Quantum Communications and Fundamental Physics in Space

Giuseppe (Pino) Vallone

email: vallone@dei.unipd.it

Università degli Studi di Padova

Laboratori Nazionali di Frascati INFN Is Quantum Theory exact? - July 3, 2018

Summary

- 1 Introduction and motivations
- 2 Satellite Quantum Communications
 - Polarization Encoding
 - TIme-Bin Encoding
 - Wheeler's delayed-choice
- 3 Perspectives and conlcusions

Summary

1 Introduction and motivations

2 Satellite Quantum Communications

- Polarization Encoding
- TIme-Bin Encoding
- Wheeler's delayed-choice

3 Perspectives and conlcusions

What is Quantum Communication?

- Quantum Communications is the ability of faithful transmit qubit (or generic quantum states) between two distant locations
- Application of ground QC: commercial QKD using fiber-cables

 Quantum Communications on planetary scale require complementary channels including ground and satellite links

Why satellite quantum communications?

Why satellite quantum communications?

Creation of a worldwide quantum network

Why satellite quantum communications?

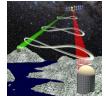
- Creation of a worldwide quantum network
- Overcome fiber-loss limitations: transmission in a link with length L scales as

$$t_{\rm fiber} = t_0 e^{-\alpha L}$$
, $t_{\rm vacuum} = \gamma / L^2$

 $L = 1000 \, km$:

fiber-loss ~ 200 db (10^{-20}) satellite-loss ~ 30 - 60 db $(10^{-3}:10^{-6})$

Why satellite quantum communications?



- Creation of a worldwide quantum network
- Overcome fiber-loss limitations: transmission in a link with length L scales as

$$t_{\rm fiber} = t_0 e^{-\alpha L}$$
, $t_{\rm vacuum} = \gamma / L^2$

$$L = 1000 \, km$$
 :

fiber-loss ~ 200 db (10^{-20}) satellite-loss ~ 30 - 60 db $(10^{-3}:10^{-6})$

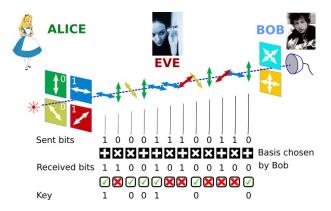
 Explore the limits of Quantum Mechanics and quantum correlations over very long distances Context

- On May 24, 2014 Japan's NICT launched SOTA on Socrates satellite.
- On August 16, 2016 China launched QUESS (Quantum Experiments at Space Scale) satellite
- Ongoing programs for QC on satellite in Canada, Singapore and USA.

Summary

1 Introduction and motivations

2 Satellite Quantum Communications


- Polarization Encoding
- TIme-Bin Encoding
- Wheeler's delayed-choice

QKD in a nutshell

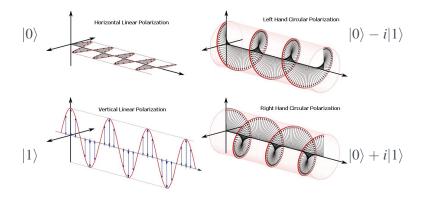
BB84 protocol: exchanging qubits

Necessary a true Random Number Generator (such as a QRNG)

Summary

1 Introduction and motivations

Satellite Quantum Communications Polarization Encoding


- TIme-Bin Encoding
- Wheeler's delayed-choice

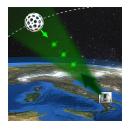
Qubit encoding

Polarization encoding

MLRO as quantum hub

MLRO: Matera Laser Ranging Observatory of ASI (Italian Space Agency) 1.5 m telescope with millimeter resolution in SLR Research hub for Space QC since 2003

G. Bianco



V. Luceri

How to emulate a single photon source on space?

- Strong laser pulses sent from ground
- qubit source in Space emulated by using orbiting CCR
- Reflected at the single photon level from the satellites
- Downlink attenuation from ~ 3 cm LEO sources in the range of 50-70 dB.

