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Intro Sat QComm Perspectives and conlcusions

What is Quantum Communication?

I Quantum Communications is the
ability of faithful transmit qubit (or
generic quantum states) between
two distant locations

I Application of ground QC:
commercial QKD using fiber-cables

I Quantum Communications on
planetary scale require
complementary channels including
ground and satellite links
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Motivations

Why satellite quantum communications?

I Creation of a worldwide quantum network
I Overcome fiber-loss limitations:

transmission in a link with length L scales as

tfiber = t0e−αL , tvacuum = γ/L2

L = 1000 km :
fiber-loss ∼ 200 db (10−20)

satellite-loss ∼ 30− 60 db (10−3 : 10−6)

I Explore the limits of Quantum
Mechanics and quantum correlations over
very long distances
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Context

I On May 24, 2014 Japan’s NICT launched SOTA on Socrates
satellite.

I On August 16, 2016 China launched QUESS (Quantum
Experiments at Space Scale) satellite

I Ongoing programs for QC on satellite in Canada, Singapore and
USA.
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QKD in a nutshell

BB84 protocol: exchanging qubits

Necessary a true Random Number Generator (such as a QRNG)
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Qubit encoding

Polarization encoding

|0〉

|1〉 |0〉+ i|1〉

|0〉 − i|1〉
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MLRO as quantum hub

MLRO: Matera Laser Ranging Observatory
of ASI (Italian Space Agency)

1.5 m telescope with millimeter resolution in SLR
Research hub for Space QC since 2003

G. Bianco

V. Luceri
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How to emulate a single photon source on space?

I Strong laser pulses sent from
ground

I qubit source in Space emulated by
using orbiting CCR

I Reflected at the single photon level
from the satellites

I Downlink attenuation from ∼ 3 cm
LEO sources in the range of 50-70
dB.

CCR: Corner-Cube
Retroreflector
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Single passage of LARETS

Orbit height 690 km - spherical brass body
24 cm in diameter, 23 kg mass,
60 Metallic coated Corner-Cube Retroreflectors

Apr 10th, 2014, start 4:40 am CEST
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Detection of four polarization states received from satellite
10 s windows: average QBER 6.5%
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Micius demonstration

orbital altitude ' 500 km
average secret key rate of ' 1.1 kbit/s

Pag. 14 S.-K. Liao, et al., Satellite-to-ground quantum key distribution, Nature 549, 43 (2017)
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Extending QC to MEO satellites

MEO=Medium-Earth-Orbit

D. Dequal

Pag. 15 D. Dequal, et al., Experimental single photon exchange along a space link of 7000 km, Phys. Rev. A 93, 010301(R) (2016)
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Single photon returns

Histogram of the counts
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Extending QC to GEO satellites

I with GEO distances (> 20000 km) losses increase
I better synchronization is required to discriminate signal from

dark/background counts
I in previous experiments we showed synchronization with

1 ns accuracy with PMT detectors
I NEW silicon SPAD detectors with (200µm)2 area and 35 ps jitter

Pag. 17 G. Vallone, et al. Satellite quantum communication towards GEO distances, Proc. SPIE 9900 (2016)
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GNSS single photon exchange
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first experimental exchange of single photons from Global Navigation
Satellite System at a slant distance of 20000 kilometers
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Quantum interference (AKA time-bin encoding)

Qubit with time-bin: |ψ〉 = 1√
2
(|E〉+ eiφ|L〉)

The relative phase can be used to encode information

Pag. 20 G. Vallone, et al., Quantum interference along satellite-ground channels, Phys. Rev. Lett. 116, 253601 (2016)
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4f-system

I Is turbulence spoiling interference?

NO, if the wavefront are matched!

4f-system crucial for wavefront matching

Pag. 21 G. Vallone, et al., Quantum interference along satellite-ground channels, Phys. Rev. Lett. 116, 253601 (2016)
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4f-system

Pag. 22 G. Vallone, et al., Quantum interference along satellite-ground channels, Phys. Rev. Lett. 116, 253601 (2016)
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The role of the satellite

Is time-bin encoding stable
with moving objects?

