

Christoph Englert

Effective Theory at the LHC

Genova, 04/04/2018

- ► EFT-inspired Higgs boson coupling measurements
- ► the role of high momentum transfers vs uncertainties
- ➡ adding degrees of freedom:
 - unresolved/hidden Higgs decays and Composite Higgs physics

The Standard Model: taking stock

Status of LHC measurements

everything is consistent with the SM Higgs hypothesis (so far) but what are the implications for new physics?

Fingerprinting the lack of new physics

no evidence for exotics

coupling/scale separated BSM physics

<u>Effective Field Theory</u> $\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i$

[Buchmüller, Wyler `87] [Hagiwara, Peccei, Zeppenfeld, Hikasa `87] [Giudice, Grojean, Pomarol, Rattazzi `07] [Grzadkowski, Iskrzynski, Misiak, Rosiek `10]

the SM is flawed

59 B-conserving operators \otimes flavor \otimes h.c., d=6 2499 parameters (reduces to 76 with N_f=1)

concrete models

- (N)MSSM
- Higgs portals

compositeness

SILH Higgs phenomenology

[Ellis, Sanz, You `14, 17] [Falkowski et al. `15] [Butter et al. `16]

SILH Higgs phenomenology

our fitting procedure in a nutshell

Fingerprinting the lack of new physics

<u>consistent</u> differential distributions

$$d\sigma = d\sigma^{SM} + \frac{d\sigma^{\{O_i\}}}{\zeta} / \Lambda^2$$
$$2 \operatorname{Re} \{ \mathcal{M}_{SM} \mathcal{M}_{d=6}^* \}$$

linearisation in every bin
 positive
 definite integrated weights =
 technical range of validity

A word of caution

not necessarily positive definite (cf. fixed order NⁿLO)

