset SU(4)1⇥SU(4)2 ! SU(4)D,
already been studied for example in [6] (although in that case partial compositeness is
used to generate the SM fermion masses).

Let us consider the chiral Lagrangian at O(p2) of Eq. (7). After the two Higgses takes
a vev, that Lagrangian also describes the W and Z mass terms and their interactions with
the Higgs. Assuming the two Higgs doublets take a vev hH1i =

1p
2
(vu, 0)t =

1p
2
(vhs�, 0)t

and hH2i =
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(vhc�, 0)t, then Eq. (7) gives a mass to the W and Z bosons:
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The only possibility to have a phenomenologically viable model, with the ⇢-parameter
close to 1, is to have vu ⇡ vd, i.e. tan � ⇡ 1, in which case

m2

W =
g2f 2

2
sin2

vh
p
2f

, m2

Z =
(g2 + g02)f 2

2
sin2

vh
p
2f

, (42)

from which we can define

⇠ ⌘
v2

f 2
= 2 sin2

vh
p
2f

, (43)

with v ' 246 GeV. The condition vu = vd arises automatically if the Higgs potential
responsible for these vacuum expectation values is also custodially symmetric, which can
be ensured by assuming it is invariant under a Z2 symmetry [33].

If we fix tan � = 1, then we can obtain the Higgs couplings to W and Z bosons in
this setup just by expanding the chiral Lagrangian (7) in powers of the Higgs field, with
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≲ 10%

Tuning to get EWSB as in usual Composite Higgs models:

All the heavy Higgses are embedded in H̃2: the two neutral states h2 and A0, and the
charged H± one.

In order to minimise the potential and study the Higgs mass I set to zero all the fields
except the physical Higgs h, in which case the pNGB matrix is given by Eq. (2.10) with
✓ ! (vh + h)/

p
2f . The Higgs potential, from Eqs. (4.2,4.9,4.11) becomes

V (✓) = �Cmf
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4 cos 2✓ � 2Ctf
4 sin2 ✓ , (4.16)

where
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and I am assuming Cm,g,t > 0. Minimising the potential in ✓ gives the EWSB condition

v2

f 2
⌘ ⇠ = 2 sin2 ✓min = 2�

C2
m

8 (Ct � Cg)
2 . (4.18)

This condition should be tuned in order to obtain the desired ⇠. Specifically, one could
tune the mass parameters (mE +mL) inside Cm to achieve

Cm = 4(Ct � Cg)

r
1�

⇠

2
. (4.19)

The light Higgs, which in this setup does not mix with the other pNGBs, has a mass

m2
h = (Ct � Cg)f

2⇠ ⇠ Ncctm
2
t � 3cwm

2
W , (4.20)

where in the estimate I used ⇤HC ⇠ 4⇡f . It is clear that some degree of cancellation is
necessary in order to bring it down to the physical value of mh ⇡ 125 GeV. From the
first equality in Eq. (4.20), the tuning condition in Eq. (4.19), and the definition of Cm

one also obtains
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2m2

h

⇠

p
1� ⇠/2 , (4.21)

which relates the Higgs mass and the value of ⇠ to the mass of the singlets ⌘1,2, Eq. (4.3).
From the potential one can also derive the triple Higgs coupling:
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Up to subleading EWSB corrections, the mass of the heavy Higgs doublet is
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where in the last step I used Eq. (4.19) and the definition of Ct.
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From the structure of the potential and the expressions for the various terms I get

The deviations in Higgs couplings and the EWPT are similar to most Composite Higgs models.

Their transformation properties under SU(10)L ⇥ SU(10)R are

G
L,R
X ! gL,R G

L,R
X g†L,R . (4.7)

Since the HC theory is vectorlike, the left and right spurions are identical. The leading
operator in the chiral Lagrangian built with these spurions is
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where the sum is over the three SM gauge groups, i = s, w, Y , ci are non-perturbativeO(1)
coe�cients, and C i

2(⇡
↵) is the Casimir of the pNGB �↵ under the SM gauge group i.7 The

coe�cients in front of the operator are estimated from Eq. (2.8) with L = 1 and µ = 1,
since it arises from one loop and requires insertions of symmetry-breaking spurions. Since
the coe�cients cl are expected to be positive [108], these terms give positive contributions
to the pNGBs mass squared. In the case of the Higgses one has

VG �
3⇤2

HC

8⇡2

✓
3

4
cwg

2
w +

1

4
cY g

2
Y

◆�
|H1|

2 + |H2|
2
�
+ . . . (4.9)

For all the pNGB irreps this corresponds numerically, up to O(1) factors, to:
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For ⇤HC ⇡ 10 TeV it is immediate to read the numerical value of these contributions,
ranging from ⇡ 500 GeV for the !± state to ⇡ 2.8 TeV for the ⇡̃3.

4.3 Potential from the four-fermion operators

The last explicit symmetry-breaking terms to be discussed are due to the four-fermion
operators of Eqs. (3.11,3.20), responsible for the SM Yukawa and leptoquark couplings.
Since their e↵ect on pNGB masses is proportional to the coupling itself, the leading
contribution is due to the top quark and the LQ coupling to 3rd generation fermions.

The e↵ects on the pNGB potential from these breaking terms can be traced with the
spurions introduced in Eqs. (3.12,3.21). The leading chiral operator generated from the
top Yukawa, with its NDA estimate, is
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(4.11)

7C2(F) =
N

2�1
2N for the fundamental and C2(Adj) = N for the adjoint of SU(N), while it corresponds

to Y 2 under U(1)Y .
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For ⇤HC ⇡ 10 TeV it is immediate to read the numerical value of these contributions,
ranging from ⇡ 500 GeV for the !± state to ⇡ 2.8 TeV for the ⇡̃3.

4.3 Potential from the four-fermion operators

The last explicit symmetry-breaking terms to be discussed are due to the four-fermion
operators of Eqs. (3.11,3.20), responsible for the SM Yukawa and leptoquark couplings.
Since their e↵ect on pNGB masses is proportional to the coupling itself, the leading
contribution is due to the top quark and the LQ coupling to 3rd generation fermions.
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spurions introduced in Eqs. (3.12,3.21). The leading chiral operator generated from the
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where ct is an O(1) non-perturbative coe�cient and yt is the top Yukawa coupling. The
1/2

p
2 factor depends on the spurion’s normalisation. Although in this case the sign

is not fixed, a simple one-loop computation suggests that it could be negative. This is
also required to successfully obtain EWSB. Similar terms arise also from the S1 and S3

leptoquarks couplings to SM fermions:
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where also c(u)1,3 ⇠ O(1). Since the (positive) SM gauging contribution to the square pNGB
masses is smaller for the Higgs than for the leptoquarks, it is reasonable to expect that
these potentially negative terms due to SM fermion loops would be more important for
the Higgs than for the LQ, providing a good EWSB.

4.4 Electroweak Symmetry Breaking and Higgs mass

For what concerns the dynamics of EWSB, this model reduces to the SU(4)L⇥SU(4)R !

SU(4)D case studied in Ref. [68]. In fact, neither the LQ nor the other pNGB with valence
 Q HC-fermion enter in any aspect of EWSB. For this reason I can refer to [68] for most
of this discussion, of which I summarise here only the main aspects.

In the notation used until here, the two Higgs doublets,H1,2 = (H+
1,2, H

0
1,2)

T , are related
directly to the valence HC fermions and embedded in the pNGB matrix U ⌘ exp(i⇧) as
(see App. C for this definition)
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where I focussed only on the lower 4 ⇥ 4 block and set to zero the other fields. A more
convenient basis in the two Higgs doublets for studying EWSB is the one adopted in
Ref. [68]:

H1 =
iH̃1 + H̃2

p
2

, H2 =
�iH̃1 + H̃2

p
2

. (4.14)

Under PH one has H̃1 ! H̃1 and H̃2 ! �H̃2. In this notation the field which takes the
vev is hH̃1i = (0, vh/

p
2)T , corresponding to ✓ = vh/

p
2f in Eq. (2.10). Indeed, since the

negative top quark loop contribution to the Higgs potential, Eq. (4.11), is exactly along
the direction |H1 �H2|

2 = 2|H̃1|
2, this is the field which takes a vev. The physical fields

from the two Higgs doublets are

H̃1 =

✓
G+,

vh + h+ iG0

p
2

◆T

, H̃2 =

✓
H+,

h2 + iA0
p
2

◆T

, (4.15)

where G±,0 are those eaten by the SM W± and Z bosons, h is the physical SM-like
125 GeV Higgs as well as the only one which couples linearly to the EW gauge bosons.
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17

Their transformation properties under SU(10)L ⇥ SU(10)R are
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where the sum is over the three SM gauge groups, i = s, w, Y , ci are non-perturbativeO(1)
coe�cients, and C i
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coe�cients in front of the operator are estimated from Eq. (2.8) with L = 1 and µ = 1,
since it arises from one loop and requires insertions of symmetry-breaking spurions. Since
the coe�cients cl are expected to be positive [108], these terms give positive contributions
to the pNGBs mass squared. In the case of the Higgses one has
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For ⇤HC ⇡ 10 TeV it is immediate to read the numerical value of these contributions,
ranging from ⇡ 500 GeV for the !± state to ⇡ 2.8 TeV for the ⇡̃3.

4.3 Potential from the four-fermion operators

The last explicit symmetry-breaking terms to be discussed are due to the four-fermion
operators of Eqs. (3.11,3.20), responsible for the SM Yukawa and leptoquark couplings.
Since their e↵ect on pNGB masses is proportional to the coupling itself, the leading
contribution is due to the top quark and the LQ coupling to 3rd generation fermions.

The e↵ects on the pNGB potential from these breaking terms can be traced with the
spurions introduced in Eqs. (3.12,3.21). The leading chiral operator generated from the
top Yukawa, with its NDA estimate, is
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Spectrum
Using the structure of the potential from the explicit breaking terms and the NDA estimates I get

  E 
[TeV]0.1 1 10

h
  ω± 
η3

ΠL  
 ΠQ 

T2 
R̃2

π̃1  
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Figure 1: Example of a possible spectrum of the theory.

