(Bound) Entanglement Detection with Mutually Unbiased Bases

Eva Kilian
supervised by B.C. Hiesmayr

universität

 wienDepartment of Physics

July 4, 2018

Outline

1 Motivation

2 Mutually Unbiased Bases

- What are MUBs?
- How can they be constructed?

3 The MUB-Criterion

4 Entanglement Witnesses

5 Detecting (Bound) Entanglement with MUBs within the Magic Simplex

- A Special Simplex in $\mathcal{H}_{2} \otimes \mathcal{H}_{2}$
- Special Simplices in $\mathcal{H}_{d} \otimes \mathcal{H}_{d}$

Motivation

Goal: detect bound entangled states

What is bound entanglement?

Motivation

Goal: detect bound entangled states

What is bound entanglement?

What are MUBs?

J.Schwinger - Complementarity of Unitary Operators

What are MUBs?

J.Schwinger - Complementarity of Unitary Operators ${ }^{1}$

Two unitary operators A and B are complementary if

[^0]
What are MUBs?

J.Schwinger - Complementarity of Unitary Operators ${ }^{1}$

Two unitary operators A and B are complementary if

- both generators of complete, orthonormal operator bases, having d non-degenerate eigenvalues
- Orthonormality: $\left\langle v_{a, i} \mid v_{a, j}\right\rangle=\delta_{i j}$
- Completeness Relation: $\sum_{i=1}^{d}\left|v_{a, i}\right\rangle\left\langle v_{a, i}\right|=\sum_{i=1}^{d}\left|v_{b, i}\right\rangle\left\langle v_{b, i}\right|=1$
- Nondegeneracy of eigenvalues: $\lambda_{a, i} \neq \lambda_{a, j}$

What are MUBs?

J.Schwinger - Complementarity of Unitary Operators ${ }^{1}$

Two unitary operators A and B are complementary if

- both generators of complete, orthonormal operator bases, having d non-degenerate eigenvalues
- Orthonormality: $\left\langle v_{a, i} \mid v_{a, j}\right\rangle=\delta_{i j}$
- Completeness Relation: $\sum_{i=1}^{d}\left|v_{a, i}\right\rangle\left\langle v_{a, i}\right|=\sum_{i=1}^{d}\left|v_{b, i}\right\rangle\left\langle v_{b, i}\right|=1$
- Nondegeneracy of eigenvalues: $\lambda_{a, i} \neq \lambda_{a, j}$

■ all normalized vectors $\left|v_{a}, i\right\rangle,\left|v_{b, i}\right\rangle$ are maximally incompatible, such that the $p\left(v_{a, i}, v_{b, j}\right)$ for $\mathrm{a} \neq \mathrm{b}$ becomes

- Mutual Unbiasedness:

$$
\begin{align*}
p\left(v_{a, i}, v_{b, j}\right) & \stackrel{a \neq b}{=}\left|\left\langle v_{a, i} \mid v_{b, j}\right\rangle\right|^{2} \tag{1}\\
& \stackrel{a \neq b}{=} \delta_{a, b} \delta_{i, j}+\frac{1}{d}\left(1-\delta_{a, b}\right) \tag{2}\\
& \stackrel{a \neq b}{=} \frac{1}{d} \tag{3}
\end{align*}
$$

What are MUBs?

J.Schwinger - Complementarity of Unitary Operators ${ }^{1}$

Two unitary operators A and B are complementary if

- both generators of complete, orthonormal operator bases, having d non-degenerate eigenvalues
- Orthonormality: $\left\langle v_{a, i} \mid v_{a, j}\right\rangle=\delta_{i j}$
- Completeness Relation: $\sum_{i=1}^{d}\left|v_{a, i}\right\rangle\left\langle v_{a, i}\right|=\sum_{i=1}^{d}\left|v_{b, i}\right\rangle\left\langle v_{b, i}\right|=1$

■ Nondegeneracy of eigenvalues: $\lambda_{a, i} \neq \lambda_{a, j}$

- all normalized vectors $\left|v_{a, i}\right\rangle,\left|v_{b, i}\right\rangle$ are maximally incompatible, such that the $p\left(v_{a, i}, v_{b, j}\right)$ for $\mathrm{a} \neq \mathrm{b}$ becomes
- Mutual Unbiasedness:

$$
\begin{align*}
p\left(v_{a, i}, v_{b, j}\right) & \stackrel{a \neq b}{=}\left|\left\langle v_{a, i} \mid v_{b, j}\right\rangle\right|^{2} \tag{1}\\
& \stackrel{a \neq b}{=} \delta_{a, b} \delta_{i, j}+\frac{1}{d}\left(1-\delta_{a, b}\right) \tag{2}\\
& \stackrel{a \neq b}{=} \frac{1}{d} \tag{3}
\end{align*}
$$

MUBs feature the following properties:

- outcomes of systems prepared in an eigenstate of A are equally likely when the prepared system is measured in any eigenbasis of operator B
- Lower bound of entropic uncertainty relations maximized

[^1]
What are MUBs?

Example of MUBs for $d=2$

$$
\begin{aligned}
& B_{1}=\{|0\rangle,|1\rangle\} \\
& B_{2}=\left\{\frac{|0\rangle+i|1\rangle}{\sqrt{2}}, \frac{|0\rangle-i|1\rangle}{\sqrt{2}}\right\} \\
& B_{3}=\left\{\frac{|0\rangle+|1\rangle}{\sqrt{2}}, \frac{|0\rangle-|1\rangle}{\sqrt{2}}\right\}
\end{aligned}
$$

Eigenvectors of σ_{x} Eigenvectors of σ_{y} Eigenvectors of σ_{z}

Bloch sphere representation of qubit ${ }^{a}$

[^2]
How can MUBs be constructed?