conservative probe of validity of d=6 extension

Search channel	energy \sqrt{s}	μ	SM signal comp	osition [in %]		_							
CMS $m \to H \to \infty \ (t\bar{t})$ [83]	8 TeV	1.24+4-23	0.0 0.1 0.1	0.2	99.5					_	10		
CMS $\mu\mu \to H \to \gamma\gamma$ (<i>itH</i> lepton) [83]	8 TeV	$3.52^{+3.89}$	0.0 0.0 0.3	0.5	90.2		Hi	ord o	ate	• 1	18	' 'e	
CMS $pp \rightarrow H \rightarrow \gamma\gamma$ (t <i>t</i> H tags) [83]	7 TeV	$0.71^{+6.20}_{-3.56}$	0.0 0.1 0.4	0.4	99.2		111	SS ^D U	ac	l. I		IC	∕ ♥
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 0) [83]	7 TeV	$1.97^{+1.51}_{-0.5}$	12.1 18.7 23.3	8 24.0	21.3								
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 0) [83]	8 TeV	$0.13^{+1.09}_{-0.74}$	6.7 16.7 20.3	5 18.4	37.7								
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 1) [83]	7 TeV	$1.23^{+0.98}_{-0.88}$	30.6 17.4 20.5	9 19.5	11.7								
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 1) [83]	8 TeV	(· · · · · · · · · · · · · · · · · · ·											
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 2) [83]	7 TeV	1 Sear	h channel				energy \sqrt{s}	μ	S	M signal	composi	tion [in 9	6]
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 2) [83]	8 TeV	1							ggH	VBF	WH	ZH	ttH
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 3) [83]	7 TeV	2 ATL	AS $pp \rightarrow H \rightarrow \gamma \gamma$ (ce	ntral high p	T) [82]		8 TeV	$1.62^{+1.00}_{-0.83}$	7.1	25.4	20.1	21.0	26.4
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 3) [83]	8 TeV	(ATL	AS $pp \rightarrow H \rightarrow \gamma \gamma$ (ce	ntral low p_T	r) [82]		8 TeV	$0.62^{+0.42}_{-0.40}$	31.8	22.2	18.5	19.9	7.7
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (untagged 4) [83]	8 TeV	1 ATL	AS $pp \rightarrow H \rightarrow \gamma \gamma$ (fo	rward high	p_T) [82]		8 TeV	$1.73^{+1.34}_{-1.18}$	7.1	26.2	23.1	23.6	20.1
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (VBF dijet 0) [83]	7 TeV	4 ATL	AS $pp \rightarrow H \rightarrow \gamma\gamma$ (fo	rward low p	m) [82]		8 TeV	$2.03^{+0.57}$	29.0	20.9	21.2	21.9	7.1
CMS $pp \to H \to \gamma \gamma$ (VBF dijet 0) [83]	8 TeV	ATL	AS $pp \rightarrow H \rightarrow \gamma\gamma$ ($t\bar{t}$)	H hadronic)	[82]		8 TeV	$-0.84^{+3.23}$	0.1	0.1	0.2	0.4	99.1
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (VBF dijet 1) [83]	7 TeV	2 ATL	AS $pp \rightarrow H \rightarrow \gamma\gamma$ (tt)	H leptonic)	[82]		8 TeV	$2.42^{+3.21}$	0.0	0.0	2.9	1.4	95.6
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (VBF dijet 1) [83]	8 TeV	ATL	AS $pp \to H \to \gamma\gamma$ (V)	BF loose) [8	2		8 TeV	$1.33^{\pm 0.92}$	3.7	90.5	1.9	1.7	2.2
CMS $pp \rightarrow H \rightarrow \gamma \gamma$ (VBF dijet 2) [83]	8 TeV	ATL ATL	$AS pp \rightarrow H \rightarrow arr (V)$	BF tight) [8] -0]		8 TeV	0.68+0.67	1.4	96.3	0.3	0.4	1.7
