

NUV-HD and NIR-HD SiPMs and Applications

Alberto Gola gola@fbk.eu

May 8, 2018

Fondazione Bruno Kessler

Detector-grade clean-room, 6 inches, class 10 and 100

Publicly funded research center

350 researches working in different fields

Silicon Photomultipliers account for a significant portion of the detectors fabricated here.

May 8, 2018

May 8, 2018

- NUV-HD SiPM technology
- SPTR of NUV SiPMs
- Cryogenic applications of NUV-HD
- VUV-HD SiPM technology
- NIR-HD SiPM technology

Near-UV technology NUV-HD

May 8, 2018

Near-UV technology: NUV-HD

- p-on-n junction → higher Pt for UV light
- Narrow dead border region \rightarrow Higher Fill Factor
- Trenches between cells \rightarrow Lower Cross-Talk
- Make it simple: 9 lithographic steps

(C. Piemonte et. al., (2016) IEEE T. Electr. Dev., <u>10.1109/TED.2016.2516641</u>)

NUV-HD: QE

Measured on a photodiode with same layers as SiPM

NUV-HD: QE*Pt

Fast increase with over-voltage: → avalanche is initiated by electrons

Measured on a SPAD with 100% FF

SPAD size is defined by metal opening which is within the high-field region

Slower increase with over-voltage: \rightarrow avalanche is initiated by holes (and electrons)

NUV-HD: Fill Factor

SPAD Pitch	15 µm	20 µm	25 µm	30 µm	35 µm	40 µm	
Fill Factor (%)	55	66	73	77	81	83	
SPAD/mm ²	4444	2500	1600	1111	816	625	
High Dynamic Range, Low correlated noise High PDE							

May 8, 2018

Photon detection efficiency

Photon detection efficiency

BRUNO KESSLER

Dark Count Rate

Optical Cross-Talk

Single Photon Time Resolution

May 8, 2018

Single Photon Timing Resolution

May 8, 2018

NUV SiPM – SPTR

Larger active are \rightarrow larger SiPM capacitance \rightarrow more LP filtering \rightarrow smaller signal

Bigger effect of the electronic noise on SPTR

Cryogenic Applications of SiPMs

There is a growing interest in using SiPMs for the readout of liquid scintillators at cryogenic temperatures.

Alberto Gola - FBK custom SiPM

Devices Under Test

Parameters (@ room T)	NUV-HD Std. field	NUV-HD Low-field
Cell Size	25 µm	25 µm
Fill Factor	73%	73%
Breakdown Voltage	26.5 V	32 V
Max PDE	50%	50%
Peak PDE λ	410 nm	410 nm
DCR (20°C)	< 150 kHz/mm ²	< 150 kHz/mm ²
DiCT	25%	25%
DeCT + AP	2%	2%

SiPM characteristics tested **form 300 K to 40 K** In collaboration with LNGS

Optimized for low temperature operation

Breakdown Voltage vs. Temperature

The mean free path of the carriers in the high-field region increases with decreasing temperature.

May 8, 2018

NUV-HD – Cryogenic DCR Measurements

May 8, 2018

DCR / mm² – Arrhenius plot

Standard field

Low-field

May 8, 2018

Microcell Recharge Time constant

The variation of the polysilicon quenching resistor with temperature causes a variation of the recharge time.

Polysilicon Resistor

NUV-HD Low-field

May 8, 2018

DiCT vs. Temp

The direct crosstalk probability has only minor variations with respect to temperature.

Slightly lower gain and triggering probability at the same overvoltage.

Standard field

Low-field

May 8, 2018

Afterpulsing Probability vs. Temp

The increase of the microcell recharge time constant helps reducing the afterpulsing at low temperature.

May 8, 2018

Divergence of the correlated noise

Afterpulsing probability depends on Cell gain and, thus, overvoltage.

$$P_{AP}(OV) \cong Gain(OV) \cdot P_{trap} \cdot P_{trigger}(OV, \tau_{trap})$$

Number of carriers passing through the junction during an avalanche

$$P_{AP}(OV) \cong OV \cdot C_{SPAD} \cdot \alpha(OV, \tau_{trap})$$

For every SiPM technology, there is a value of over-voltage such as the probability of having a correlated noise event approaches one.

→ Crosstalk and afterpulsing effect are interacting:
→ Combined correlated noise probability determines divergence

May 8, 2018

Divergence of the correlated noise

The number of avalanches generated by a primary event, either dark count or photon detection, can be expressed by:

$$ECF \cong \frac{1}{1-P_{CN}} = \frac{1}{1-p_{CN}'(OV) \operatorname{Gain}(OV)}$$

Geometric series approximation

Excess Charge Factor

Above a certain over-voltage the number of dark counts and, thus, the reverse current diverge.

Increase of AP at cryogenic temperatures

The increase of AP at cryogenic temperatures causes a substantial reduction of the useful operating range of the SiPM.

New process for reduced AP

We identified one process split that can significantly reduce afterpulsing probability at cryogenic temperatures.

 \rightarrow correlated noise divergence at 77 K is significantly delayed

May 8, 2018

Alberto Gola - FBK custom SiPM technologies - GSSI

New polysilicon resistor

Thanks to the lower Aftrerpulsing probability, we can reduce the microcell recharge time constant in LN

 \rightarrow We developed a new polysilicon resistor with reduced temperature variations.