Various constructions via Fourier transformations (pair), Latin squares, Galois fields, generalized Pauli groups but only for $\mathrm{d}=\mathrm{p}$ or $\mathrm{d}=\mathrm{p}^{n}$!

[^3]
How can MUBs be constructed?

Various constructions via Fourier transformations (pair), Latin squares, Galois fields, generalized Pauli groups but only for $\mathrm{d}=\mathrm{p}$ or $\mathrm{d}=\mathrm{p}^{n}$!

Pauli group construction ${ }^{2}$:

- Fourier transformation $|\hat{j}\rangle=\frac{1}{\sqrt{d}} \sum_{k} \omega^{-j k}|k\rangle, \omega=e^{\frac{2 \pi i}{d}}$

[^4]
How can MUBs be constructed?

Various constructions via Fourier transformations (pair), Latin squares, Galois fields, generalized Pauli groups but only for $\mathrm{d}=\mathrm{p}$ or $\mathrm{d}=\mathrm{p}^{n}$!

Pauli group construction ${ }^{2}$:

- Fourier transformation $|\hat{j}\rangle=\frac{1}{\sqrt{d}} \sum_{k} \omega^{-j k}|k\rangle, \omega=e^{\frac{2 \pi i}{d}}$
- cyclic unitary operators X and Z (analogously to Pauli matrices)
- $X|\hat{j}\rangle=|\hat{j}\rangle \omega^{j}, X^{d}=1$
- $Z|k\rangle=|k\rangle \omega^{k}, Z^{d}=1$

[^5]
How can MUBs be constructed?

Various constructions via Fourier transformations (pair), Latin squares, Galois fields, generalized Pauli groups but only for $\mathrm{d}=\mathrm{p}$ or $\mathrm{d}=\mathrm{p}^{n}$!

Pauli group construction ${ }^{2}$:

- Fourier transformation $|\hat{j}\rangle=\frac{1}{\sqrt{d}} \sum_{k} \omega^{-j k}|k\rangle, \omega=e^{\frac{2 \pi i}{d}}$
- cyclic unitary operators X and Z (analogously to Pauli matrices)
- $X|\hat{j}\rangle=|\hat{j}\rangle \omega^{j}, X^{d}=1$
- $Z|k\rangle=|k\rangle \omega^{k}, Z^{d}=1$

■ in the computational basis

- $X=\sum_{k=0}^{d-1}|(k+1 \bmod d)\rangle\langle k|$
- $Z=\sum_{k=0}^{d-1} \omega^{k}|k\rangle\langle k|$

[^6]
How can MUBs be constructed?

Various constructions via Fourier transformations (pair), Latin squares, Galois fields, generalized Pauli groups but only for $\mathrm{d}=\mathrm{p}$ or $\mathrm{d}=\mathrm{p}^{n}$!

Pauli group construction ${ }^{2}$:

- Fourier transformation $|\hat{j}\rangle=\frac{1}{\sqrt{d}} \sum_{k} \omega^{-j k}|k\rangle, \omega=e^{\frac{2 \pi i}{d}}$
- cyclic unitary operators X and Z (analogously to Pauli matrices)
- $X|\hat{j}\rangle=|\hat{j}\rangle \omega^{j}, X^{d}=1$
- $Z|k\rangle=|k\rangle \omega^{k}, Z^{d}=1$

■ in the computational basis

- $X=\sum_{k=0}^{d-1}|(k+1 \bmod d)\rangle\langle k|$
- $Z=\sum_{k=0}^{d-1} \omega^{k}|k\rangle\langle k|$

■ for $d=\mathrm{p}$: eigenvectors of $X, Z, X Z^{2}, \ldots, X Z^{d-1}$

[^7]
How can MUBs be constructed?

Various constructions via Fourier transformations (pair), Latin squares, Galois fields, generalized Pauli groups but only for $\mathrm{d}=\mathrm{p}$ or $\mathrm{d}=\mathrm{p}^{n}$!

Pauli group construction ${ }^{2}$:

- Fourier transformation $|\hat{j}\rangle=\frac{1}{\sqrt{d}} \sum_{k} \omega^{-j k}|k\rangle, \omega=e^{\frac{2 \pi i}{d}}$
- cyclic unitary operators X and Z (analogously to Pauli matrices)
- $X|\hat{j}\rangle=|\hat{j}\rangle \omega^{j}, X^{d}=1$
- $Z|k\rangle=|k\rangle \omega^{k}, Z^{d}=1$

■ in the computational basis

- $X=\sum_{k=0}^{d-1}|(k+1 \bmod d)\rangle\langle k|$
- $Z=\sum_{k=0}^{d-1} \omega^{k}|k\rangle\langle k|$
- for $d=p$: eigenvectors of $X, Z, X Z^{2}, \ldots, X Z^{d-1}$

■ for $\mathrm{d}=\mathrm{p}^{n}$: redefine shifts as n shifts mod $\mathrm{p}, \mathrm{I}=(0 \ldots \mathrm{~d}-1)$

- $V_{1}^{0}=X^{\prime}=\sum_{k=0}^{d-1}|k \oplus I\rangle\langle k|$
- $V_{0}^{\prime}=Z^{\prime}=\sum_{k=0}^{d-1} \omega^{(k \odot I)}|k\rangle\langle k|$
- $V_{i}^{j}=V_{0}^{j} V_{i}^{0}=\sum_{k=0}^{d-1} \omega^{(k \oplus i) \odot j}|k \oplus i\rangle\langle k|$
- $d+1$ commuting sets of d elements from these d^{2} unitary operators

[^8]
The MUB Criterion ${ }^{3}$

Consider two observables a and b on system A and B
Mutual Predictability $C_{a b}$

$$
\begin{equation*}
C_{a b}=\sum_{i=0}^{d-1} P_{a b}(i, i) \tag{4}
\end{equation*}
$$