CMS $pp \rightarrow H \rightarrow \gamma \gamma \ (VH \text{ dijet}) \ [83]$	7 TeV	ATL ATL	AS $pp \rightarrow H \rightarrow \gamma\gamma$ (V)	Dr tignt) [0 U ditet) [99]	1		e TaV	$0.08_{-0.51}$ $0.02^{+1.67}$	1.4	30.3	46.0	40.2	0.5
CMS $pp \rightarrow H \rightarrow \gamma \gamma \ (VH \ dijet) \ [83]$	8 TeV	ATL	$H \to pp \to H \to \gamma\gamma (V)$	H cujet) [62	() (0)		8 Jev	0.23-1.39	1.9	2.2	40.0	49.0	29.2
$CMS \ pp \to H \to \gamma\gamma \ (VH \ E_T^{max}) \ [83]$	7 TeV	4 AIL	AS $pp \rightarrow H \rightarrow \gamma\gamma$ (V)	$H E_T$ [8	2]		8 lev	3.01 - 2.42	0.2	1.1	22.0	47.0	10.6
$CMS \ pp \to H \to \gamma\gamma \ (VH \ E_T^{minw}) \ [83]$	8 Tev	(ATL	As $pp \to H \to \gamma\gamma \ (V)$	H 1ℓ) [82]	1 [00]		8 TeV	0.41 - 1.06	0.0	0.1	80.4	8.9	10.0
CMS $pp \rightarrow H \rightarrow \gamma\gamma$ (VH loose) [83]	7 TeV	8 ATL	AS $pp \to H \to \tau \tau$ (be	posted, 7had?	η _{had}) [90]		7/8 TeV	$3.60^{+2.00}_{-1.60}$	6.9	21.1	38.1	33.9	0.0
$CMS pp \to H \to \gamma\gamma (VH \text{ loose}) [83]$ $CMS pp \to H \to \gamma\gamma (VH \text{ loose}) [83]$	8 TeV	J ATL	AS $pp \to H \to \tau \tau$ (V)	BF, $\tau_{had}\tau_{ha}$	d) [90]		7/8 TeV	$1.40^{+0.50}_{-0.70}$	2.6	97.4	0.0	0.0	0.0
$CMS pp \rightarrow H \rightarrow \gamma\gamma (VH \text{ tight) [so]}$ $CMS pp \rightarrow H \rightarrow \gamma\gamma (VH \text{ tight) [so]}$	3 10V	ATL	AS $pp \rightarrow H \rightarrow \tau \tau$ (be	bosted, $\tau_{lep}\tau$	had) [90]		7/8 TeV	$0.90^{+1.00}_{-0.90}$	8.5	24.6	35.6	31.4	0.0
$CMS pp \rightarrow H \rightarrow p\mu [ei]$ $CMS m \rightarrow H \rightarrow n\pi \ (0 \text{ int}) \ [01]$	7/8 TeV	ATL ATL	AS $pp \to H \to \tau \tau$ (V)	BF, $\tau_{lep}\tau_{had}$	1) [90]		7/8 TeV	$1.00^{+0.60}_{-0.50}$	1.3	98.7	0.0	0.0	0.0
$CMS \ pp \to H \to \tau\tau \ (0 \ \text{jet}) \ [s1]$ $CMS \ rm \to H \to \tau\tau \ (1 \ \text{jet}) \ [91]$	7/8 TeV	ATL	AS $pp \rightarrow H \rightarrow \tau \tau$ (be	posted, $\eta_{ep}\tau$	_{Jep}) [90]		7/8 TeV	$3.00^{+1.90}_{-1.70}$	9.8	47.1	26.5	16.7	0.0
$CMS \ pp \rightarrow H \rightarrow WW \rightarrow 2Ppr (0/1 \ iot) [88]$	7/8 TeV	ATL	AS $pp \rightarrow H \rightarrow \tau \tau$ (V)	BF, $\tau_{lep}\tau_{lep}$) [90]		7/8 TeV	$1.80^{+1.10}_{-0.90}$	1.1	98.9	0.0	0.0	0.0
$CMS \ m \to H \to WW \to 222\nu \ (b) \ [66]$ $CMS \ m \to H \to WW \to 222\nu \ (VBF) \ [88]$	7/8/TeV	, ATL	AS $pp \rightarrow H \rightarrow WW$ -	$\rightarrow l \nu l \nu $ (ggH	I enhanced)	[86, 87]	7/8 TeV	$1.01^{+0.27}_{-0.25}$	55.6	11.1	11.1	11.1	11.1
CMS $m \rightarrow H \rightarrow ZZ \rightarrow 4\ell \ (0/1 \text{ iet}) \ [85, 131]$	7/8 TeV	ATL	AS $pp \rightarrow H \rightarrow WW$ -	$\rightarrow \ell \nu \ell \nu$ (VB	F enhanced)) [86, 87]	7/8 TeV	$1.27\substack{+0.53\\-0.45}$	2.0	98.0	0.0	0.0	0.0