CCR: Corner-Cube Retroreflector

Pag. 13

Single passage of LARETS

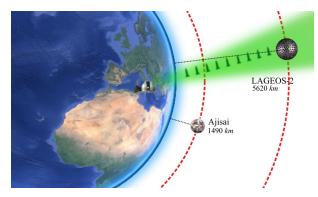
Orbit height 690 km - spherical brass body 24 cm in diameter, 23 kg mass, 60 Metallic coated Corner-Cube Betroreflectors

Time (s) Satellite distance (km) 160 1400 1200 L 100 Det_{|H)} $\operatorname{Det}_{|H|}$ $\text{Det}_{|L\rangle}$ $\text{Det}_{|L\rangle}$ Counts Det Det Det Det 20 -2 2 $\Delta = t_{meas} - t_{ref} (ns)$

Apr 10th, 2014, start 4:40 am CEST

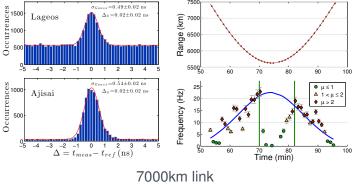
Detection of four polarization states received from satellite 10 s windows: average QBER 6.5%

Micius demonstration


orbital altitude $\simeq 500~{\rm km}$ average secret key rate of $\simeq 1.1$ kbit/s

S.-K. Liao, et al., Satellite-to-ground quantum key distribution, Nature 549, 43 (2017)

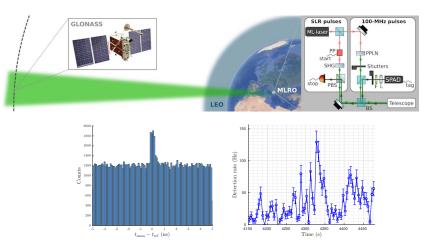
Extending QC to MEO satellites


MEO=Medium-Earth-Orbit

Single photon returns

Pag. 16 D. Dequal, et al., Experimental single photon exchange along a space link of 7000 km, Phys. Rev. A 93, 010301(R) (2016)

Extending QC to GEO satellites



- ▶ with GEO distances (> 20000 km) losses increase
- better synchronization is required to discriminate signal from dark/background counts
- in previous experiments we showed synchronization with 1 ns accuracy with PMT detectors
- NEW silicon SPAD detectors with $(200\mu m)^2$ area and 35 ps jitter

GNSS single photon exchange

first experimental exchange of single photons from Global Navigation Satellite System at a slant distance of 20000 kilometers

Pag. 18 L. Calderaro, et al. Towards Quantum Communication from Global Navigation Satellite System, [arxiv:1804.05022]

Summary

1 Introduction and motivations

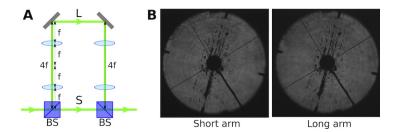
2 Satellite Quantum Communications Polarization Encoding TIme-Bin Encoding Wheeler's delayed-choice

Quantum interference (AKA time-bin encoding)

Qubit with time-bin: $|\psi\rangle = \frac{1}{\sqrt{2}}(|E\rangle + e^{i\phi}|L\rangle)$ The relative phase can be used to encode information early late (L)(E) photon pulse EL LL ĒĒ

4f-system

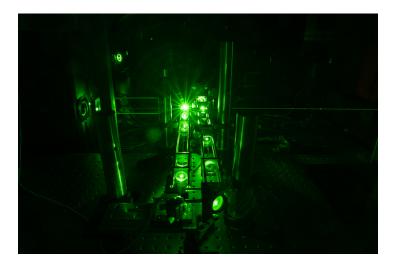
Is turbulence spoiling interference?


4f-system

- ► Is turbulence spoiling interference?
- NO, if the wavefront are matched!