[^9]
The MUB Criterion ${ }^{3}$

Consider two observables a and b on system A and B
Mutual Predictability $C_{a b}$

$$
\begin{equation*}
C_{a b}=\sum_{i=0}^{d-1} P_{a b}(i, i) \tag{4}
\end{equation*}
$$

For a general state ρ

$$
\begin{equation*}
C_{a b}=\sum_{i=0}^{d-1}\left\langle i_{a}\right| \otimes\left\langle i_{b}\right| \rho\left|i_{a}\right\rangle \otimes\left|i_{b}\right\rangle \tag{5}
\end{equation*}
$$

If $C_{a b}=1 \rightarrow$ fully correlated
Else if $C_{a b}=\frac{1}{d} \rightarrow$ completely uncorrelated

[^10]
The MUB Criterion ${ }^{3}$

Consider two observables a and b on system A and B
Mutual Predictability $C_{a b}$

$$
\begin{equation*}
C_{a b}=\sum_{i=0}^{d-1} P_{a b}(i, i) \tag{4}
\end{equation*}
$$

For a general state ρ

$$
\begin{equation*}
C_{a b}=\sum_{i=0}^{d-1}\left\langle i_{a}\right| \otimes\left\langle i_{b}\right| \rho\left|i_{a}\right\rangle \otimes\left|i_{b}\right\rangle \tag{5}
\end{equation*}
$$

If $C_{a b}=1 \rightarrow$ fully correlated
Else if $C_{a b}=\frac{1}{d} \rightarrow$ completely uncorrelated
For $\rho_{\text {classical corr }}=\sum_{s}\left|\lambda_{s}\right|^{2}\left|s_{a}\right\rangle\left\langle s_{a}\right| \otimes\left|s_{b}\right\rangle\left\langle s_{b}\right|$ and $\psi_{\text {ent }}=\sum_{s} \lambda_{s}\left|s_{a}\right\rangle \otimes\left|s_{b}\right\rangle$

$$
C_{a b}=1 \text { possible! }
$$

The MUB Criterion ${ }^{3}$

Consider two observables a and b on system A and B
Mutual Predictability $C_{a b}$

$$
\begin{equation*}
C_{a b}=\sum_{i=0}^{d-1} P_{a b}(i, i) \tag{4}
\end{equation*}
$$

For a general state ρ

$$
\begin{equation*}
C_{a b}=\sum_{i=0}^{d-1}\left\langle i_{a}\right| \otimes\left\langle i_{b}\right| \rho\left|i_{a}\right\rangle \otimes\left|i_{b}\right\rangle \tag{5}
\end{equation*}
$$

If $C_{a b}=1 \rightarrow$ fully correlated
Else if $C_{a b}=\frac{1}{d} \rightarrow$ completely uncorrelated
For $\rho_{\text {classical corr }}=\sum_{s}\left|\lambda_{s}\right|^{2}\left|s_{a}\right\rangle\left\langle s_{a}\right| \otimes\left|s_{b}\right\rangle\left\langle s_{b}\right|$ and $\psi_{\text {ent }}=\sum_{s} \lambda_{s}\left|s_{a}\right\rangle \otimes\left|s_{b}\right\rangle$

$$
C_{a b}=1 \text { possible! }
$$

Solution: Conduct measurements in multiple MUBs

[^11]
The MUB Criterion

For an arbitrary product state $\rho=|a\rangle\langle a| \otimes|b\rangle\langle b|$

$$
\begin{equation*}
? ? \leq I_{m}\left(\rho_{\text {sep }}\right)=\sum_{k=1}^{m} C_{k k}=\sum_{k=1}^{m} \sum_{i}\left|\left\langle i_{a} \mid a\right\rangle\right|^{2}\left|\left\langle i_{b} \mid b\right\rangle\right|^{2} \leq 1+\frac{m-1}{d} \tag{6}
\end{equation*}
$$

For a complete set of $d+1 \mathrm{MUBs}$

$$
\begin{equation*}
? ? \leq I_{d+1}\left(\rho_{\text {sep }}\right) \leq 2 \tag{7}
\end{equation*}
$$

The MUB Criterion

For an arbitrary product state $\rho=|a\rangle\langle a| \otimes|b\rangle\langle b|$

$$
\begin{equation*}
? ? \leq I_{m}\left(\rho_{\text {sep }}\right)=\sum_{k=1}^{m} C_{k k}=\sum_{k=1}^{m} \sum_{i}\left|\left\langle i_{a} \mid a\right\rangle\right|^{2}\left|\left\langle i_{b} \mid b\right\rangle\right|^{2} \leq 1+\frac{m-1}{d} \tag{6}
\end{equation*}
$$

For a complete set of $d+1 \mathrm{MUBs}$

$$
\begin{equation*}
? ? \leq I_{d+1}\left(\rho_{\text {sep }}\right) \leq 2 \tag{7}
\end{equation*}
$$

Proof: Use inequality of arithmetic and geometric means:

$$
\begin{equation*}
\frac{\sum_{i}^{n} x_{i}}{n} \geq \sqrt[n]{\prod_{i} x_{i}} \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
I_{m}\left(\rho_{\text {sep }}\right)=\sum_{k=1}^{m} C_{k k}=\sum_{k=1}^{m} \sum_{i}\left|\left\langle i_{a} \mid a\right\rangle\right|^{2}\left|\left\langle i_{b} \mid b\right\rangle\right|^{2} \leq \frac{1}{2}\left(\sum_{k=1}^{m} \sum_{i}\left|\left\langle i_{a} \mid a\right\rangle\right|^{4}+\left|\left\langle i_{b} \mid b\right\rangle\right|^{4}\right) \tag{9}
\end{equation*}
$$