CMS $m \rightarrow H \rightarrow ZZ \rightarrow 4\ell$ (2 jet) [85, 131]	7/8 TeV	1 ATL	As $pp \rightarrow H \rightarrow ZZ \rightarrow$	4ℓ (ggH-lik	e) [84]		7/8 TeV	$1.66^{+0.51}_{-0.44}$	22.7	18.2	18.2	18.2	22.7
CMS $pp \rightarrow t\bar{t}H \rightarrow 2\ell$ (same sign) [96]	8 TeV	ATL	As $pp \rightarrow H \rightarrow ZZ \rightarrow$	4ℓ (VBF/V	'H-like) [84]		7/8 TeV	$0.26^{+1.64}_{-0.94}$	2.2	32.6	32.6	32.6	0.0
CMS $pp \rightarrow t\bar{t}H \rightarrow 3\ell$ [96]	8 TeV	s ATL	AS $pp \rightarrow t\bar{t}H \rightarrow lepto$	ons (127had) [97]		8 TeV	$-9.60^{+9.60}_{-0.70}$	0.0	0.0	0.0	0.0	100.0
CMS $pp \rightarrow t\bar{t}H \rightarrow 4\ell$ [96]	8 TeV	– ATL	AS $pp \rightarrow t\bar{t}H \rightarrow lepto$	ons (2007had) [97]		8 TeV	$2.80^{+2.10}$	0.0	0.0	0.0	0.0	100.0
CMS $pp \rightarrow t\bar{t}H \rightarrow t\bar{t}b\bar{b}$ [96]	7/8 TeV	(ATL	AS $pp \rightarrow ttH \rightarrow lepto$	ons (2l17bad) [97]		8 TeV	$-0.90^{+3.10}$	0.0	0.0	0.0	0.0	100.0
CMS $pp \rightarrow t\bar{t}H \rightarrow t\bar{t}\gamma\gamma$ [96]	8 TeV	2 ATL	AS $pp \rightarrow t\bar{t}H \rightarrow lepto$	ons (3ℓ) [97]			8 TeV	$2.80^{+2.20}$	0.0	0.0	0.0	0.0	100.0
CMS $pp \rightarrow t\bar{t}H \rightarrow t\bar{t}r\tau$ [96]	7/8 TeV	- ATL	AS $pp \rightarrow t\bar{t}H \rightarrow lepto$	$ms(4\ell)[97]$			8 TeV	$1.80^{+6.90}$	0.0	0.0	0.0	0.0	100.0
CMS $pp \rightarrow H \rightarrow \tau \tau$ (VBF) [91]	7/8 TeV	(ATL	AS $m \rightarrow t\bar{t}H \rightarrow t\bar{t}h\bar{h}$	[05]			8 TeV	1.50 - 6.90 1.50 + 1.10	0.0	0.0	0.0	0.0	100.0
CMS $pp \rightarrow WH \rightarrow \ell \nu b \bar{b}$ [93]	7/8 TeV	1 ATL	As $p_{\mu} \rightarrow vH \rightarrow V\bar{h}$	(04) [92]			7/8 TeV	$-0.35^{+0.55}$	0.0	0.0	13.2	86.8	0.0
CMS $pp \rightarrow ZH \rightarrow 2\ell b \overline{b}$ [93]	7/8 TeV		$AS pp \rightarrow VH \rightarrow V\bar{W}$	(07) [32]			7/0 TeV	-0.53 -0.52	0.0	0.0	04.4	50.5	0.0
CMS $pp \to ZH \to \nu\nu b\bar{b}$ [93]	7/8 TeV	1 ATL	$ho pp \to VH \to V00$	(14) [92]			7/0 TeV	0.04+0.88	0.0	0.0	94.4	0.0	0.0
CMS $pp \rightarrow VH \rightarrow \tau \tau$ [91]	7/8 TeV	(ATL	$H \supset pp \rightarrow VH \rightarrow V00$	(20) [92] W (00) [ord			7/8 TeV	$0.94_{-0.79}$	0.0	0.0	0.0	100.0	0.0
CMS $pp \rightarrow VH \rightarrow WW \rightarrow 2\ell 2\nu$ [88]	7/8 TeV	(ATL	$H \supset pp \rightarrow VH \rightarrow VW$	W (22) [87]			7/8 TeV	3.70-1.80	0.0	0.0	74.3	25.7	0.0
CMS $pp \rightarrow VH \rightarrow VWW$ (hadronic V) [89]	7/8 TeV	1 ATL	As $pp \rightarrow VH \rightarrow VW$	W (3ℓ) [87]			7/8 TeV	$0.72^{+1.00}_{-1.10}$	0.0	0.0	78.8	21.2	0.0
CMS $pp \rightarrow WH \rightarrow WW \rightarrow 3\ell 3\nu$ [88]	7/8 TeV	(ATL	AS $pp \rightarrow VH \rightarrow VW$	$W(4\ell)$ [87]			7/8 TeV	$4.90^{+4.80}_{-3.10}$	0.0	0.0	0.0	100.0	0.0