YES, if the dynamical phase
is taken into account

Pag. 23 G. Vallone, et al., Quantum interference along satellite-ground channels, Phys. Rev. Lett. 116, 253601 (2016)
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Measurement of interference

Self-stabilized
interferometer

Phase shift due to
satellite motion:

ϕ(t) ' 2vr(t)
2π
λ

∆t

where

∆t ' 3.4 ns

vr(t) = radial velocity

Nc(t) ∝ 1− V(t) cosϕ(t)

Pag. 24 G. Vallone, et al., Quantum interference along satellite-ground channels, Phys. Rev. Lett. 116, 253601 (2016)
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Dynamical phase

Phase variation during the satellite passage

Pc(t) =
1
2
[1− V(t) cosϕ(t)] with V(t) = e−2π

(
∆t
τc

β(t)
1+β(t)

)2

' 1
Pag. 25 G. Vallone, et al., Quantum interference along satellite-ground channels, Phys. Rev. Lett. 116, 253601 (2016)
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Experimental results

Interference pattern: visibility up to 67%
(can be improved be further stabilizing the interferometer)

Pag. 26 G. Vallone, et al., Quantum interference along satellite-ground channels, Phys. Rev. Lett. 116, 253601 (2016)
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Wheeler’s delayed choice in space

Pag. 28 F. Vedovato, et al., Extending Wheeler’s delayed-choice experiment to Space, Science Advances 3, e1701180 (2017)
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Wheeler’s delayed choice in space

F. Vedovato

C. Agnesi

Pag. 29 F. Vedovato, et al., Extending Wheeler’s delayed-choice experiment to Space, Science Advances 3, e1701180 (2017)
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Wheeler’s delayed choice in space

Pag. 30 F. Vedovato, et al., Extending Wheeler’s delayed-choice experiment to Space, Science Advances 3, e1701180 (2017)
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Long term opportunities

Unique opportunity of Quantum Physics in Space
Possibility of testing quantum physics in new environment and

probing the laws of nature at very large distance

I Distribution of entanglement from Earth to Space

I Test of Bell’s Inequalities with unprecedented conditions: LEO or
GEO-orbit, moving terminals, gravitational field

I Teleportation from Earth to Space

I Quantum technologies in long distance applications

I Test of foundations of quantum field theory and general relativity
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Different levels of space experiments

Pag. 33 D. Rideou, et. al, Class. Quantum Grav. 29, 224011 (2012)
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Entanglement distribution

I Quantum Entanglement is, according to
Erwin Schrödinger, the “characteristic trait
of quantum mechanics”

I Entanglement is a unique resource for
Quantum Information applications
(teleportation, dense coding, etc..)

|ψ〉AB 6= |φ〉A ⊗ |χ〉B

A

B

|ψ〉AB

I Limits on the distance between two entangled systems?
I Is entanglement limited to certain mass and length scales or

altered under specific gravitational circumstances?

Pag. 34 D. Rideou, et. al, Class. Quantum Grav. 29, 224011 (2012)
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Entanglement distribution

Photons are the ideal candidate for distributing entanglement

I Easy to generate entangled photons

!"#$%&'
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")*+,%

-,.&,/0%1
23+.+,4

I Photons can travel over long distances without decoherence

Pag. 35 D. Rideou, et. al, Class. Quantum Grav. 29, 224011 (2012)
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What is the largest distance of entanglement?

Infinite (in theory)....

I 2017: entanglement between two ground stations separated by
1203 kilometers

I violation of a Bell inequality by 2.37± 0.09 under strict Einstein
locality conditions

Pag. 36 J. Yin, et al., Satellite-based entanglement distribution over 1200 kilometers, Science 356, 1140 (2017)
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Bell’s test

If a set of correlation do not satisfy the Bell’s inequality S ≤ 2, the
correlations cannot be explained by a local realistic theory.

I Bell’inequality violated between fixed location: "spooky action at
distance" at speed greater than 104c.

Phys. Rev. Lett. 110, 260407 (2013)
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Bell’s test with detectors in relative motion

1

1x 2y

2

2

1

t

Test of Test of
S S

t

z

z

I the two observers disagree on the relative time ordering of the
measurement events

I The probabilities predicted by quantum theory do not depend on
the time-ordering of spacelike events, so its predictions will not
be changed.

I understanding the physical reality of quantum states and the
non-local collapse of the wave functions.
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COW experiment with photons

λ = 800 nm
h ∼ 400 km
` = 6 km

∆φ =
2π`
λ

gh
c2 ∼ 2 rad.

I First direct measurement of quantum interference due to curved
spacetime

I Different from a test with massive particle:
in the Newtonian limit no effect on a massless system would be
expected.

Pag. 39 M. Zych, et. al, General relativistic effects in quantum interference of photons. Class. Quant. Grav. 29, 224010 (2012)
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Conclusions

Quantum Communication in SPACE
how to explore the limits of Quantum Mechanics and quantum

correlations over very long distances
Pag. 40
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