The MUB Criterion

For an arbitrary product state $\rho=|a\rangle\langle a| \otimes|b\rangle\langle b|$

$$
\begin{equation*}
? ? \leq I_{m}\left(\rho_{\text {sep }}\right)=\sum_{k=1}^{m} C_{k k}=\sum_{k=1}^{m} \sum_{i}\left|\left\langle i_{a} \mid a\right\rangle\right|^{2}\left|\left\langle i_{b} \mid b\right\rangle\right|^{2} \leq 1+\frac{m-1}{d} \tag{6}
\end{equation*}
$$

For a complete set of $d+1$ MUBs

$$
\begin{equation*}
? ? \leq I_{d+1}\left(\rho_{\text {sep }}\right) \leq 2 \tag{7}
\end{equation*}
$$

Proof: Use inequality of arithmetic and geometric means:

$$
\begin{equation*}
\frac{\sum_{i}^{n} x_{i}}{n} \geq \sqrt[n]{\prod_{i} x_{i}} \tag{8}
\end{equation*}
$$

Then

$$
\begin{equation*}
I_{m}\left(\rho_{\text {sep }}\right)=\sum_{k=1}^{m} C_{k k}=\sum_{k=1}^{m} \sum_{i}\left|\left\langle i_{a} \mid a\right\rangle\right|^{2}\left|\left\langle i_{b} \mid b\right\rangle\right|^{2} \leq \frac{1}{2}\left(\sum_{k=1}^{m} \sum_{i}\left|\left\langle i_{a} \mid a\right\rangle\right|^{4}+\left|\left\langle i_{b} \mid b\right\rangle\right|^{4}\right) \tag{9}
\end{equation*}
$$

Because for any pure state $|a\rangle$ it holds $\sum_{k=1}^{m} \sum_{i=0}^{d-1}\left|\left\langle i_{k} \mid a\right\rangle\right|^{4} \leq 1+\frac{m-1}{d}$, we have

$$
\begin{equation*}
I_{m} \leq 1+\frac{m-1}{d} \tag{10}
\end{equation*}
$$

Entanglement Witnesses ${ }^{45}$

[^12]
Entanglement Witnesses ${ }^{45}$

- linear or non-linear functionals of a density matrix ρ

[^13]
Entanglement Witnesses ${ }^{45}$

- linear or non-linear functionals of a density matrix ρ
- hermitian operators

[^14]
Entanglement Witnesses ${ }^{45}$

- linear or non-linear functionals of a density matrix ρ
- hermitian operators
- such an operator W is an entanglement witness for $\rho_{\text {ent }}$ if $\operatorname{Tr}\left(W \rho_{\text {ent }}\right)<0$

[^15]
Entanglement Witnesses ${ }^{45}$

- linear or non-linear functionals of a density matrix ρ
- hermitian operators
- such an operator W is an entanglement witness for $\rho_{\text {ent }}$ if $\operatorname{Tr}\left(W \rho_{\text {ent }}\right)<0$
- $\operatorname{Tr}(W \rho) \geq 0 \forall \rho \in \Omega_{\text {sep }}$

[^16]
Entanglement Witnesses ${ }^{45}$

- linear or non-linear functionals of a density matrix ρ
- hermitian operators
- such an operator W is an entanglement witness for $\rho_{\text {ent }}$ if $\operatorname{Tr}\left(W \rho_{\text {ent }}\right)<0$
- $\operatorname{Tr}(W \rho) \geq 0 \forall \rho \in \Omega_{\text {sep }}$
- W_{1} is finer than $W_{2}=(1-\epsilon) W_{1}+\epsilon P$ with $0 \leq \epsilon<1$ and $P \geq 0$ if it detects all the entangled states that are detected by W_{2}

■ only witnesses related to indecomposable PNCP maps may detect bound entanglement in the PPT region

[^17]
Entanglement Witnesses ${ }^{45}$

- linear or non-linear functionals of a density matrix ρ
- hermitian operators
- such an operator W is an entanglement witness for $\rho_{\text {ent }}$ if $\operatorname{Tr}\left(W \rho_{\text {ent }}\right)<0$
- $\operatorname{Tr}(W \rho) \geq 0 \forall \rho \in \Omega_{\text {sep }}$
- W_{1} is finer than $W_{2}=(1-\epsilon) W_{1}+\epsilon P$ with $0 \leq \epsilon<1$ and $P \geq 0$ if it detects all the entangled states that are detected by W_{2}

Entanglement witnesses and geometrical optimality

- only witnesses related to indecomposable PNCP maps may detect bound entanglement in the PPT region

[^18]
Detecting (Bound) Entanglement with MUBs within the Magic Simplex p-Simplexes ${ }^{6}$

[^19]
Detecting (Bound) Entanglement with MUBs within the Magic Simplex p-Simplexes ${ }^{6}$

Convex subset \mathcal{S} in an affine space

- a collection of points where for any two points x_{1}, x_{2} it holds that a mixture x also belongs to it:

$$
\begin{equation*}
x=\lambda_{1} x_{1}+\lambda_{2} x_{2} \in \mathcal{S}, \quad \lambda_{1}+\lambda_{2}=1, \quad \lambda_{i} \geq 0 \tag{11}
\end{equation*}
$$

[^20]
Detecting (Bound) Entanglement with MUBs within the Magic Simplex p-Simplexes ${ }^{6}$

Convex subset \mathcal{S} in an affine space

- a collection of points where for any two points x_{1}, x_{2} it holds that a mixture x also belongs to it:

$$
\begin{equation*}
x=\lambda_{1} x_{1}+\lambda_{2} x_{2} \in \mathcal{S}, \quad \lambda_{1}+\lambda_{2}=1, \quad \lambda_{i} \geq 0 \tag{11}
\end{equation*}
$$