4f-system

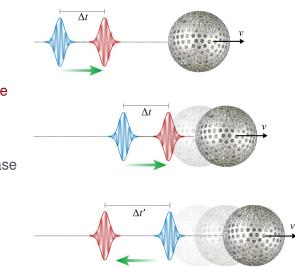
- ► Is turbulence spoiling interference?
- NO, if the wavefront are matched!



4f-system crucial for wavefront matching

Pag. 22

4f-system



The role of the satellite

Is time-bin encoding stable with moving objects?

The role of the satellite

Is time-bin encoding stable with moving objects?

YES, if the dynamical phase is taken into account

Measurement of interference

Time (s) 100 200 300 400 500 0 Radial velocity (km/s) -3 $|L\rangle$ $\varphi(t)$ $|\mathbf{S}\rangle - e^{i\varphi(t)}|\mathbf{L}\rangle$ $N_c(\varphi)$ PMT

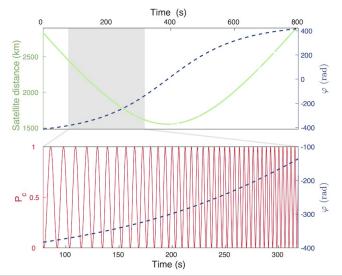
Self-stabilized interferometer

Phase shift due to satellite motion:

$$\varphi(t) \simeq 2v_r(t)\frac{2\pi}{\lambda}\Delta t$$

where

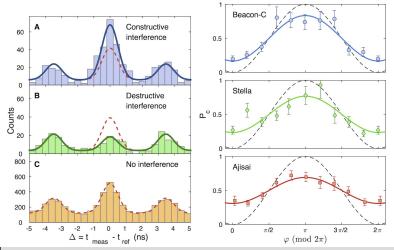
 $\Delta t \simeq 3.4 \ ns$


 $v_r(t)$ = radial velocity

 $N_c(t) \propto 1 - \mathcal{V}(t) \cos \varphi(t)$

Dynamical phase

Phase variation during the satellite passage


G. Vallone, et al., Quantum interference along satellite-ground channels, Phys. Rev. Lett. 116, 253601 (2016)

Experimental results

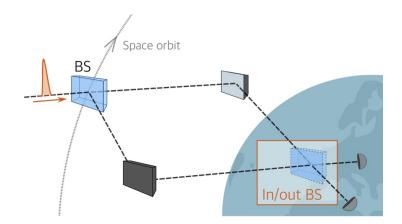
Interference pattern: visibility up to 67%

(can be improved be further stabilizing the interferometer)

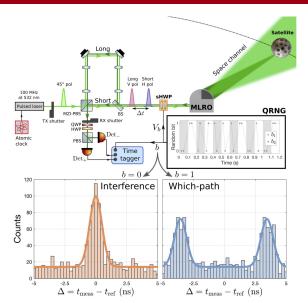
G. Vallone, et al., Quantum interference along satellite-ground channels, Phys. Rev. Lett. 116, 253601 (2016)

Summary

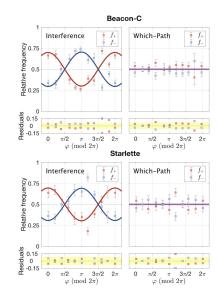
1 Introduction and motivations


2 Satellite Quantum Communications

- Polarization Encoding
- TIme-Bin Encoding
- Wheeler's delayed-choice


Wheeler's delayed choice in space

Wheeler's delayed choice in space


C. Agnesi

F. Vedovato, et al., Extending Wheeler's delayed-choice experiment to Space, Science Advances 3, e1701180 (2017)

Wheeler's delayed choice in space

Pag. 30 F. Vedovato, et al., Extending Wheeler's delayed-choice experiment to Space, Science Advances 3, e1701180 (2017)

Summary

- 1 Introduction and motivations
- 2 Satellite Quantum Communications
 - Polarization Encoding
 - Tlme-Bin Encoding
 - Wheeler's delayed-choice