Role of uncertainties

• so far theoretical uncertainties flat in Higgs transverse momentum

transparent but not realistic

importance of high p_T phase space region in light of bigger uncertainty?

Role of uncertainties

• so far theoretical uncertainties flat in Higgs transverse momentum

transparent but not realistic

importance of high p_T phase space region in light of bigger uncertainty?

• theoretical uncertainties parametrised via

 $\delta(p_{\mathrm{T}}^{H}) = \delta_0[a + bf(p_{\mathrm{T}}^{H})]$

inclusive production uncertainty

*p*_T - dependent uncertainty

Role of uncertainties

• theoretical uncertainties parametrised via

 $\delta(p_{\mathrm{T}}^{H}) = \delta_0[a + bf(p_{\mathrm{T}}^{H})]$

inclusive production uncertainty

*p*_T - dependent uncertainty

• here: choose two parameter dependence

$$\delta_{\rm inc} \sim a \quad \otimes \quad \delta(p_T) \sim b \, \frac{p_T}{m_h}$$
$$\delta(p_T) \sim b \, \log\left(1 + \frac{p_T}{m_h}\right)$$

e.g. [Caola, Forte, Marzani, Muselli, Vita `16]

Role of uncertainties

Role of uncertainties

Role of uncertainties

[CE, Moore, Nordstrom, Russell `16]

Role of uncertainties

• Is this due to small production cross sections? No - similar conclusions hold for top sector fits

Fingerprinting the lack of new physics

no evidence for exotics

coupling/scale separated BSM physics

the SM is flawed

• interpret the electroweak scale as a radiative phenomenon, analogous to the pion mass splitting

• interpret the electroweak scale as a radiative phenomenon, analogous to the pion mass splitting

• interpret the electroweak scale as a radiative phenomenon, analogous to the pion mass splitting

• not straightforward to this adapt to the Higgs case

e.g. [Contino `10]

trigger ELW symmetry breaking not just CW masses

respect global symmetries in the Higgs sector LEP precision measurements

• not straightforward to this adapt to the Higgs case

e.g. [Contino `10]

trigger ELW symmetry breaking not just CW masses

respect global symmetries in the Higgs sector LEP precision measurements

• vacuum mis-alignement from $SU(2)_L \times U(1)_Y$ direction requires the presence of heavy fermions

$$V(h) \simeq \alpha \cos \frac{h}{f} - \beta \sin^2 \frac{h}{f}$$
 fermions

gauge + fermions

- gauge boson masses through symmetry choices
- fermion masses through mixing with baryonic matter (part. compositeness)
- minimal pheno model $SO(5) \rightarrow SO(4) \simeq SU(2)_L \ge SU(2)_R$
- fermions (and hypercolour baryons) in a 4/5 of SO(5)

coupling modifiers

Model	hVV	hhVV	$hfar{f}$
MCHM4	$\sqrt{1-\xi}$	$1-2\xi$	$\sqrt{1-\xi}$
MCHM5	$\sqrt{1-\xi}$	$1-2\xi$	$\frac{1\!-\!2\xi}{\sqrt{1\!-\!\xi}}$

- gauge boson masses through symmetry choices
- fermion masses through mixing with baryonic matter (part. compositeness)
- minimal pheno model $SO(5) \rightarrow SO(4) \simeq SU(2)_L \times SU(2)_R$
- fermions (and hypercolour baryons) in a 4/5 of SO(5)

so far no UV completion known for this!

- gauge boson masses through symmetry choices
- fermion masses through mixing with baryonic matter (part. compositeness)
- minimal pheno model $SO(5) \rightarrow SO(4) \simeq SU(2)_L \ge SU(2)_R$
- fermions (and hypercolour baryons) in a 4/5 of SO(5)

so far no UV completion known for this!

• but

$$\underbrace{SU(4)}_{G_{\rm HC}} \times \underbrace{SU(5) \times SU(3) \times SU(3)' \times U(1)_X \times U(1)'}_{G_F}$$
[Ferretti `14]

could work with

$$G_F/H_F = \frac{SU(5)}{SO(5)} \times \frac{SU(3) \times SU(3)'}{SU(3)} \times \frac{U(1)'}{[Rabi, Dimon$$

[Rabi, Dimopoulos, Susskind `80] [Preskill, Weinberg `81]

A concrete model of compositeness ?

• model predicts a number of exotics phenomenological implications

• this could be a benchmark for lattice studies - but is it worth it ?

A concrete model of compositeness ?

• model predicts a number of exotics phenomenological implications

- this could be a benchmark for lattice studies but is it worth it ?
- i.e. can or will the LHC limit the parameter space?

