The Collaboration INFN-FBK

Giovanni Ambrosi INFN Perugia

SiPM Technologies and Space Experiments GSSI, May 8th 2018, L'Aquila

About us Research Innovation People News and Events

About us Research Innovation People News and Events

AMS-02: 9 planes with 200k channels, ~2500 Si detectors

AMS-02: 9 planes with 200k channels, ~2500 Si detectors

INFN-FBK collaboration projects

- Formal agreement for scientific and technological collaboration since early 2000
- Goal: to develope advanced systems (detectors) based on MEMS* technologies
- Different detectors:
 - 3D, thick detectors, bolometers, silicon drift, LGAD etc.
- SiPM happen to be the biggest part of the work

* Microelectromechanical systems consist of extremely tiny mechanical elements, often integrated together with electronic circuitry.

"Standard" 3D detectors - concept

Distance between *n* and p electrodes can be made very short extremely radiation hard detector (low full depl. volt. and high CCE even at very high fluences)

Drawbacks: - electrodes are dead regions (or partially) - feasibility of large scale production still to be verified

Silicon Drift detectors

Replacing PMTs with SiPM

- No high voltage
- Immunity to magnetic field
- High gain
- High efficiency
- Robustness (?)
- Small amount of material
- Sustain high flux

Replacing PMTs with SiPM

- No high voltage
- Immunity to magnetic field
- High gain
- High efficiency
- Robustness (?)
- Small amount of m
- Sustain high flux

Replacing PMTs with SiPM

- No high voltage
- Immunity to magnetic field
- High gain
- High efficiency
- Robustness (?)
- Small amount of material
- Sustain high flux

SiPM

Replacing PMTs with SiPM do not forget:

- High capacitance
- 'Noisy' detector:
 - High dark count rates
 - Crosstalk
 - Afterpulse

Crosstalk p.e. 2 p.e. p.e. Afterpulses Primary

Dark measurements

- 1. Output signal acquired by oscilloscope
- 2. Pulses identification

Dark measurements

Use of SiPMs

- Medical imaging (PET)
- IACT (CTA)
- cryogenic liquid detectors (DarkSide)

THE 4DMPET PROJECT Structure of the Module

Custom SiPM array:

- ✓ 8 x 8 RGB SiPMs from AdvanSiD.
- ✓ 3 x 3 mm² active area
- ✓ 3.6 x 3.6 mm² pitch
- ✓ Signal read-out from the bottom side of the SiPM
- Bias in daisy chain from the top side (one on each row)
- ✓ 2 side bootable

M. Morrocchi et al.

- A Four-Dimensional Gamma Detector for PET Application -

17th iWoRiD Hamburg

THE 4DMPET PROJECT Structure of the Module

Custom SiPM array:

- ✓ 8 x 8 RGB SiPMs from AdvanSiD.
- ✓ 3 x 3 mm² active area
- ✓ 3.6 x 3.6 mm² pitch
- Signal read-out from the bottom side of the SiPM
- Bias in daisy chain from the top side (one on each row)
- ✓ 2 side bootable

M. Morrocchi et al.

- A Four-Dimensional Gamma Detector for PET Application -

17th iWoRiD Hamburg

Assembly examples

SiPM NUV 6x6 mm² 50µm

INFN Perugia

FBK SiPMs NUV – HD 30 mm cell

cta

Pre-production with good and dummy SiPM

pSCT module tests

SiPM placed on PCB with pick&place machine for mass production. The quality of the assembly and the sensor alignment have been tested

MAGIC cluster with SiPM

First events

Gamma shower recorded by the MAGIC telescopes including the new SiPM cluster

Max-Planck-Institut für Physi

Recorded muonring

Conclusions

- SiPM technology is mature to be used in (big) experiments
- SiPM technology is continually improving
- Fine tuning of the parameters (geometry, fill factor, Rq, etc.) can help to improve the performance
- Keep an eye at the 'system level': the SiPM itself will not make the work by itself