P-simplex

- a collection of $p+1$ points, not confined to a $p-1$-dimensional space
- it holds

[^21]
Detecting (Bound) Entanglement with MUBs within the Magic Simplex p-Simplexes ${ }^{6}$

Convex subset \mathcal{S} in an affine space

- a collection of points where for any two points x_{1}, x_{2} it holds that a mixture x also belongs to it:

$$
\begin{equation*}
x=\lambda_{1} x_{1}+\lambda_{2} x_{2} \in \mathcal{S}, \quad \lambda_{1}+\lambda_{2}=1, \quad \lambda_{i} \geq 0 \tag{11}
\end{equation*}
$$

P-simplex

- a collection of $p+1$ points, not confined to a $p-1$-dimensional space
- it holds

$$
\begin{equation*}
x=\sum_{i=0}^{p} \lambda_{i} x_{i}, \quad \sum_{i=0}^{p} \lambda_{i}=1, \quad 0 \leq \lambda_{i} \leq 1 \tag{12}
\end{equation*}
$$

p	0	1	2	3
geometrical object	point	line segment	triangle	tetraeder

Detecting (Bound) Entanglement with MUBs within the Magic Simplex

 Special Simplex ${ }^{7}$ in $\mathcal{H}_{2} \otimes \mathcal{H}_{2}$

- 4 Bell states as corner points
- yellow: positivity
- blue: PPT (separable states)
- green: Kuś-Życzkowski ball
- dark yellow (local states satisfying Bell inequality)

[^22]
Detecting (Bound) Entanglement with MUBs within the Magic Simplex

 Special Simplex in $\mathcal{H}_{d} \otimes \mathcal{H}_{d}{ }^{8}$For bipartite systems in $\mathcal{H}_{d} \otimes \mathcal{H}_{d}$, a simplex can be constructed via

$$
\begin{equation*}
\mathcal{W}=\left\{\sum_{k l} c_{k l} P_{k l} \mid c_{k l} \geq 0, \sum_{k l} c_{k l}=1\right\} \tag{13}
\end{equation*}
$$

where
■ $P_{k l}=\left|\Omega_{k l}\right\rangle\left\langle\Omega_{k l}\right|$
■ $\left|\Omega_{k l}\right\rangle=\left(W_{k l} \otimes \mathbb{I}\right)\left|\Omega_{00}\right\rangle$ with $W_{k l}=\sum_{j=0}^{d-1} e^{\frac{2 \pi j k}{d}}|j\rangle\langle j+I|$ and $\left|\Omega_{00}\right\rangle=\frac{1}{\sqrt{d}} \sum_{s}|s\rangle \otimes|s\rangle$

- $P_{k l}=\left(W_{k l} \otimes \mathbb{I}\right) P_{00}\left(W_{k l}^{\dagger} \otimes \mathbb{I}\right)$

[^23]Detecting (Bound) Entanglement with MUBs within the Magic Simplex Phase Space Representation for $d=3$

Non-parallel phase space lines in $d=3$ originating from $(0,0)$

Detecting (Bound) Entanglement with MUBs within the Magic Simplex Special Simplex in $\mathcal{H}_{d} \otimes \mathcal{H}_{d}$

[^24]Detecting (Bound) Entanglement with MUBs within the Magic Simplex Special Simplex in $\mathcal{H}_{d} \otimes \mathcal{H}_{d}$

Investigate family of $U \otimes U^{*}$ symmetric states ${ }^{9}$

- $\rho_{M}[d]=\left(1-\frac{q[1]}{\left(d^{2}-(d+1)\right)}-\frac{q[2]}{(d+1)}\right) \frac{1}{d^{2}} \mathbb{I}_{d^{2}}[d]+\frac{q[1]}{\left(d^{2}-(d+1)\right)} P_{00}[d]+$ $\frac{q[2]}{(d+1)(d-1)} \sum_{i=1}^{d-1} P_{i 0}[d]+\sum_{j=3}^{d+1} \sum_{i=0}^{d-1}\left(\frac{(-q[j))}{d^{2}} \mathbb{I}_{d^{2}}[d]+\frac{q[j]}{d} P_{i, j-2}[d]\right)$

[^25]Detecting (Bound) Entanglement with MUBs within the Magic Simplex Special Simplex in $\mathcal{H}_{d} \otimes \mathcal{H}_{d}$

Investigate family of $U \otimes U^{*}$ symmetric states ${ }^{9}$

- $\rho_{M}[d]=\left(1-\frac{q[1]}{\left(d^{2}-(d+1)\right)}-\frac{q[2]}{(d+1)}\right) \frac{1}{d^{2}} \mathbb{I}_{d^{2}}[d]+\frac{q[1]}{\left(d^{2}-(d+1)\right)} P_{00}[d]+$ $\frac{q[2]}{(d+1)(d-1)} \sum_{i=1}^{d-1} P_{i 0}[d]+\sum_{j=3}^{d+1} \sum_{i=0}^{d-1}\left(\frac{(-q[j))}{d^{2}} \mathbb{I}_{d^{2}}[d]+\frac{q[j]}{d} P_{i, j-2}[d]\right)$
$■ l_{d}^{j}=\operatorname{Tr}\left(\sum_{i}\left|b_{i}^{j}\right\rangle\left\langle b_{i}^{j}\right| \otimes\left(W_{k l}\left|b_{i}^{j}\right\rangle\right)^{*}\left(\left\langle b_{i}^{j}\right| W_{k l}^{\dagger}\right)^{*} \rho_{M}\right)$

[^26]Detecting (Bound) Entanglement with MUBs within the Magic Simplex Special Simplex in $\mathcal{H}_{d} \otimes \mathcal{H}_{d}$