6 Collider phenomenology

In this section I present the phenomenological aspects of the model more relevant for LHC
new physics searches.

6.1 Possible spectrum

While the non-perturbative character of the dynamics underlying the model does not allow
to make precise predictions for the spectrum of the theory, one can use the pNGB potential
and NDA estimates detailed in Section 4 to sketch what a typical pNGB spectrum might
be like.

For definitiveness in the following I fix

⇠ = 0.05 (f = 1.1 TeV) , (6.1)

corresponding to ⇤HC ⇠ 13 TeV. In the simplifying limit mE = mL, Eq. (4.21) relates
the Higgs mass and ⇠ to the mass of the first two singlets m⌘1,2 =

p
2B0mL = 790 GeV.

Using the QCD value B0 ⇡ 20f , one gets mL ⇡ 14 GeV. The third singlet mass is m⌘3 =

m⌘1,2

q
3+2mQ/mL

5 , which can be larger than the other two for mQ > mL, reaching 1 TeV

for mQ ⇡ 2.5mL. The mass of the heavy Higgses before EWSB is given by Eq. (4.23),
mH̃2

⇠ 1.9 TeV. For the other pNGBs I combine the contributions from the HC-fermion
masses, Eq. (4.1), and from the SM gauging, Eq. (4.10). In the case of the S1,3 leptoquarks
I also take into account the contribution from the four-fermion operators, Eq. (4.12),
assumed to be negative. All the other composite resonances (composite vectors, scalars,
HC-baryons, etc.) are expected to be near the ⇤HC scale, i.e. above 10 TeV. Finally, the
sector responsible for generating the four-fermion operators is expected to be not too far
above that scale, unless the theory enters a conformal window above ⇤HC . The resulting
spectrum is sketched in Fig. 1. The reader should keep in mind that this must be taken
with a grain of salt, since O(1) deviations from NDA are expected.

In the limit of unbroken EW symmetry, ✓ ! 0, the only pNGB which mix with each
other are the two singlets ⌘2 and ⌘3, Eq. (4.3), where the mixing is proportional to the
HC fermion mass di↵erence mE�mL. For ✓ > 0, also a small mixing between the ⇧0

L and
the ⌘1 singlet arises, proportional to / (cwg2w � cY g2Y ) sin

2 ✓, as well as between S1, 13
and

S3, 13
(proportionally to / cY g2Y (1� cos ✓)) and between R̃2, 13

and T2, 13
(proportionally to

/ cwg2w(1�cos ✓)). With the specific choice of keeping only the pseudo-scalar combination
in the HC bilinears in the four-fermion operators, no other mixing terms is present. In
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The lightest pNGBs are the singlets. Some pNGB have anomalous couplings to gauge bosons:

the more general case other mixing terms arise for non-zero ✓. A more detailed discussion
of this point can be found in [68].

6.2 pNGB anomalous couplings

Some pNGBs can have a non-zero coupling to two SM gauge bosons via the axial anomaly.
These interactions are fully described at the chiral Lagrangian level by the Wess-Zumino-
Witten term [123,124]. From that one can extract the relevant coupling of one pNGB to
two gauge bosons, which in the class of theories considered here is given by
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gauge field (as defined in Eq. C.10). The complete list of anomalous couplings for the
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where d↵�� are the SU(3)c symmetric structure constants. Measuring a process involving
these coupling would provide information on NHC/f . An independent measurement of f
(i.e. of ⇠) could instead be obtained, for example, via Higgs couplings measurements or
pNGB scattering.

6.3 Collider signatures of the pNGBs

Here I discuss some of the main aspects of the collider phenomenology of the various
pNGBs, listed in Eq. (2.7), in particular their possible production channels and decay
modes. I also present the present bounds and future prospects for the most interesting
cases.

6.3.1 S1 and S3 Leptoquarks

Due to their linear couplings to SM fermions, the S1 and S3 leptoquarks have a rich
phenomenology. The various states are classified under the electromagnetic U(1)em as:

s1,� 1
3
, s3,� 4

3
, s3,� 1

3
, s3, 23 , (6.4)
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Can be produced in gg-fusion!

(just an example, since NDA gives only O(1) estimates)

2.2 Condensate and pNGBs

This theory is expected to form a condensate [81–83]

h ̄i ji = �B0f
2�ij , (2.4)

where B0 is a non-perturbative constant (see e.g. Refs. [84,85] for the QCD case), which
in the QCD case is approximately given by B0 ⇡ 20f . For NHC = 3 and NF = 10 also
the condition quoted in Ref. [86] for the condensate to form is satisfied.

This condensate spontaneously breaks the global symmetry G, Eq. (2.2), to the diag-
onal subgroup

G = SU(10)L ⇥ SU(10)R ⇥ U(1)HB ! H = SU(10)D ⇥ U(1)HB , (2.5)

generating a set of 99 real pNGBs transforming in the adjoint of SU(10)D. They can be
described in terms of the matrix U(�) ⌘ u(�)2,

U [�(x)] = exp

✓
2i
�↵(x)

f
T ↵

◆
, (2.6)

transforming under (gL, gR) 2 G as U ! gRUg†L [87,88]. In the expression above, f is the
NGB decay constant and T ↵ are the SU(10) generators normalised as Tr[T ↵T �] = 1

2�
↵�.

The complete list of generators and the SM embedding is detailed in App. C.1. The
pNGBs are arranged into representations of GSM = SU(3)c ⇥ SU(2)w ⇥ U(1)Y as (see
App. C.2 for details):

valence irrep. valence irrep. d.o.f.
H1 ⇠ i�2( ̄L N) (1,2)1/2 H2 ⇠ ( ̄E L) (1,2)1/2 4 + 4
S1 ⇠ ( ̄Q L) (3̄,1)1/3 S3 ⇠ ( ̄Q�a L) (3̄,3)1/3 6 + 18
!±

⇠ ( ̄N E) (1,1)�1 ⇧L ⇠ ( ̄L�a L) (1,3)0 2 + 3
R̃2 ⇠ ( ̄E Q) (3,2)1/6 T2 ⇠ ( ̄Q N) (3̄,2)5/6 12 + 12
⇡̃1 ⇠ ( ̄QTA Q) (8,1)0 ⇡̃3 ⇠ ( ̄QTA�a Q) (8,3)0 8 + 24
⇧Q ⇠ ( ̄Q�a Q) (1,3)0 ⌘i ⇠ 3⇥ cai ( ̄a a) (1,1)0 3 + 3

. (2.7)

These include two Higgs doublets H1,2 as well as the two leptoquarks S1,3. A general
bottom-up study of composite Higgs models with two Higgs doublets can be found in
Ref. [89].

In order to estimate the size of various operators in the low energy chiral Lagrangian, I
assume näıve dymensional analysis (NDA) as the power counting scheme [90], opportunely
extended to the fermion sector (see e.g. Ref. [91]):
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,

(2.8)
where ⇤ ⇠ g⇤f ⇠ 4⇡f , L counts the loop level at which the operator is generated, E�,V, 

count the insertions of pions, elementary SM gauge bosons and fermions, d counts the
derivatives and � the mass insertions. Finally, µ � 0 takes into account if some operator

7
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Figure 3: (Top-left) Branching ratios of ⌘3 to gauge boson pairs via anomalous couplings, as a
function of YL.
(Top-right) Production cross section at 13 TeV LHC via gluon fusion for the singlet ⌘3, NHC = 3,
and two values of f .
(Bottom-left) Excluded region at 95% CL in them⌘3�YL plane from the ATLAS �� search [134],
in red, and from the CMS Z� search [135], in green. The dashed and dotted lines are future
LHC prospects for 300 and 3000 fb�1 of luminosity.
(Bottom-right) Signal cross section for the color octet ⇡̃1 in dijet (gg) as function of its mass, for
f = 1.1 (0.87) TeV in solid (dashed) blue. The purple region is excluded by the ATLAS dijet
search [136].
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Figure 1: Example of a possible spectrum of the theory.

6 Collider phenomenology

In this section I present the phenomenological aspects of the model more relevant for LHC
new physics searches.

6.1 Possible spectrum

While the non-perturbative character of the dynamics underlying the model does not allow
to make precise predictions for the spectrum of the theory, one can use the pNGB potential
and NDA estimates detailed in Section 4 to sketch what a typical pNGB spectrum might
be like.

For definitiveness in the following I fix

⇠ = 0.05 (f = 1.1 TeV) , (6.1)

corresponding to ⇤HC ⇠ 13 TeV. In the simplifying limit mE = mL, Eq. (4.21) relates
the Higgs mass and ⇠ to the mass of the first two singlets m⌘1,2 =

p
2B0mL = 790 GeV.

Using the QCD value B0 ⇡ 20f , one gets mL ⇡ 14 GeV. The third singlet mass is m⌘3 =

m⌘1,2

q
3+2mQ/mL

5 , which can be larger than the other two for mQ > mL, reaching 1 TeV

for mQ ⇡ 2.5mL. The mass of the heavy Higgses before EWSB is given by Eq. (4.23),
mH̃2

⇠ 1.9 TeV. For the other pNGBs I combine the contributions from the HC-fermion
masses, Eq. (4.1), and from the SM gauging, Eq. (4.10). In the case of the S1,3 leptoquarks
I also take into account the contribution from the four-fermion operators, Eq. (4.12),
assumed to be negative. All the other composite resonances (composite vectors, scalars,
HC-baryons, etc.) are expected to be near the ⇤HC scale, i.e. above 10 TeV. Finally, the
sector responsible for generating the four-fermion operators is expected to be not too far
above that scale, unless the theory enters a conformal window above ⇤HC . The resulting
spectrum is sketched in Fig. 1. The reader should keep in mind that this must be taken
with a grain of salt, since O(1) deviations from NDA are expected.