May 8, 2018

Low Afterpulsing at 77 K

Standard field

With lower afterpusing probability, we can reduce the value of quenching resistor at 77 K and increase the single cell response speed! → Reduced integration of the electronic noise.. Low Filed – Low AP is being tested in DarkSide..

May 8, 2018

Photon counting at 77 K

- 4 transimpedance amplifier: each TIA reads 6cm²
- Hybrid configuration for SiPMs: 4x2s3p
- Further cold amplification before transmission outside

May 8, 2018

Alberto Gola - FBK custom SiPM technologies - GSSI

38

NUV-HD technology for VUV

VUV-HD

We are modifying the NUV-HD to enhance efficiency in the VUV.

FIRST PRELIMINARY measurement performed at Stanford.

May 8, 2018

Alberto Gola - FBK custom SiPM technologies - GSSI

- n-on-p junction \rightarrow higher Pt for NIR light (absorbed at high depth)
- Based on epitaxial layer: sensitive layer
- Narrow dead border region \rightarrow Higher Fill Factor
- Trenches between cells \rightarrow Lower Cross-Talk
- Make it simple: 9 lithographic steps

Light attenuation length in Si

At 850nm \rightarrow the silicon absorption depth is about 18µm.

 \rightarrow important to extend the collection depth (with respect to std. SiPMs)

We need to use a thicker epitaxial layer!

May 8, 2018

Design: thicker epitaxial layer

We use a thick epitaxial layer

- Theoretical QE at 850 nm: about 35%
- Trench depth increased to: > 8µm

Other factors affect PDE:

- Triggering probability (Pt) increase with over-voltage
- Effective geometric fill-factor (FF)

The "Border effect"

- Effective high-field region is smaller than the nominal one
- Lateral depletion below the high field region \rightarrow lateral drift

Both these phenomena cause a "**border effect**" → reduction of effective FF

NIR-HD SiPMs: the challenge

TCAD Simulation: Electric Field 25µm cell @ breakdown voltage

Thicker epitaxial layer

Charge collection loss at the edges: → Increases with thickness of epi layer

May 8, 2018

NIR-HD – I-V curve and Breakdown voltage

Breakdown Voltage

Thin vs. thick epitaxial layer

Breakdown voltage is the same of thin-epi (~28V @20°C)

BD Temperature dependence

Small Vbd temperature dependence even with thick epitaxial layer

Approx. 28 mV/°C

NIR-HD PDE: thin vs. thick epi layer

Only minor improvements!

- Lower triggering probability: slower rise in thick epi → wider epi-layer depletion
- 2. Border effect: in thick epi it is larger

May 8, 2018

Comparison at the same triggering probability !

- Improvement: <u>from ~16% to ~19%</u> at 850nm
- Still border-effect higher in thick epi

BRUNO KESSI ER

PDE without border effects: masked SPAD

Without border effect, thicker epitaxial layer provides a significant increase of PDE at long wavelengths

PDE: from 20% to ~ 30% at 850nm from ~12% to ~18% at 900nm

May 8, 2018

NIR-HD run @ FBK

End of 2017

Functional characterization

May 8, 2018

FONDAZIONE BRUNO KESSLER

Statistics on DCR @ Vex=5V

• Extrapolated from the hist. of reverse I-V curve → converted in primary DCR (DCR are for 1mm2)

Correlated noise, Gain and recharge time

Direct Crosstalk vs. PDE

BRUNO KESSLER

NIR-HD – new developments

May 8, 2018

Ongoing Developments: new border

TCAD Simulation: Electric Field 25µm cell @ breakdown voltage

Thicker epitaxial layer

May 8, 2018

NIR-HD_2 SiPMs PDE

With new border, PDE is significantly improved in almost all the spectrum

May 8, 2018

Thank you!

Thanks also to all the members of the team working on custom SiPM technology at FBK:

Fabio Acerbi Massimo Capasso Gabriele Faes Nicola Furlan Marco Marcante Alberto Mazzi Stefano Merzi Claudio Piemonte Veronica Regazzoni Nicola Zorzi

Backup slides

May 8, 2018

We reduced as much as possible the dead region around the cell

- Smaller cells
 - Gain reduction \rightarrow Afterpulsing and CT reduction.
 - Faster cell recharge
 - Higher Dynamic Range
- But we also need HIGH FF \rightarrow HIGH PDE !

UHD technology: produced SiPMs RGB-HD

cell size (µm)	cells/mm ²					
30	1100					
25	1600					
20	2500					
15	4500					
12	7000					
RGB-UHD						
cell size (μm)	cells/mm ²					
12	7400					

11550

20530

46190

10

7

...

5

Optimization of UHD-SiPM New Guard Ring (NGR)

May 8, 2018

Fast cell recharge – short signals

May 8, 2018

Detection efficiency

May 8, 2018

Alberto Gola - FBK custom SiPM technologies - GSSI

Linearly-Graded SiPM – LG-SiPM

LG-SiPM

Position sensitive SiPM with <u>four readout pads</u>. From the combination of the four signals we can get:

Alberto Gola - FBK custom SiPM technologies - GSSI

R

LG-SiPM - implementation

Single-photon imaging should be possible with 4 readout channels.