Investigate family of $U \otimes U^{*}$ symmetric states ${ }^{9}$

- $\rho_{M}[d]=\left(1-\frac{q[1]}{\left(d^{2}-(d+1)\right)}-\frac{q[2]}{(d+1)}\right) \frac{1}{d^{2}} \mathbb{I}_{d^{2}}[d]+\frac{q[1]}{\left(d^{2}-(d+1)\right)} P_{00}[d]+$ $\frac{q[2]}{(d+1)(d-1)} \sum_{i=1}^{d-1} P_{i 0}[d]+\sum_{j=3}^{d+1} \sum_{i=0}^{d-1}\left(\frac{(-q[j])}{d^{2}} \mathbb{I}_{d^{2}}[d]+\frac{q[j]}{d} P_{i, j-2}[d]\right)$
$■ I_{d}^{j}=\operatorname{Tr}\left(\sum_{i}\left|b_{i}^{j}\right\rangle\left\langle b_{i}^{j}\right| \otimes\left(W_{k l}\left|b_{i}^{j}\right\rangle\right)^{*}\left(\left\langle b_{i}^{j}\right| W_{k l}^{\dagger}\right)^{*} \rho_{M}\right)$
- $\langle\mathfrak{W}\rangle_{\rho_{M}}=2-\sum_{j} I_{d}^{j}$

[^27]Detecting (Bound) Entanglement with MUBs within the Magic Simplex Special Simplex in $\mathcal{H}_{d} \otimes \mathcal{H}_{d}$

Investigate family of $U \otimes U^{*}$ symmetric states ${ }^{9}$

- $\rho_{M}[d]=\left(1-\frac{q[1]}{\left(d^{2}-(d+1)\right)}-\frac{q[2]}{(d+1)}\right) \frac{1}{d^{2}} \mathbb{I}_{d^{2}}[d]+\frac{q[1]}{\left(d^{2}-(d+1)\right)} P_{00}[d]+$ $\frac{q[2]}{(d+1)(d-1)} \sum_{i=1}^{d-1} P_{i 0}[d]+\sum_{j=3}^{d+1} \sum_{i=0}^{d-1}\left(\frac{(-q[j])}{d^{2}} \mathbb{I}_{d^{2}}[d]+\frac{q[j]}{d} P_{i, j-2}[d]\right)$
$■ I_{d}^{j}=\operatorname{Tr}\left(\sum_{i}\left|b_{i}^{j}\right\rangle\left\langle b_{i}^{j}\right| \otimes\left(W_{k l}\left|b_{i}^{j}\right\rangle\right)^{*}\left(\left\langle b_{i}^{j}\right| W_{k l}^{\dagger}\right)^{*} \rho_{M}\right)$
- $\langle\mathfrak{W J}\rangle_{\rho_{M}}=2-\sum_{j} I_{d}^{j}$
- $\min _{\substack{\forall k_{j}, l_{j}: 0 \leq k_{j}, l_{j} \leq d-1 \\ \forall q[i]: 1 \leq i \leq d+1}}\left\{\left\langle\mathfrak{W}\left(k_{j}, l_{j}, q[i]\right)\right\rangle_{\rho_{M}} \mid \rho_{M}(q[i]) \geq 0, \rho_{M}^{\Gamma}(q[i]) \geq 0\right\}$

[^28]Detecting (Bound) Entanglement with MUBs within the Magic Simplex Special Simplex in $\mathcal{H}_{d} \otimes \mathcal{H}_{d}$

Investigate family of $U \otimes U^{*}$ symmetric states ${ }^{9}$

- $\rho_{M}[d]=\left(1-\frac{q[1]}{\left(d^{2}-(d+1)\right)}-\frac{q[2]}{(d+1)}\right) \frac{1}{d^{2}} \mathbb{I}_{d^{2}}[d]+\frac{q[1]}{\left(d^{2}-(d+1)\right)} P_{00}[d]+$ $\frac{q[2]}{(d+1)(d-1)} \sum_{i=1}^{d-1} P_{i 0}[d]+\sum_{j=3}^{d+1} \sum_{i=0}^{d-1}\left(\frac{(-q[j])}{d^{2}} \mathbb{I}_{d^{2}}[d]+\frac{q[j]}{d} P_{i, j-2}[d]\right)$
$■ I_{d}^{j}=\operatorname{Tr}\left(\sum_{i}\left|b_{i}^{j}\right\rangle\left\langle b_{i}^{j}\right| \otimes\left(W_{k l}\left|b_{i}^{j}\right\rangle\right)^{*}\left(\left\langle b_{i}^{j}\right| W_{k l}^{\dagger}\right)^{*} \rho_{M}\right)$
- $\langle\mathfrak{W}\rangle\rangle_{\rho_{M}}=2-\sum_{j} I_{d}^{j}$
- $\min _{\substack{\forall k_{j}, l_{j}: 0 \leq k_{j}, l_{j} \leq d-1 \\ \forall q[i]: 1 \leq i \leq d+1}}\left\{\left\langle\mathfrak{W}\left(k_{j}, l_{j}, q[i]\right)\right\rangle_{\rho_{M}} \mid \rho_{M}(q[i]) \geq 0, \rho_{M}^{\Gamma}(q[i]) \geq 0\right\}$
- Ensure that $\operatorname{Tr}\left(\mathfrak{W} \rho_{\text {sep }}\right) \geq 0 \forall \rho_{\text {sep }}$