In the limit of unbroken EW symmetry, ✓ ! 0, the only pNGB which mix with each
other are the two singlets ⌘2 and ⌘3, Eq. (4.3), where the mixing is proportional to the
HC fermion mass di↵erence mE�mL. For ✓ > 0, also a small mixing between the ⇧0

L and
the ⌘1 singlet arises, proportional to / (cwg2w � cY g2Y ) sin

2 ✓, as well as between S1, 13
and

S3, 13
(proportionally to / cY g2Y (1� cos ✓)) and between R̃2, 13

and T2, 13
(proportionally to

/ cwg2w(1�cos ✓)). With the specific choice of keeping only the pseudo-scalar combination
in the HC bilinears in the four-fermion operators, no other mixing terms is present. In
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Other pNGBs

The color-octet π̃1 can be searched in dijet but in this model it is too heavy for the LHC.

gg

ΓΓZΓ ZZ

W"W#

#3 #2 #1 0 1 2 310#5

10#4

0.001

0.01

0.1

1

YL

B
r!Η 3%

VV
"

NHC!3

f !1.1 TeV
f !0.87 TeV

500 1000 1500 2000 2500 3000

0.001

0.005
0.010

0.050
0.100

0.500
1.000

mΗ3 !GeV"
Σ
#pp$

Η 3
$!pb"

ATLAS ΓΓ 13 TeV 36.7fb"1

CMS ZΓ 13 TeV 35.9fb"1

f # 1.1 TeV, NHC#3

300 fb"1

3000 fb"1

500 1000 1500 2000 2500
"3

"2

"1

0

1

2

3

mΗ3 !GeV"

YL

ATLAS gg 13 TeV 37fb!1

NHC"3

f "1.1 TeV
f "0.87 TeV

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

10!4

0.001

0.01

0.1

mΠ$1 !TeV"

Σ
13
Te
V#pp&

Π$ 1
$'Br#

Π$ 1
&
gg
$!pb"

Figure 3: (Top-left) Branching ratios of ⌘3 to gauge boson pairs via anomalous couplings, as a
function of YL.
(Top-right) Production cross section at 13 TeV LHC via gluon fusion for the singlet ⌘3, NHC = 3,
and two values of f .
(Bottom-left) Excluded region at 95% CL in them⌘3�YL plane from the ATLAS �� search [134],
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LHC prospects for 300 and 3000 fb�1 of luminosity.
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f = 1.1 (0.87) TeV in solid (dashed) blue. The purple region is excluded by the ATLAS dijet
search [136].
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The other singlets η1,2 and the triplets ΠL,Q do not couple to gluons.  
The SU(2)L-triplet and color-octet π̃3 only couples to gluon+EW gauge boson. 

→ Too small production XS at the LHC and heavy mass.
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6 Collider phenomenology
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be like.
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⇠ 1.9 TeV. For the other pNGBs I combine the contributions from the HC-fermion
masses, Eq. (4.1), and from the SM gauging, Eq. (4.10). In the case of the S1,3 leptoquarks
I also take into account the contribution from the four-fermion operators, Eq. (4.12),
assumed to be negative. All the other composite resonances (composite vectors, scalars,
HC-baryons, etc.) are expected to be near the ⇤HC scale, i.e. above 10 TeV. Finally, the
sector responsible for generating the four-fermion operators is expected to be not too far
above that scale, unless the theory enters a conformal window above ⇤HC . The resulting
spectrum is sketched in Fig. 1. The reader should keep in mind that this must be taken
with a grain of salt, since O(1) deviations from NDA are expected.

In the limit of unbroken EW symmetry, ✓ ! 0, the only pNGB which mix with each
other are the two singlets ⌘2 and ⌘3, Eq. (4.3), where the mixing is proportional to the
HC fermion mass di↵erence mE�mL. For ✓ > 0, also a small mixing between the ⇧0

L and
the ⌘1 singlet arises, proportional to / (cwg2w � cY g2Y ) sin

2 ✓, as well as between S1, 13
and
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Other pNGBs

The other pNGBs can be pair-produced but do not decay directly to SM particles. 
They can decay via higher-order terms such as:
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Figure 4: Three-body pNGB decay via the LQ coupling Lagrangian (left) and multi-body
decays via trilinear interactions in the pNGB potential (right).

6.3.4 Triplets

The two SU(2)w triplets ⇧a
L,Q are expected to have masses around 2 TeV. They decay

via the anomalous couplings (6.3) with branching ratios

B(⇧0
L,Q ! ��) = B(⇧0

L,Q ! ZZ) ⇡ 0.27 , B(⇧0
L,Q ! Z�) ⇡ 0.46 ,

B(⇧±
L,Q ! W±�) ⇡ 0.78 ,B(⇧±

L,Q ! W±Z) ⇡ 0.22 .
(6.7)

They can be either singly produced in association with a gauge boson or in vector boson
fusion via the same couplings, or pair produced via electroweak gauge interactions. Due
to their large mass and electroweak production modes, they can’t be directly detected at
the LHC so I do not discuss them further.

6.3.5 Other pNGBs

The other pNGBs do not have any linear coupling to SM states, therefore no allowed
decay �a ! 'SM'SM. However, by expanding the Yukawa and LQ-coupling opera-
tors of Eqs. (3.13,3.22) one gets couplings of two pNGB to SM fermions such as L �

gx/f �a�b SM SM. A heavier pNGB can thus have a three-body decay into SM fermions
and a lighter pNGB, which in turn could decay to SM states (fermions or gauge bosons)
via the processes described above, as shown schematically in Fig. 4 (left). Compared to
direct two-body decays to fermions, these three-body decays are suppressed by the phase
space and by the EWSB parameter ⇠ = v2/f 2, since they are absent for ⇠ = 0. For these
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R̃2 and T2

These states have a mass close to 3 TeV. The charges of the individual states are (where
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Figure 4: Three-body pNGB decay via the LQ coupling Lagrangian (left) and multi-body
decays via trilinear interactions in the pNGB potential (right).

6.3.4 Triplets
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L,Q ! Z�) ⇡ 0.46 ,

B(⇧±
L,Q ! W±�) ⇡ 0.78 ,B(⇧±

L,Q ! W±Z) ⇡ 0.22 .
(6.7)
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or

None of them is expected to be observable at the LHC (too heavy or only EW couplings).

The other resonances have masses at the  Λ ~ 4πf  > 10 TeV  scale
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Composite pNGB Scalar LQ

-  Higgs

M

-  Λ ~ gρ f ~ 10 TeV
other resonances

-  f

- mpNGB ~ 1.5 TeV
Flavor-mediators

Gap

natural separation of scales    mpNGB  ≪ Mres
Unwanted effects from heavy Z’ resonances automatically suppressed.

EW Hierarchy problem is addressed

Very rich collider phenomenology: leptoquarks and singlets!

Non-minimal cosets (large number of states)

Flavor structure put in by hand

UV models often point to interesting collider signatures 
not directly related to the anomalies: 

scalar singlets in this case. 
Heavy Z’, G’ in vector LQ models.
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Summary
EFT fit

Including RGE effects
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3. operators containing flavour-blind contractions of the light fields have vanishing Wil-

son coefficients.

We first discuss the consequences of these hypotheses on the structure of the relevant effec-

tive operators and then proceed analysing the experimental constraints on their couplings.

2.1 The effective Lagrangian

According to the first hypothesis listed above, we consider the following effective Lagrangian

at a scale Λ above the electroweak scale

Leff = LSM− 1

v2
λq
ijλ

ℓ
αβ

[
CT (Q̄i

Lγµσ
aQj

L)(L̄
α
Lγ

µσaLβ
L) + CS (Q̄i

LγµQ
j
L)(L̄

α
Lγ

µLβ
L)
]
, (2.1)

where v ≈ 246GeV. For simplicity, the definition of the EFT cutoff scale and the nor-

malisation of the two operators is reabsorbed in the flavour-blind adimensional coefficients

CS and CT .

The flavour structure in eq. (2.1) is contained in the Hermitian matrices λq
ij , λ

ℓ
αβ and

follows from the assumed U(2)q × U(2)ℓ flavour symmetry and its breaking. The flavour

symmetry is defined as follows: the first two generations of left-handed quarks and leptons

transform as doublets under the corresponding U(2) groups, while the third generation

and all the right-handed fermions are singlets. Motivated by the observed pattern of the

quark Yukawa couplings (both mass eigenvalues and mixing matrix), it is further assumed

that the leading breaking terms of this flavour symmetry are two spurion doublets, Vq and

Vℓ, that give rise to the mixing between the third generation and the other two [31, 32].

The normalisation of Vq is conventionally chosen to be Vq ≡ (V ∗
td, V

∗
ts), where Vji denote

the elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In the lepton sector we

assume Vℓ ≡ (0, V ∗
τµ) with |Vτµ| ≪ 1. We adopt as reference flavour basis the down-

type quark and charged-lepton mass eigenstate basis, where the SU(2)L structure of the

left-handed fields is

Qi
L =

(
V ∗
jiu

j
L

diL

)
, Lα

L =

(
ναL
ℓαL

)
. (2.2)

A detailed discussion about the most general flavour structure of the semi-leptonic

operators compatible with the U(2)q×U(2)ℓ flavour symmetry and the assumed symmetry-

breaking terms is presented in appendix A. The main points can be summarised as follows:

1. The factorised flavour structure in eq. (2.1) is not the most general one; however,

it is general enough given that the available data are sensitive only to the flavour-

breaking couplings λq
sb and λℓ

µµ (and, to a minor extent, also to λℓ
τµ). By construction,

λq
bb = λℓ

ττ = 1.