[Del Debbio, CE, Zwicky `17]

Low Energy Constants $$\begin{split} &\alpha = \frac{1}{2} \hat{F}_{\mathrm{LL}} - \hat{c}_{\mathrm{LR}} \\ &\beta = \frac{1}{2} \hat{F}_{\mathrm{EW}} - \frac{1}{4} \hat{F}_{\mathrm{LL}} \ . \end{split}$$

SU(2)xSU(2)correlator 0.000

$$\hat{V}(\hat{h}) = \alpha \cos(2\hat{h}) - \beta \sin^2(2\hat{h})$$

see also [Golterman, Shamir `15, 17]

$$\begin{split} & \text{Low Energy Constants} \\ & 0.005 \\ \hat{V}(\hat{h}) = \alpha \cos(2\hat{h}) - \beta \sin^2(2\hat{h}) \\ & \text{see also [Coherman, Shamir `15, 17]} \end{split} \\ & \alpha = \frac{1}{2} \hat{F}_{\text{LL}} - \hat{c}_{\text{LR}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{LL}} - \hat{c}_{\text{LR}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{EW}} - \frac{1}{4} \hat{F}_{\text{LL}} \\ & \text{Hyperbaryon 4-point correlator} \\ & \beta = \frac{1}{2} \hat{F}_{\text{EW}} - \frac{1}{4} \hat{F}_{\text{LL}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{EW}} - \frac{1}{4} \hat{F}_{\text{LL}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{EW}} - \frac{1}{4} \hat{F}_{\text{LL}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{EW}} - \frac{1}{4} \hat{F}_{\text{LL}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{EW}} - \frac{1}{4} \hat{F}_{\text{LL}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{EW}} - \frac{1}{4} \hat{F}_{\text{LL}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{EW}} - \frac{1}{4} \hat{F}_{\text{LL}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{EW}} - \frac{1}{4} \hat{F}_{\text{LL}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{EW}} - \frac{1}{4} \hat{F}_{\text{LL}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{EW}} - \frac{1}{4} \hat{F}_{\text{LL}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{EW}} - \frac{1}{4} \hat{F}_{\text{LL}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{LR}} - 2\hat{F}_{\text{R}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{LR}} - 2\hat{F}_{\text{R}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{LR}} - 2\hat{F}_{\text{R}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{LL}} - \hat{F}_{\text{R}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{R}} \\ & \beta = \frac{1}{2} \hat{F}_{\text{R}} - \hat{F$$

 $\tilde{\chi}$

1

1

but progress is being made e.g. [Ayar, DeGrand `17 & `18]

5/3

 $\bar{\mathbf{3}}$

1/3

$$\hat{V}(\hat{h}) = \alpha \cos(2\hat{h}) - \beta \sin^{2}(2\hat{h})$$

$$\hat{\psi}(\hat{h}) = \alpha \cos(2\hat{h}) - \beta \sin^{2}(2\hat{h})$$

$$\alpha = \frac{1}{2}\hat{F}_{LL} - \hat{c}_{LR}$$

$$\beta = \frac{1}{2}\hat{F}_{EW} - \frac{1}{4}\hat{F}_{LL}$$

$$\beta = \frac{1}{2}\hat{F}_{EW} - \frac{1}{4}\hat{F}_{L}$$

$$\beta = \frac{1}{2}\hat{F}_{EW} - \frac{1}{4}\hat{F}_{EW} - \frac{1}{4}\hat{F}_{E$$

• EWSB for $\alpha + 2\beta > 0$. Then

 $\hat{m}_{h}^{2} = \hat{V}''(\langle \hat{h} \rangle) = 32\beta\xi(1-\xi) = 8\beta - 2\alpha^{2}/\beta$

A concrete model of compositeness

• model predicts a number of exotics phenomenological implications

- top partner constraints
- compatibility with exotics searches
- compatibility with Higgs signal strength measurements

results at a glance

- no constraints from charged Higgs searches
- doubly charged Higgs bosons produced via Drell Yan might be accessible at the LHC in the future [CE, Schichtel, Spannowsky`16]

- no constraints from charged Higgs searches
- doubly charged Higgs bosons produced via Drell Yan might be accessible at the LHC in the future
- Higgs signal strength no news here either

18.

• extra scalars with net bottom coupling avoid experimental detection

Top partner predictions

- EFT is a promising avenue to interface LHC measurements and (some) UV interpretations
 - get low energy correlations right
 - hone sensitivity through differential techniques consistently
- however, current analyses not sensitive enough to provide a clear picture, but...
 - higher statistics (= smaller systematics)!
 - differential cross sections !
 - high momentum transfer final states !
 - direct evidence for exotics ?!