[^29]
Special Simplex in $\mathcal{H}_{d} \otimes \mathcal{H}_{d}$

	$\left\langle\mathfrak{W}_{1}\right\rangle_{\rho_{M}}$	$\left\langle\mathfrak{W}_{2}\right\rangle_{\rho_{M}}$
$q[1]$	$\frac{5}{3}(-1+\sqrt{3})$	$\frac{5}{3}(-1+\sqrt{3})$
$q[2]$	0	0
$q[3]$	$\frac{2}{3}$	$\frac{2}{3}-\frac{1}{\sqrt{3}}$
$q[4]$	$\frac{2}{3}-\frac{1}{\sqrt{3}}$	$\frac{2}{3}$
$2-I_{d}$	$1-\frac{2}{\sqrt{3}}$	$1-\frac{2}{\sqrt{3}}$

Table of optimized parameters $q[i]$ for 2 witnesses

$$
\begin{array}{c|c|c}
& \left\langle\mathfrak{W}_{1}\right\rangle_{\rho_{M}} & \left\langle\mathfrak{W}_{2}\right\rangle_{\rho_{M}} \\
\hline q[1] & \frac{5}{9}(-5+3 \sqrt{3}) & \frac{5}{3}(-5+4 \sqrt{3}) \\
q[2] & -\frac{16}{9} & \frac{8}{9}(-2+\sqrt{3}) \\
q[3] & 0 & 0 \\
q[4] & -\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
2-I_{d} & 1-\frac{2}{\sqrt{3}} & 1-\frac{2}{\sqrt{3}}
\end{array}
$$

Table of optimized parameters $q[i]$ for 2 witnesses with $q[3]=0$

Special Simplex in $\mathcal{H}_{d} \otimes \mathcal{H}_{d}$

 Bound Entanglement Detection for $\mathrm{d}=4.5$

$$
\begin{array}{ccc}
& d=4 & d=5 \\
\hline 2-l_{d} & -\frac{1}{8} & -1+\frac{2}{\sqrt{5}}
\end{array}
$$

Special Simplex in $\mathcal{H}_{d} \otimes \mathcal{H}_{d}$

- witnesses can be rewritten as $\mathfrak{W}_{i}=(2-d) P_{00}+2 \sum_{m=1}^{D-1} P_{m 0}+$ $\sum_{m=0}^{d-1} \sum_{n=1}^{d-1}\left(1-\delta_{n i}\right) P_{m n}$
■ for even dimensions $d \leq 8$ not all Weyl-shifted witnesses (optimally) detect bound entanglement

\mathfrak{W}_{i}	$\mathrm{~d}=6$	$\mathrm{~d}=7$	$\mathrm{~d}=8$
\mathfrak{W}_{1}	-0.091752	-0.08136	-0.07322
\mathfrak{W}_{2}	-0.091752	-0.08136	-0.07322
\mathfrak{W}_{3}	$-1.14826 \cdot 10^{-6}$	-0.08136	-0.07322
\mathfrak{W}_{4}	-0.091752	-0.08136	$-2.13422 \cdot 10^{-7}$
\mathfrak{W}_{5}	-0.091752	-0.08136	-0.07322
\mathfrak{W}_{6}	-	-0.08136	-0.07322
\mathfrak{W}_{7}	-	-	-0.07322

Table of optimal values for bound entanglement for $6 \leq \mathrm{d} \leq 8$

Summary and Outlook

Summary:

- $\exists \rho_{P P T, \text { ent }} \in \mathcal{H}_{d} \otimes \mathcal{H}_{d}$ with $d \geq 3$

■ characterizing ρ with respect to its separability \rightarrow NP hard!
■ introduce reduced state space (simplex)
■ turn to MUB witnesses to detect classes of such states
Future goals:

- new bounds on bound entangled and separable states within the magic simplex
- investigate lower bound of MUB criterion

References I

園 J．Schwinger，＂UNITARY OPERATOR BASES＂，Proceedings of the National Academy of Sciences 46，570－579（1960）．

A．Frisk Kockum，Quantum optics with artificial atoms，（2014）．
T．Durt，B．－G．Englert，I．Bengtsson，and K．Życzkowski，＂On mutually unbiased bases＂，International Journal of Quantum Information 08，535－640 （2010）．

图
C．Spengler，M．Huber，S．Brierley，T．Adaktylos，and B．C．Hiesmayr， ＂Entanglement detection via mutually unbiased bases＂，Physical Review A 86， 022311 （2012）．
R．A．BertImann，and P．Krammer，＂Entanglement witnesses and geometry of entanglement of two－qutrit states＂，Annals of Physics 324，1388－1407 （2009）．

國 M．Lewenstein，B．Kraus，J．I．Cirac，and P．Horodecki，＂Optimization of entanglement witnesses＂，Physical Review A 62， 052310 （2000）．

荀
I．Bengtsson，and K．Zyczkowski，Geometry of Quantum States：An Introduction to Quantum Entanglement，（Cambridge University Press，2006）．

References II

击
W. Thirring, R. A. Bertlmann, P. Köhler, and H. Narnhofer, "Entanglement or separability: The choice of how to factorize the algebra of a density matrix", The European Physical Journal D 64, arXiv: 1106.3047, 181-196 (2011).

周
B. Baumgartner, B. Hiesmayr, and H. Narnhofer, "A special simplex in the state space for entangled qudits", Journal of Physics A: Mathematical and Theoretical 40, 7919 (2007).B. C. Hiesmayr, and W. Löffler, "Mutually unbiased bases and bound entanglement", Physica Scripta 2014, 014017 (2014).

[^0]: ${ }^{1}$ J. Schwinger, "UNITARY OPERATOR BASES", , Proceedings of the National Academy of Sciences 46, 570-579 (1960).

[^1]: ${ }^{1}$ J. Schwinger, "UNITARY OPERATOR BASES", , Proceedings of the National Academy of Sciences 46, 570-579 (1960).

[^2]: ${ }^{a}$ A. Frisk Kockum, Quantum optics with artificial atoms, (2014).