2. The choice of basis in eq. (2.2) to define the U(2)q ×U(2)ℓ singlets (i.e. to define the

“third generation” dominantly coupled to NP) is arbitrary. This ambiguity reflects

itself in the values of λq
sb, λ

ℓ
µµ, and λℓ

τµ, that, in absence of a specific basis alignment,

are expected to be

λq
sb = O(|Vcb|) , λℓ

τµ = O(|Vτµ|) , λℓ
µµ = O(|Vτµ|2) . (2.3)
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Figure 3. The lines show the correlations among triplet and singlet operators in single-mediator
models. Colour-less vectors are shown in green, coloured scalar in blue, while coloured vectors in
red. Electroweak singlet mediators are shown with the solid lines while triplets with dashed.

The plot in figure 3 clearly singles out the case of a vector LQ, Uµ
1 , which we closely

examine in the next subsection, as the best single-mediator case. However, it must be

stressed that there is no fundamental reason to expect the low-energy anomalies to be

saturated by the contribution of a single tree-level mediator. In fact, in many UV com-

pletions incorporating one of these mediators (for example in composite Higgs models, see

section 4), these states often arise with partners of similar mass but different electroweak

representation, and it is thus natural to consider two or more of them at the same time.

For this reason, and also for illustrative purposes, in the following subsections we consider

two representative cases with more than one mediator at work: two colour-less vectors,

SU(2)L triplet and singlet, and two coloured scalars, also electroweak triplet and singlet.

3.1 Scenario I: vector leptoquark

As anticipated, the simplest UV realisation of the scenario emerging from the EFT fit is

that of an SU(2)L-singlet vector leptoquark, Uµ
1 ≡ (3,1, 2/3), coupled to the left-handed

quark and lepton currents

LU = −1

2
U †
1,µνU

1,µν +M2
UU

†
1,µU

µ
1 + gU (J

µ
UU1,µ + h.c.) , (3.1)

Jµ
U ≡ βiα Q̄iγ

µLα . (3.2)

Here β(0)
iα = δ3iδ3α up to U(2)q × U(2)ℓ breaking terms, as shown in eq. (A.3), and the

flavour structure used in the general fit is recovered by means of the relations (A.5). After

integrating out the leptoquark field, the tree-level matching condition for the EFT is

Leff ⊃ − 1

v2
CU βiαβ

∗
jβ

[
(Q̄i

Lγµσ
aQj

L)(L̄
β
Lγ

µσaLα
L) + (Q̄i

LγµQ
j
L)(L̄

β
Lγ

µLα
L)
]
, (3.3)
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Tree-level mediators

First attempts on UV models for both vector and scalar LQ. 

Scalar LQ can be naturally lighter than other mediators of flavour effects 
if they arise as pseudo-NGB of a strongly coupled sector. 
Allows to address also the Higgs hierarchy problem.
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U(2) flavour symmetry
Keeping only the third-generation Yukawa couplings, the SM enjoys an approximate 

SU(2)5  flavor symmetry

If, instead, the anomalous dimension � is small, the scale ⇤t should be not much above
the compositeness scale ⇤HC in order to generate the required top Yukawa coupling. In
this case an approximate flavour symmetry is required in order to protect the theory
from unwanted flavour violation e↵ects. In the following I take this approach and assume
that the sector responsible for generating these four-fermion operators enjoys a global
approximate, possibly accidental, SU(2)5 flavour symmetry [104–106]:

GF = SU(2)q ⇥ SU(2)u ⇥ SU(2)d ⇥ SU(2)l ⇥ SU(2)e . (3.3)

I also assume that the UV dynamics is such that in the symmetric limit only the third
generation fermions are coupled to the strong sector. All other terms are generated via
small symmetry-breaking e↵ects. These are encoded in a small set of spurions. The mass
of the first two SM families can be generated by a set of bi-doublets:

�Yu = (2, 2̄,1,1,1) , �Yd = (2,1, 2̄,1,1) , �Ye = (1,1,1,2, 2̄) . (3.4)

The mixing between these and the third generation, instead, can be successfully described
by only two doublets:

Vq = (2,1,1,1,1) , Vl = (1,1,1,2,1) . (3.5)

While Vq is related to the CKM matrix elements, the leptonic spurion Vl is unconstrained.
Due to the smallness of the first two generation fermion masses, these two doublets provide
the leading e↵ects in most flavour observables. The smallness of the bottom and ⌧ Yukawa
couplings could be explained by introducing two approximate U(1)d ⇥U(1)e symmetries,
under which all the right-handed down quarks and leptons are charged [105]. The flavour
symmetry and this set of spurions also provide a good structure to fit the B-physics
anomalies [22, 26, 35, 45] while at the same protecting the model from other flavour and
high-pT constraints. Indeed, possible dangerous e↵ects of the 1

⇤2
t

( SM)4 operators are

suppressed by the GF symmetry and the large ⇤t scale.
Another class of possible bilinear operators are those built in terms of vector currents.

At low energies these are interpolated by vector resonances of the strong sector as well as
pNGB vector currents:

L �
c

⇤2
t

( ̄SM�
µ SM)( ̄a�µ b) ! g⇢ ( ̄SM�

µ SM)Tr(cabiU
†DµU + cab⇢µ) , (3.6)

where by NDA, Eq. (2.8) with E4f = 1, one has g⇢ ⇠ O(f/⇤) ⇠ O(1/4⇡). Their e↵ect
is discussed in Section 4.5.

3.1 HC-fermion bilinears

I construct the coupling of the SM fermions to the two Higgses and the S1,3 scalar lepto-
quarks via operators like  ̄SM SM ̄i j, where  ̄ j interpolates the pNGBs below ⇤HC .

In general, both baryon (B) and lepton (L) numbers are broken by adding non-
renormalizable operators (as happens in the SM EFT). In order to avoid proton decay
and other unwanted e↵ects, one could impose B and L conservation in the operators at
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U(2) flavour symmetry

SM Yukawa couplings exhibit an approximate U(2)3 flavour symmetry:


1. Good approximation of SM spectrum: mlight ~ 0, VCKM ~ 1 
 
  Breaking 
  pattern:


2. The assumption of a single spurion Vq connecting the 3rd generation with 
the other two ensures MFV-like FCNC protection


3. The most general symmetry that gives “CKM-like” interactions in a model-
independent way

mu ⇠
� �

md ⇠
� � VCKM ⇠

0

@

1

A

Yu,d ⇡
✓
0 0
0 1

◆
Yu,d ⇡

✓
� Vq

0 1

◆
� ⇠ (2,2,1)

Vq ⇠ (2,1,1)

Barbieri et al. 2011, 2012

U(2)qL ⇥ U(2)uR ⇥ U(2)dR

 i = ( 1  2  3 )
2 1

discussion in Ref. [89], so Eq. (3.16) is imposed at the matrix level. If also the scalar HC
currents were kept, a slightly more general condition can be derived, see Ref. [68] for a
detailed discussion of this point.

TheGF flavour symmetry and its spurions (3.4,3.5) dictate the structure of the Yukawa
matrices. At leading order in the spurions and up to possible O(1) factors multiplying
each term one has [104] (in L̄R notation):

yu ⇠ yt

✓
�Yu Vq

0 1

◆
, yd ⇠ yb

✓
�Yd Vq

0 1

◆
, ye ⇠ y⌧

✓
�Ye Vl

0 1

◆
. (3.17)

In the left-handed quark sector this can be put in correspondence with the CKM matrix
elements:

Vq = aq

✓
V ⇤
td

V ⇤
ts

◆
, (3.18)

where aq is an O(1) parameter. As shown in Section 5, in order to fit the flavour anomalies
while avoiding dangerous e↵ects involving electrons, the left-handed lepton spurion can
be taken approximately as

Vl ⇡

✓
0
�⌧µ

◆
, (3.19)

where �⌧µ ⌧ 1.

3.3 S1,3 LQ couplings

The operators responsible for generating the leptoquark couplings to fermions are

LF �
1

⇤2
t

⇥
(q̄cLc1,ql✏lL + ēcRc1,euuR) ( ̄Q�5 L) +

�
q̄cLc3,ql✏�

AlL
�
( ̄Q�5�

A L)
⇤
+ h.c. .

(3.20)

Also in this case one can introduce a set of spurions of G to keep track of the explicit
breaking of the global symmetry (see App. C.3):

 ̄a
Q�5 L =  ̄�a

S1
�5 ,

 ̄a
Q�

A�5 L =  ̄�A,a
S3

�5 ,
(3.21)

where the index a runs in the fundamental of SU(3)c while A is in the adjoint of SU(2)w.
Below ⇤HC one can write the couplings of both scalar LQ to SM fermions as6

L
e↵
LQ = i

f

4
(g1q̄

c,a
L �1✏lL + gu1 ē

c
R�

u
1u

a
R) Tr[�

a
S1
(U � U †)] + h.c.

+i
f

4

�
g3q̄

c,a
L �3✏�

AlL
�
Tr[�A,a

S3
(U � U †)] + h.c. = (3.22)

= �g1�1,i↵(q̄
c i
L ✏l↵L)S1 � gu1 (�

u
1 )

T
↵i(ē

c↵
R ui

R)S1 � g3�3,i↵(q̄
c i
L ✏�Al↵L)S

A
3 + h.c.+O(�2) ,

6In presence of EWSB, a factor of cos ✓

2 should muliply all terms in the last line of Eq. (3.22). Since
this is ⇡ 1 up to a small O(⇠) correction, I neglect it in the following.
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The Yukawa matrices 
get this structure:
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c
R�

u
1u

a
R) Tr[�

a
S1
(U � U †)] + h.c.