[^3]: ${ }^{2}$ T. Durt, et al., "On mutually unbiased bases", International Journal of Quantum Information 08, 535-640 (2010).

[^4]: ${ }^{2}$ T. Durt, et al., "On mutually unbiased bases", International Journal of Quantum Information
 08, 535-640 (2010).

[^5]: ${ }^{2}$ T. Durt, et al., "On mutually unbiased bases", International Journal of Quantum Information 08, 535-640 (2010).

[^6]: ${ }^{2}$ T. Durt, et al., "On mutually unbiased bases", International Journal of Quantum Information 08, 535-640 (2010).

[^7]: ${ }^{2}$ T. Durt, et al., "On mutually unbiased bases", International Journal of Quantum Information 08, 535-640 (2010).

[^8]: ${ }^{2}$ T. Durt, et al., "On mutually unbiased bases", International Journal of Quantum Information 08, 535-640 (2010).

[^9]: ${ }^{3}$ C. Spengler, et al., "Entanglement detection via mutually unbiased bases", Physical Review A 86, 022311 (2012).

[^10]: ${ }^{3} \mathrm{C}$. Spengler, et al., "Entanglement detection via mutually unbiased bases", Physical Review A 86, 022311 (2012).

[^11]: ${ }^{3}$ C. Spengler, et al., "Entanglement detection via mutually unbiased bases", Physical Review A 86, 022311 (2012).

[^12]: ${ }^{4}$ R. A. Bertlmann, and P. Krammer, "Entanglement witnesses and geometry of entanglement of two-qutrit states", Annals of Physics 324, 1388 -1407 (2009).
 ${ }^{5} \mathrm{M}$. Lewenstein, et al., "Optimization of entanglement witnesses", Physical Review A 62, 052310 (2000).

[^13]: ${ }^{4}$ R. A. Bertlmann, and P. Krammer, "Entanglement witnesses and geometry of entanglement of two-qutrit states", Annals of Physics 324, 1388 -1407 (2009).
 ${ }^{5}$ M. Lewenstein, et al., "Optimization of entanglement witnesses", Physical Review A 62, 052310 (2000).

[^14]: ${ }^{4}$ R. A. Bertlmann, and P. Krammer, "Entanglement witnesses and geometry of entanglement of two-qutrit states", Annals of Physics 324, 1388 -1407 (2009).
 ${ }^{5}$ M. Lewenstein, et al., "Optimization of entanglement witnesses", Physical Review A 62, 052310 (2000).

[^15]: ${ }^{4}$ R. A. Bertlmann, and P. Krammer, "Entanglement witnesses and geometry of entanglement of two-qutrit states", Annals of Physics 324, 1388 -1407 (2009).
 ${ }^{5}$ M. Lewenstein, et al., "Optimization of entanglement witnesses", Physical Review A 62, 052310 (2000).

[^16]: ${ }^{4}$ R. A. Bertlmann, and P. Krammer, "Entanglement witnesses and geometry of entanglement of two-qutrit states", Annals of Physics 324, 1388 -1407 (2009).
 ${ }^{5}$ M. Lewenstein, et al., "Optimization of entanglement witnesses", Physical Review A 62, 052310 (2000).

[^17]: ${ }^{4}$ R. A. Bertlmann, and P. Krammer, "Entanglement witnesses and geometry of entanglement of two-qutrit states", Annals of Physics 324, 1388 -1407 (2009).
 ${ }^{5}$ M. Lewenstein, et al., "Optimization of entanglement witnesses", Physical Review A 62, 052310 (2000).

[^18]: ${ }^{4}$ R. A. BertImann, and P. Krammer, "Entanglement witnesses and geometry of entanglement of two-qutrit states", Annals of Physics 324, 1388 -1407 (2009).
 ${ }^{5}$ M. Lewenstein, et al., "Optimization of entanglement witnesses", Physical Review A 62, 052310 (2000).

[^19]: ${ }^{6}$ I. Bengtsson, and K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, (Cambridge University Press, 2006).

[^20]: ${ }^{6}$ I. Bengtsson, and K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, (Cambridge University Press, 2006).

[^21]: ${ }^{6}$ I. Bengtsson, and K. Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement, (Cambridge University Press, 2006).

[^22]: ${ }^{7} \mathrm{~W}$. Thirring, et al., "Entanglement or separability: The choice of how to factorize the algebra of a density matrix", The European Physical Journal D 64, arXiv: 1106.3047, 181-196 (2 2 11) .) ac

[^23]: ${ }^{8}$ B. Baumgartner, et al., "A special simplex in the state space for entangled qudits", Journal of Physics A: Mathematical and Theoretical 40, 7919 (2007).

[^24]: ${ }^{9}$ B. C. Hiesmayr, and W. Löffler, "Mutually unbiased bases and bound entanglement", Physica Scripta 2014, 014017 (2014).

[^25]: ${ }^{9}$ B. C. Hiesmayr, and W. Löffler, "Mutually unbiased bases and bound entanglement", Physica Scripta 2014, 014017 (2014).

[^26]: ${ }^{9}$ B. C. Hiesmayr, and W. Löffler, "Mutually unbiased bases and bound entanglement", Physica Scripta 2014, 014017 (2014).

[^27]: ${ }^{9}$ B. C. Hiesmayr, and W. Löffler, "Mutually unbiased bases and bound entanglement", Physica Scripta 2014, 014017 (2014).

[^28]: ${ }^{9}$ B. C. Hiesmayr, and W. Löffler, "Mutually unbiased bases and bound entanglement", Physica Scripta 2014, 014017 (2014).

[^29]: ${ }^{9}$ B. C. Hiesmayr, and W. Löffler, "Mutually unbiased bases and bound entanglement", Physica Scripta 2014, 014017 (2014).