+i
f

4

�
g3q̄

c,a
L �3✏�

AlL
�
Tr[�A,a

S3
(U � U †)] + h.c. = (3.22)

= �g1�1,i↵(q̄
c i
L ✏l↵L)S1 � gu1 (�

u
1 )

T
↵i(ē
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The doublet spurions regulate the mixing of the third generation with the lighter ones:

CKM unknowns
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Problems from RG effects
Feruglio, Paradisi, Pattori [1606.00524]

 

Problems with LFU in τ decays at 1-loop

Need a ~ 20% tuning with some other contribution 
(from 1-loop or direct from another dim-6 operator)

4

leading to the following numerical estimate

N⌫ ⇡ 3 + 0.008
(c+ � 0.2C3)

⇤2(TeV)
, (34)

to be compared with the experimental result [20]

N⌫ = 2.9840± 0.0082 . (35)

Finally, we have checked that B(Z ! µ±⌧⌥) is always
well below the current experimental bound.
LFU breaking e↵ects in ⌧ ! `⌫̄⌫ (with `1,2 = e, µ) are

described by the observables

R⌧/`1,2
⌧ =

B(⌧ ! `2,1⌫⌫̄)exp/B(⌧ ! `2,1⌫⌫̄)SM
B(µ ! e⌫⌫̄)exp/B(µ ! e⌫⌫̄)SM

, (36)

and are experimentally tested at the few ‰ level [25]

R⌧/µ
⌧ = 1.0022± 0.0030 , R⌧/e

⌧ = 1.0060± 0.0030 . (37)

We find

R⌧/`
⌧ ' 1 + 2 ccct �e

33 ⇡ 1 +
0.008C3

⇤2(TeV)
. (38)

The e↵ective Lagrangian of eq. (21) generates LFV pro-
cesses such as ⌧ ! µ``, ⌧ ! µP with P = ⇡, ⌘, ⌘0, ⇢, etc.
The most sensitive channels, taking into account their NP
sensitivities and the experimental resolutions, are typi-
cally ⌧ ! µ`` and ⌧ ! µ⇢. For ⌧ ! µ`` we find

B(⌧ ! µ``)

B(⌧ ! µ⌫⌫̄)
= |�e

23|
2
h
(1 + �`µ)(cLR � cet )

2+ c2LR

i
, (39)

where cLR = 2s2W cet + ce� . If c� ⇠ O(1), we obtain

B(⌧ ! 3µ) ⇡ 5⇥ 10�8 c 2
�

⇤4(TeV)

✓
�e
23

0.3

◆2

, (40)

while the current bound is B(⌧ ! 3µ)  2.1⇥ 10�8 [24].
Setting c�(⇤) = 0 leads to B(⌧ ! 3µ) ⇡ 4 ⇥ 10�9 for
⇤ = 1 TeV, �e

23 = 0.3 and C1 = C3 = 1, yet within the
future expected experimental sensitivity. Moreover, it
turns out that 1.5 <

⇠ B(⌧!3µ)/B(⌧!µee) <⇠ 2. Finally,
employing the general formulae of ref. [26], we find

B(⌧ ! µ⇢) ⇡ 2 |�e
23|

2
⇥
(2s2W � 1)cet + ce�

⇤2
B(⌧ ! ⌫⇢)

⇡ 5⇥ 10�8 (c� � 0.28C3)2

⇤4(TeV)

✓
�e
23

0.3

◆2

, (41)

where the current bound is B(⌧ ! µ⇢)  1.2⇥ 10�8 [24].
We discuss now the necessary conditions to accommo-

date the B-physics anomalies and their phenomenological
implications. Two scenarios are envisaged: i) C1 = 0
and C3 6= 0 and ii) C1 = C3. In both cases, the
correct pattern of deviation from the SM expectations is
reproduced for C3 < 0, |�d

23/Vcb| < 1 and �d
23 < 0, see

eqs. (24), (26). Moreover, for |C3| ⇠ O(1), the upper

FIG. 1: Upper plot: Rµ/e
K vs. R⌧/`

D for C1 = 0, |C3|  3,
|�d

23|  0.04 and |�e
23|  1/2. The allowed regions are coloured

according to the legend. Lower plot: B(B ! K⌧µ) vs. B(⌧ !
3µ) for |�d

23| = 0.01, C1 = C3 (green points) or C1 = 0 (blue

points) imposing all the experimental bounds except R⌧/`
D .

bound ⇤ <
⇠ 1 TeV and the lower bound |�e

23|
>
⇠ 0.1 are

also predicted. The major di↵erences between the two
scenarios concern the impact of the constraints from
Z-pole and ⌧ observables. In particular, from eqs. (30)
and (32) we learn that NP e↵ects in v⌧/ve and a⌧/ae
are uncomfortably large in scenario i) while they are
under control in ii). Similarly, B(⌧ ! 3µ) is one order
of magnitude larger in i) than in ii), see eq. (40) and
following discussion. Most importantly, we find that

R⌧/`
⌧ strongly disfavours an explanation of the R⌧/`

D(⇤)

anomaly model-independently, see eqs. (26), (38). This
is confirmed by the upper plot of fig. 1 (where, to be
conservative, we didn’t impose the strong bound from

R⌧/e
⌧ ) showing Rµ/e

K vs. R⌧/`
D in the scenario i). The

overall picture doesn’t change in scenario ii) as the R⌧/µ
⌧

bound is unchanged. In the lower plot of fig. 1, we
show B(B ! K⌧µ) vs. B(⌧ ! 3µ). Considering the
current and expected future experimental resolutions,
we conclude that ⌧ ! 3µ is a more powerful probe than
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Fig. 3 Present and projected 95% CL limits from pp → µ+µ−in the
MFV case defined by Eq. (14)

versal contribution dominated by the valence quarks in the
proton. The flavor fit in Eq. (10) combined with this flavor
structure would imply a value of |CDµ| ∼1.4×10−3 which,
as can be seen from the limits in Fig. 3, is already probed by
the ATLAS dimuon search [11] depending on the origin of
the operator (i.e. from the SU(2) singlet or triplet structure)
and will definitely be investigated at high luminosity.3 Allow-
ing for more freedom and setting Cbsµ ≡ λbsCDµ, we show
in the top (central) panel of Fig. 4 the 95% CL limit in the
CDµ– |λbs | plane, where CUµ is related to CDµ by assuming
the triplet (singlet) structure. As discussed before, a direct
upper limit on λbs via b −s fusion can be derived only for
very large values. On the other hand, requiring Cbsµ to fit
the B decay anomalies already probes interesting regions in
parameter space, excluding the MFV scenario (λbs = Vts)
for both singlet and triplet cases.

2. U (2)Q flavor symmetry
This symmetry distinguishes light left-handed quarks (dou-
blets) from third generation left-handed quarks (singlets).
The leading symmetry-breaking spurion is a doublet whose
flavor structure is unambiguously related to the CKM
matrix [32]. In this case, in general the leading terms would
involve the third generation quarks, as well as diagonal cou-
plings in the first two generations. The relevant parameters

3 It should also be noted that the triplet combination is bounded from the
semileptonic hadron decays (CKM unitarity test)CUµ−CDµ = (0.46±
0.52) × 10−3 [7], in the absence of other competing contributions.

Fig. 4 We show the present (solid red) and projected (dashed red)
95% CL limit from pp → µ+µ− in the Cqµ– |λbs | plane. The solid
(dashed) green line corresponds to the best fit (2σ interval) from the fit
of the flavor anomalies in Eq. (10)
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Di-muon tail & R(K(*))
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Figure 1: Distributions of (a) dielectron and (b) dimuon reconstructed invariant mass (m``) after selection, for data
and the SM background estimates as well as their ratio before and after marginalisation. Selected Z0

� signals with a
pole mass of 3, 4 and 5 TeV are overlaid. The bin width of the distributions is constant in log(m``) and the shaded
band in the lower panels illustrates the total systematic uncertainty, as explained in Sec. 7. The data points are
shown together with their statistical uncertainty.

A search for Z0
� signals as well as generic Z0 signals with widths from 1% to 12% is performed utilising

the LLR test described in Ref. [54]. This second approach is specifically sensitive to narrow Z0-like
signals, and is thus complimentary to the more general BH approach. To perform the LLR search, the
Histfactory [55] package, together with RooStats [56] and RooFit [57] packages are used. The p-value
for finding a Z0

� signal excess (at a given pole mass), as well as variable width generic Z0 excess (at a
given central mass and with a given width), more significant than the observed, is computed analytically,
using the test statistic q0. The test statistic q0 is based on the logarithm of the profile likelihood ratio �(µ).
The test statistic is modified for signal masses below 1.5 TeV to also quantify the significance of potential
deficits in the data. As in the BH search the SM background model is constructed using the modes of
marginalised posteriors of the nuisance parameters from the MCMC, and these nuisance parameters are
not included in the likelihood at this stage. Starting with mZ 0 of 150 GeV, multiple mass hypotheses are
tested in pole mass steps corresponding to the histogram bin width to compute the local p-values — that
is p-values corresponding to specific signal mass hypotheses. Simulated experiments (for mZ 0 > 1.5 TeV)
and asymptotic relations (for mZ 0 < 1.5 TeV) in Ref. [54] are used to estimate the global p-value, which
is the probability to find anywhere in the m`` distribution a Z0-like excess more significant than that
observed in the data.

10 Results

The data, scrutinised with the statistical tests described in the previous section, show no significant ex-
cesses. The LLR tests for a Z0

� find global p-values of 58%, 91% and 83% in the dielectron, dimuon,
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τ→μγ  & (g-2)μ
The S1 LQ in general couples to both LH and RH fermions:
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HC ⌧ 1. While this model can reproduce completely the flavour phenomenology

described in Ref. [45], the presence of the S1 coupling to right-handed currents makes the
present setup possibly richer. The SMEFT dimension-6 operators obtained by integrating
out the leptoquarks at the tree-level are described in Section 3.3. In this Section I discuss
the main aspects of the flavour phenomenology of the model.

5.1 Muon magnetic moment and ⌧ ! µ�

The presence of S1 couplings to both right- and left-handed top quarks allows the genera-
tion of mt-enhanced contributions to both ⌧ ! µ� and to the muon anomalous magnetic
moment. The relevant terms from Eq. (3.22) are
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where `↵ = (e, µ, ⌧) and I recall that, by definition, �1,b⌧ = �u
1,t⌧ = 1. The chirally-

enhanced contribution from S1 to ⌧ ! µ� is given by (see e.g. Refs. [37,111] and references
therein)
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the values |✏1|2 ⇡ 0.01 and |�1,bµ| ⇡ 0.1 are required to fit the B anomalies [45], this
observable puts a bound

|✏u1 |
2 . 10�6 , (5.3)

corresponding to gu1 . 10�2g1. From the point of view of the SU(2)5 flavour symmetry
gu1 and g1,3 are expected to be of the same order. It is interesting to note that by adding
the approximate U(1)e symmetry, under which all the right-handed leptons transform, in
order to suppress the ⌧ Yukawa coupling [105], the gu1 suppression would be automatic
since one could predict: gu1/g1 ⇠ y⌧/yt ⇠ 10�2.

The leading contribution to the muon anomalous magnetic moment from S1 is [111]

�aµ = �
Ncmµmt

12⇡2v2
✏u1✏1�1,bµ�

u
1,tµ

✓
7 + 4 log

m2
t

m2
S1

◆
=

⇡ (7.9⇥ 10�11)⇥
✏u1

10�3

✏1
0.1

�1,bµ

0.1

�u
1,tµ

0.1
,

(5.4)

while the observed anomaly is (�aµ)exp = (2.8 ± 0.9) ⇥ 10�9 [112]. One can see that
due to the limit in Eq. (5.3) the & 3� deviation from the SM observed in �aµ cannot be
explained. The same conclusion was reached in Ref. [37].
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while the observed anomaly is (�aµ)exp = (2.8 ± 0.9) ⇥ 10�9 [112]. One can see that
due to the limit in Eq. (5.3) the & 3� deviation from the SM observed in �aµ cannot be
explained. The same conclusion was reached in Ref. [37].
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while the observed anomaly is (�aµ)exp = (2.8 ± 0.9) ⇥ 10�9 [112]. One can see that
due to the limit in Eq. (5.3) the & 3� deviation from the SM observed in �aµ cannot be
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while the observed anomaly is (�aµ)exp = (2.8 ± 0.9) ⇥ 10�9 [112]. One can see that
due to the limit in Eq. (5.3) the & 3� deviation from the SM observed in �aµ cannot be
explained. The same conclusion was reached in Ref. [37].
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while the observed anomaly is (�aµ)exp = (2.8 ± 0.9) ⇥ 10�9 [112]. One can see that
due to the limit in Eq. (5.3) the & 3� deviation from the SM observed in �aµ cannot be
explained. The same conclusion was reached in Ref. [37].
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while the observed anomaly is (�aµ)exp = (2.8 ± 0.9) ⇥ 10�9 [112]. One can see that
due to the limit in Eq. (5.3) the & 3� deviation from the SM observed in �aµ cannot be
explained. The same conclusion was reached in Ref. [37].
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corresponding to gu1 . 10�2g1. From the point of view of the SU(2)5 flavour symmetry
gu1 and g1,3 are expected to be of the same order. It is interesting to note that by adding
the approximate U(1)e symmetry, under which all the right-handed leptons transform, in
order to suppress the ⌧ Yukawa coupling [105], the gu1 suppression would be automatic
since one could predict: gu1/g1 ⇠ y⌧/yt ⇠ 10�2.
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while the observed anomaly is (�aµ)exp = (2.8 ± 0.9) ⇥ 10�9 [112]. One can see that
due to the limit in Eq. (5.3) the & 3� deviation from the SM observed in �aµ cannot be
explained. The same conclusion was reached in Ref. [37].

20

Introducing an extra approximate U(1)e symmetry 
for the RH leptons to protect the τ Yukawa would give:

where i and ↵ are quark and lepton flavour indices, respectively. The flavour structure
of the couplings is given by the GF symmetry and its breaking spurions. Up to O(1)
coe�cients one has
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where, without loss of generality, the (33) element has been reabsorbed in the definition

of the overall couplings g(u)1,3 and I also show the terms quadratic in the spurions, since
they are relevant to the b ! sµµ anomalies. One can immediately notice that, with
this choice of flavour spurions, the o↵-diagonal entries in �u

1 are suppressed by the small
Yukawa couplings of the light fermions. By adding spurions transforming as doublets of
the right-handed fields, these terms might also be larger. For this reason I leave them
arbitrary in the flavour analysis.
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where the corresponding operators are
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and the ✏i contain the relevant combinations of masses and couplings:

✏1 =
g1v

2mS1

, ✏3 =
g3v

2mS3

, ✏u1 =
gu1v

2mS1

. (3.26)

4 The pNGB potential

The compositeness scale ⇤HC ⇠ 4⇡f sets the mass of most of the resonances of the strong
sector. The exception are the pNGB, whose mass is proportional to the various explicit
symmetry-breaking terms: HC-fermion masses, SM gauging, and four-fermion operators.
In this section I present the leading operators in the chiral expansion which constitute the
pNGB potential and generate their masses, and discuss the conditions required to achieve
a successful EWSB.
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Figure 5. Present and future-projected LHC constraints on the vector leptoquark model of
section 3.1. The 1σ and 2σ preferred regions from the low-energy fit are shown in green and
yellow, respectively.

3.2 Scenario II: scalar leptoquarks

We introduce two scalar leptoquarks S1 = (3,1, 1/3) and S3 = (3,3, 1/3). The relevant

interaction Lagrangian is given by [46]
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a
3 + h.c., (3.5)

where ϵ = iσ2, Qc
L = CQ̄T

L, and Sa
3 are the components of the S3 leptoquark in SU(2)L

space. A model with the same field content was recently proposed in [26] as a possible

solution of the B-physics anomalies. However, the flavour structure postulated in [26]

leads to large cancellations in b → sνν̄ and potential tuning also in b → u charged-

current transitions. Contrary to the vector LQ case, baryon number conservation is not

automatically absent in the renormalisable operators built in terms of S1,3 and must be

imposed as an additional symmetry of the theory.

Integrating out the leptoquark states at tree-level and matching to the effective theory,

we find the following semi-leptonic operators
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(3.6)

where C1,3 = v2|g1,3|2/(4M2
S1,3

) > 0. Enforcing a minimally broken U(2)q × U(2)ℓ flavour

symmetry the two mixing matrices β1,iα and β3 iα follow the decomposition presented in

appendix A and have a hierarchical structure similar to the βiα of the vector LQ case.

These two flavour matrices are, in general, different. However, for the sake of simplicity, in

the fit we fix β3,sµ = β1,sµ and β1,bµ = β3,bµ, keeping only the two s− τ elements different
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Figure 4. Fit to semi-leptonic and radiatively-generated purely leptonic observables in table 1, for
the vector leptoquark Uµ, imposing |βsµ,sτ | < 5|Vcb| and CU > 0. In green, yellow, and gray, we
show the ∆χ2 ≤ 2.3 (1σ), 6.0 (2σ), and 11.6 (3σ) regions, respectively. The dashed and solid blue
lines represent the 1 and 2σ limits in the case where radiative constraints are removed from the fit.

where CU = v2|gU |2/(2M2
U ) > 0. Note that in this case the singlet and triplet operators

have the same flavour structure and, importantly, the relation CS = CT is automatically

fulfilled at the tree-level. Furthermore, as already stressed, the flavour-blind contraction

involving light fermions (flavour doublets) is automatically forbidden by the U(2)q ×U(2)ℓ
symmetry. Last but not least, this LQ representation does not allow baryon number violat-

ing operators of dimension four. These features, and the absence of a tree-level contribution

to Bs(d) meson-antimeson mixing, makes this UV realisation, originally proposed in [17],

particularly appealing: the best fit points of the general fit in section 2.2 can be recovered

essentially without tuning of the model parameters.

In figure 4 we show the results of the flavour fit in this parametrisation (using the

βiα rather than the λq(ℓ)
ij(αβ) as free parameters). When marginalising we let βsτ and βsµ

vary between ±5|Vcb| and impose |βbµ| < 0.5. We find very similar conclusions to the

previous fit, in particular a reduced value of CU thanks to the extra contribution to Rτℓ
D(∗)

proportional to βsτ , with both this parameter and βsµ of O(|Vcb|).
Despite being absent at the tree level, a contribution to∆F = 2 amplitudes is generated

in this model at the one-loop level. The result thus obtained is quadratically divergent and

therefore strongly dependent on the UV completion. Following the analysis of ref. [17],

i.e. setting a hard cut-off Λ on the quadratically divergent ∆F = 2 (down-type) amplitudes,

leads to

∆L(∆B=2) = C(U)
0

(V ∗
tbVti)2

32π2v2
(
b̄Lγµd

i
L

)2
, C(U)

0 = C2
U

(
λq
bs

Vts

)2
Λ2

2v2
. (3.4)

As already pointed out in section 2.3, the value of C(U)
0 should not exceed O(10%) given

the experimental constraints on ∆MBs,d (for comparison, C(SM)
0 = (4πα/s2W )S0(xt) ≈ 1.0,

– 11 –

≈ 0.02

Buttazzo, Greljo, Isidori, DM 2017
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Gauge Vector LQ

The massive vector of Pati-Salam has same quantum numbers as U1 LQ.

Di Luzio, Greljo, Nardecchia 2017; Calibbi, Crivellin, Li 2017; Bordone, Cornella, Fuentes-Martin, Isidori 2017

SU(4)PS × U(1)’ → SU(3)c × U(1)Y U1 = (3, 1, 2/3)

But in PS  MU ≳ 103 TeV due to coupling with light generations.

Need to add extra (vectorlike) fermions or extra gauge bosons (or both) 
so that it mainly couples only to third generation.

SU(4) × SU(3)' × SU(2)L × U(1)’ → SU(3)c × SU(2)L × U(1)Y

3

is introduced (cf. Eq. (9)) leptoquark couplings to
SM fermions are generated. These are by construc-
tion mainly left-handed. The field content of the
model is summarized in Table I.

Field SU(4) SU(3)0 SU(2)L U(1)0 U(1)B0 U(1)L0

q
0i
L 1 3 2 1/6 1/3 0

u
0i
R 1 3 1 2/3 1/3 0

d
0i
R 1 3 1 �1/3 1/3 0
`
0i
L 1 1 2 �1/2 0 1
e
0i
R 1 1 1 �1 0 1
 i

L 4 1 2 0 1/4 1/4
 i

R 4 1 2 0 1/4 1/4
H 1 1 2 1/2 0 0
⌦3 4 3 1 1/6 1/12 �1/4
⌦1 4 1 1 �1/2 �1/4 3/4

TABLE I. Field content of the model. The index i =
1, 2, 3 runs over flavours, while U(1)B0 and U(1)L0 are
accidental global symmetries (see text for further clari-
fications).

The full Lagrangian [54] is invariant under the
accidental global symmetries U(1)B0 and U(1)L0 ,
whose action on the matter fields is displayed in
the last two columns of Table I. The vevs of ⌦3

and ⌦1 break spontaneously both the gauge and the
global symmetries, leaving unbroken two new global

U(1)’s: B = B
0+ 1p

6
T

15 and L = L
0
�

q
3
2T

15, which

for SM particles correspond respectively to ordinary
baryon and lepton number. These symmetries pro-
tect proton stability, make neutrinos massless [55],
and prevent the appearance of massless states re-
lated to the spontaneous breaking of U(1)B0 and
U(1)L0 .

The fermions’ kinetic term leads to the following
left-handed interactions

LL �
g4
p
2
Q

0
L�

µ
L
0
L Uµ + h.c.

+
g4gs

g3

✓
Q

0
L�

µ
T

a
Q

0
L �

g
2
3

g
2
4

q
0
L�

µ
T

a
q
0
L

◆
g
0a
µ

+
1

6

p
3 g4gY
p
2 g1

✓
Q

0
L�

µ
Q

0
L �

2g21
3g24

q
0
L�

µ
q
0
L

◆
Z

0
µ

�
1

2

p
3 g4gY
p
2 g1

✓
L
0
L�

µ
L
0
L �

2g21
3g24

`
0
L�

µ
`
0
L

◆
Z

0
µ , (7)

and right-handed interactions

LR �
g4p
2
Q

0
R�µL0

R Uµ + h.c.

+
g4gs
g3

✓
Q

0
R�µTaQ0

R �
g23
g24

⇣
u0
R�µTau0

R + d
0
R�µTad0R

⌘◆
g0aµ

+
1

6

p
3 g4gYp
2 g1

✓
Q

0
R�µQ0

R �
4g21
3g24

⇣
2u0

R�µu0
R � d

0
R�µd0R

⌘◆
Z0
µ

�
1

2

p
3 g4gYp
2 g1

✓
L
0
R�µL0

R �
4g21
3g24

e0R�µe0R

◆
Z0
µ . (8)

Flavour structure. The Yukawa Lagrangian is

LY � �q
0
L Yd Hd

0
R � q

0
L Yu H̃u

0
R � `

0
L Ye He

0
R (9)

� q
0
L �q ⌦

T
3 R � `

0
L �` ⌦

T
1 R � L M  R + h.c. ,

where H̃ = i�2H
⇤. Also, Yd, Yu, and Ye are 3 ⇥ 3

flavour matrices, �q and �` are 3 ⇥ n , while M is
n ⇥n matrix where n is the number of  fields.

In absence of the Yukawa Lagrangian the global
flavour symmetry of the model is U(3)q0 ⇥U(3)u0 ⇥

U(3)d0 ⇥U(3)`0 ⇥U(3)e0 ⇥U(n ) L ⇥U(n ) R . Us-
ing the flavour group, one can without loss of gener-
ality start with a basis in which: M = M

diag
⌘

diag (M1, ...,Mn ), Yd = Y
diag
d , and Ye = Y

diag
e

are diagonal matrices with non-negative real entries,
while Yu = V

†
Y

diag
u , where V is a unitary matrix.

After spontaneous symmetry breaking, the
fermion mass matrices in this (interaction) basis are

Md =

 
vp
2
Y diag
d

v3p
2
�q

0 Mdiag

!
, Me =

 
vp
2
Y diag
e

v1p
2
�`

0 Mdiag

!
,

Mu =

 
vp
2
V †Y diag

u
v3p
2
�q

0 Mdiag

!
, M⌫ =

 
0 v1p

2
�`

0 Mdiag

!
.

(10)

These are 3+n dimensional square matrices which
can be diagonalised by unitary rotations U(3+n ).
For example, Me = UeLM

diag
e U

†
eR , where the mass

eigenstate,  eL ⌘ (eL, µL, ⌧L, E
1
L, ..., E

n 
L )T , are

given by  eL = U
†
eL 

0
eL , and similarly for the right-

handed components.
The vector boson interactions with fermions in the

mass basis are obtained after applying these unitary
rotations to Eqs. (7)–(8). Our goal is to get the right
structure of the vector leptoquark couplings for B-
physics anomalies as in Ref. [14], while suppressing
at the same time tree-level FCNC in the quark sector
mediated by the g0 and Z

0 exchange. In this respect,
we identify two interesting scenarios:

• (n = 3): In order to avoid tree-level g0 and Z
0

mediated FCNC in both up- and down-quarks, one
can impose the complete flavour alignment condi-
tion �ijq / M

ij . However, this setup predicts large
couplings to valence quarks and is challenged by di-
rect searches at the LHC.

• (n = 2): Here we minimally introduce two ex-
tra vector-like fermion representations  . The pat-
tern of flavour matrices �q and �` is such that no
mixing with the first, small mixing with the sec-
ond, and large mixing with the third generation is
obtained. In addition, there is a flavour alignment

of the matrix M with the quark mixing matrix �q.
More precisely, in the basis of Eq. (10)

�q =

0

@
0 0
�
s
q 0
0 �

b
q

1

A , (11)

with
���sq

�� ⌧
���bq

��. The main implications of this
setup are: i) the absence of tree-level FCNC in the
down-quark sector due to the g

0 and Z
0 exchange,

Di Luzio, Greljo, Nardecchia 2017

There are also massive color-octed and massive Z’. 
Crucial to avoid large FCNC effects and direct searches limits. 
All these constraint point to strong gauge couplings, at the limit of perturbativity.

Doesn’t address the EW hiearchy problem.

The U1 LQ gives the best fit of the anomalies with smallest number of param.
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Composite Models

-  Higgs (pNGB)

M

-  Λ ~ gρ f ~ 10 TeV
other resonances

-  f

The vector LQ can be considered as a composite resonance of a 
new strongly coupled sector, of which the Higgs arises as a pNGB.

• a pair of scalar leptoquarks, S1 = (3̄,1, 1/3) and S3 = (3̄,3, 1/3),

where I show the representation under the SM gauge group GSM = SU(3)c ⇥ SU(2)w ⇥

U(1)Y .
Going beyond simplified models, embedding these leptoquarks (LQ) in a more com-

plete theory can o↵er further insight and new correlations with di↵erent observables, such
as direct searches of other particles predicted by the UV theory. A first observation to be
made when thinking about possible UV realisations is that the mass scale of the lepto-
quarks required to fit the B-physics anomalies is close to ⇠ 1 TeV, which corresponds also
to the scale where new physics related to the electroweak hierarchy problem is supposed
to be. This coincidence of scales is a strong motivation to look for UV theories which
address both issues in a coherent manner.

Some examples of embedding the vector LQ Uµ
1 in a more complete theory have

been presented in the literature. For example, it can be recognised as one of the heavy
gauge bosons in Pati-Salam unification, or variations thereof [46–50]. In these scenar-
ios, however, the naturalness problem remains unaddressed. Alternatively, Uµ

1 could
arise as a composite vector resonance of a new strongly coupled sector lying at the TeV
scale [33, 51, 52], from which also the Higgs boson arises as a pseudo-Nambu-Goldstone
boson (pNGB), as in composite Higgs models. In all these scenarios other states, such as
neutral or color-octet vectors, are necessarily present with a mass close to the LQ one.
They usually generate undesired too large e↵ects in �F = 2 processes and direct searches,
inducing some tension in the models. The problem can be summarised as the fact that
the mass scale of the other resonances contributing significantly to flavour is naturally at
the same scale as the vector LQ: mV LQ ⇠ ⇤.

The scalar leptoquarks S1 and S3, on the other hand, can be naturally lighter than
the other states in the theory if they arise as pNGB of some spontaneously broken global
symmetry of a new strongly coupled sector:

mSLQ ⌧ ⇤ . (1.1)

This splitting naturally explains why the e↵ects of the scalar leptoquarks in flavour ob-
servables are the leading ones. This idea was explored in Refs. [53,54] in an e↵ective field
theory (EFT) approach, where however only the neutral-current anomalies were consid-
ered. In such a setup it is natural to consider also the Higgs boson as a pNGB of the same
dynamics, thereby realising a composite Higgs model [55,56] and addressing the natural-
ness problem of the electroweak scale. The S1 and S3 LQs have already been considered,
also separately, as possible mediators for either the neutral- or charged-current anomalies
(or both) in Refs. [24, 28, 31, 34,37, 38,45,53,54, 57–60].

Following this route, in this work I present a natural model able to address at the same
time both the charged- and neutral-current B-physics anomalies via the exchange of the
S1 and S3 scalar leptoquarks. They arise as pNGB, together with the Higgs boson, from
a new strongly coupled sector at the ⇠ 10 TeV scale. Rather than employing an EFT-like
approach, in order to be more predictive and to provide a more realistic and UV-complete
setup I also specify the strong dynamics as a four-dimensional fermionic confining gauge
theory [61–69]. This puts strong constraints on the viable global symmetry-breaking
patterns, therefore on the low-energy chiral Lagrangian.

4

Vector LQ as Composite Resonance

Barbieri, Isidori, Pattori, Senia 2015; Barbieri, Murphy, Senia 2016; 
Buttazzo, Greljo, Isidori, D.M. 2017; Barbieri, Tesi 2017

- The theory is fully strongly coupled at that scale: no calculability  

- Many other vector resonances (Z’, G') are expected 
with similar mass and with same flavour-violating couplings: 
expect very strong bounds from tree-level contribution to Bs mixing.

Flavor-mediators
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B and L conservation
I assign a combination of B and L, F+ = 3B + L, to the HC fermions 

such that the Higgs Yukawas and LQ couplings are allowed:

the scale ⇤t while assigning suitable quantum numbers to the HC fermions.4 Focussing in
particular on the  ̄SM SM ̄ e↵ective operators, an equally successful but more minimal
requirement is to impose conservation of a combination of B and L, such as for example
F+ = 3B + L or F� = 3B � L. Requiring only that the operators generating the Higgs
Yukawa couplings and the S1,3 leptoquark couplings to SM fermions are allowed provides
the following charge assignment for the HC fermions:

F+( L) = F+( N) = F+( E) = FL , F+( Q) = FL + 2 , (3.7)

where FL is an arbitrary charge. Assuming F� conservation, instead, all HC fermions
should have the same (arbitrary) F� charge.

The complete list of possible  ̄SM SM ̄ operators compatible with gauge symmetries
and F± conservation, given the assignment of Eq. (3.7), is (schematically):

(q̄LuR + d̄RqL + ēRlL)( ̄N L) , (q̄LuR + d̄RqL + ēRlL)( ̄L E) ,

(q̄cLlL + ēcRuR)( ̄Q L) , (q̄cL�
alL)( ̄Q�

a L) ,
(3.8)

where all indices have been suppressed. Comparing the HC bilinears with Eq. (2.7), one
recognises the Yukawa couplings for the two Higgs doublets in the first line, while the
second line corresponds to the desired couplings of the S1,3 leptoquarks to SM fermions.
Note that, given the assumptions above, also a coupling of S1 with right-handed fermions
ēcRuR is allowed.

The remaining scalar operators, allowed by gauge symmetries but forbidden by F±
conservation, are

(q̄cLqL + ūc
RdR)( ̄L Q) , (d̄RlL)( ̄E Q) , (l̄cLlL)( ̄E N) , (3.9)

corresponding to couplings of the S1,3 to diquark, of R̃2 to quarks and leptons, and of
! to di-leptons. It is remarkable that, once the F± quantum numbers are assigned to
the HC fermions to allow the desired Higgs and LQ couplings, automatically the B and
L-violating operators are forbidden and none of the other pNGBs is allowed to have a
linear coupling to SM fermions.5

For each of the interactions in Eq. (3.8) it is clearly possible to write two independent
terms, one for each chiral structure of the HC bilinears:  ̄i,L j,R or  ̄i,R j,L. By com-
paring Green functions in the high- and low-energy theory it is easily shown that the HC
fermions bilinears correspond to the following expressions below the scale ⇤HC (see e.g.
the QCD case in Ref. [85]):

 ̄i,L j,R ! �B0f
2U(�)ji ,  ̄i,R j,L ! �B0f

2U †(�)ji ,

 ̄i j ! �B0f
2
�
U(�) + U †(�)

�
ji

,  ̄i�5 j ! �B0f
2
�
U(�)� U †(�)

�
ji

,
(3.10)

where B0 is defined in Eq. (2.4). Upon expanding U(�) in powers of the pNGB, Eq. (2.6),
it is clear that only the pseudoscalar combination is linear in the pNGB and thus can
generate the desired couplings. The scalar combination can give some e↵ects in the
pNGB potential [68] but, in order to keep the discussion simple, I will set it to zero in
the following.

4For the purpose of this paper I neglect the non-perturbative breaking of B + L.
5On the contrary, requiring only B �L conservation would allow also the coupling of S1,3 to diquark,

which would mediate proton decay.
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EWSB and Higgs mass

where ct is an O(1) non-perturbative coe�cient and yt is the top Yukawa coupling. The
1/2

p
2 factor depends on the spurion’s normalisation. Although in this case the sign

is not fixed, a simple one-loop computation suggests that it could be negative. This is
also required to successfully obtain EWSB. Similar terms arise also from the S1 and S3

leptoquarks couplings to SM fermions:

VLQ = �
(c1g21 + cu1g

u2
1 )f 2⇤2

HC

16⇡2

����
1

2
p
2
Tr

⇥
�a

S1
(U � U †)

⇤����
2

�
c3g23f

2⇤2
HC

16⇡2

����
1

2
p
2
Tr

h
�A,a

S3
(U � U †)

i����
2

� �
(c1g21 + cu1g

u2
1 )⇤2

HC

8⇡2
|S1|

2
�

c3g23⇤
2
HC

8⇡2
|S3|

2 +O(�3) , (4.12)

where also c(u)1,3 ⇠ O(1). Since the (positive) SM gauging contribution to the square pNGB
masses is smaller for the Higgs than for the leptoquarks, it is reasonable to expect that
these potentially negative terms due to SM fermion loops would be more important for
the Higgs than for the LQ, providing a good EWSB.

4.4 Electroweak Symmetry Breaking and Higgs mass

For what concerns the dynamics of EWSB, this model reduces to the SU(4)L⇥SU(4)R !

SU(4)D case studied in Ref. [68]. In fact, neither the LQ nor the other pNGB with valence
 Q HC-fermion enter in any aspect of EWSB. For this reason I can refer to [68] for most
of this discussion, of which I summarise here only the main aspects.

In the notation used until here, the two Higgs doublets,H1,2 = (H+
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where I focussed only on the lower 4 ⇥ 4 block and set to zero the other fields. A more
convenient basis in the two Higgs doublets for studying EWSB is the one adopted in
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Under PH one has H̃1 ! H̃1 and H̃2 ! �H̃2. In this notation the field which takes the
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2)T , corresponding to ✓ = vh/
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negative top quark loop contribution to the Higgs potential, Eq. (4.11), is exactly along
the direction |H1 �H2|

2 = 2|H̃1|
2, this is the field which takes a vev. The physical fields

from the two Higgs doublets are

H̃1 =

✓
G+,

vh + h+ iG0

p
2

◆T

, H̃2 =

✓
H+,

h2 + iA0
p
2

◆T

, (4.15)

where G±,0 are those eaten by the SM W± and Z bosons, h is the physical SM-like
125 GeV Higgs as well as the only one which couples linearly to the EW gauge bosons.
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so that only one Higgs takes a vev

where ct is an O(1) non-perturbative coe�cient and yt is the top Yukawa coupling. The
1/2

p
2 factor depends on the spurion’s normalisation. Although in this case the sign

is not fixed, a simple one-loop computation suggests that it could be negative. This is
also required to successfully obtain EWSB. Similar terms arise also from the S1 and S3

leptoquarks couplings to SM fermions:

VLQ = �
(c1g21 + cu1g

u2
1 )f 2⇤2

HC

16⇡2

����
1

2
p
2
Tr

⇥
�a

S1
(U � U †)

⇤����
2

�
c3g23f

2⇤2
HC

16⇡2

����
1

2
p
2
Tr

h
�A,a

S3
(U � U †)

i����
2

� �
(c1g21 + cu1g

u2
1 )⇤2

HC

8⇡2
|S1|

2
�

c3g23⇤
2
HC

8⇡2
|S3|

2 +O(�3) , (4.12)
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‘eaten NGB’ and light Higgs 
couples linearly to fermions 
and SM gauge bosons

Heavy Higgs 
no linear couplings to SM

All the heavy Higgses are embedded in H̃2: the two neutral states h2 and A0, and the
charged H± one.

In order to minimise the potential and study the Higgs mass I set to zero all the fields
except the physical Higgs h, in which case the pNGB matrix is given by Eq. (2.10) with
✓ ! (vh + h)/

p
2f . The Higgs potential, from Eqs. (4.2,4.9,4.11) becomes
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and I am assuming Cm,g,t > 0. Minimising the potential in ✓ gives the EWSB condition
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This condition should be tuned in order to obtain the desired ⇠. Specifically, one could
tune the mass parameters (mE +mL) inside Cm to achieve
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The light Higgs, which in this setup does not mix with the other pNGBs, has a mass
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where in the estimate I used ⇤HC ⇠ 4⇡f . It is clear that some degree of cancellation is
necessary in order to bring it down to the physical value of mh ⇡ 125 GeV. From the
first equality in Eq. (4.20), the tuning condition in Eq. (4.19), and the definition of Cm
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which relates the Higgs mass and the value of ⇠ to the mass of the singlets ⌘1,2, Eq. (4.3).
From the potential one can also derive the triple Higgs coupling:
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Up to subleading EWSB corrections, the mass of the heavy Higgs doublet is

m2
H̃2

= f 2

✓
1

2
Cm + 2Cg

◆
⇡ 2f 2Ct ⇠

2Ncm2
t

⇠
, (4.23)

where in the last step I used Eq. (4.19) and the definition of Ct.
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where also c(u)1,3 ⇠ O(1). Since the (positive) SM gauging contribution to the square pNGB
masses is smaller for the Higgs than for the leptoquarks, it is reasonable to expect that
these potentially negative terms due to SM fermion loops would be more important for
the Higgs than for the LQ, providing a good EWSB.
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 Q HC-fermion enter in any aspect of EWSB. For this reason I can refer to [68] for most
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125 GeV Higgs as well as the only one which couples linearly to the EW gauge bosons.
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Effective potential for the light Higgs vev:
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charged H± one.
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where in the estimate I used ⇤HC ⇠ 4⇡f . It is clear that some degree of cancellation is
necessary in order to bring it down to the physical value of mh ⇡ 125 GeV. From the
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where in the estimate I used ⇤HC ⇠ 4⇡f . It is clear that some degree of cancellation is
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All the heavy Higgses are embedded in H̃2: the two neutral states h2 and A0, and the
charged H± one.
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where in the estimate I used ⇤HC ⇠ 4⇡f . It is clear that some degree of cancellation is
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