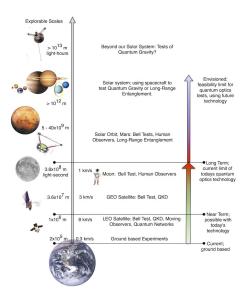
3 Perspectives and conlcusions

Long term opportunities

Unique opportunity of Quantum Physics in Space

Possibility of testing quantum physics in new environment and probing the laws of nature at very large distance

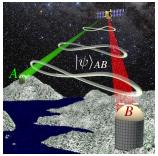
Long term opportunities


Unique opportunity of Quantum Physics in Space

Possibility of testing quantum physics in new environment and probing the laws of nature at very large distance

- Distribution of entanglement from Earth to Space
- Test of Bell's Inequalities with unprecedented conditions: LEO or GEO-orbit, moving terminals, gravitational field
- Teleportation from Earth to Space
- Quantum technologies in long distance applications
- Test of foundations of quantum field theory and general relativity

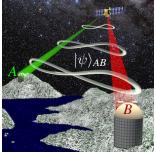
Different levels of space experiments



D. Rideou, et. al, Class. Quantum Grav. 29, 224011 (2012)

Entanglement distribution

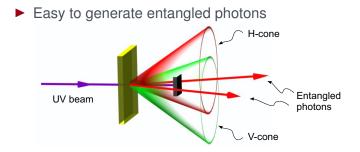
 $|\psi\rangle_{AB} \neq |\phi\rangle_A \otimes |\chi\rangle_B$



- Quantum Entanglement is, according to Erwin Schrödinger, the "characteristic trait of quantum mechanics"
- Entanglement is a unique resource for Quantum Information applications (teleportation, dense coding, etc..)

Entanglement distribution

- Quantum Entanglement is, according to Erwin Schrödinger, the "characteristic trait of quantum mechanics"
- Entanglement is a unique resource for Quantum Information applications (teleportation, dense coding, etc..)



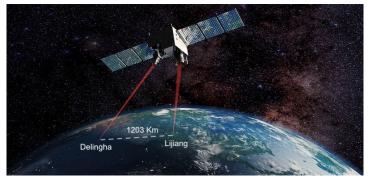
- Limits on the distance between two entangled systems?
- Is entanglement limited to certain mass and length scales or altered under specific gravitational circumstances?

Entanglement distribution

Photons are the ideal candidate for distributing entanglement

Photons can travel over long distances without decoherence

What is the largest distance of entanglement?


What is the largest distance of entanglement?

Infinite (in theory)....

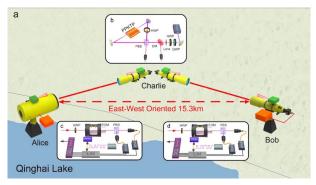
What is the largest distance of entanglement?

Infinite (in theory)....

- 2017: entanglement between two ground stations separated by 1203 kilometers
- ► violation of a Bell inequality by 2.37 ± 0.09 under strict Einstein locality conditions

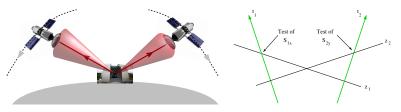
Pag. 36

J. Yin, et al., Satellite-based entanglement distribution over 1200 kilometers, Science 356, 1140 (2017)

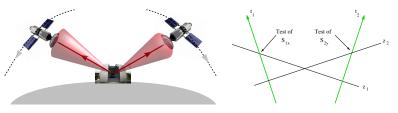

Bell's test

If a set of correlation do not satisfy the Bell's inequality $S \le 2$, the correlations cannot be explained by a local realistic theory.

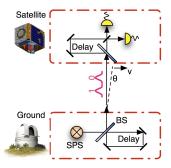
Bell's test


If a set of correlation do not satisfy the Bell's inequality $S \le 2$, the correlations cannot be explained by a local realistic theory.

Bell'inequality violated between fixed location: "spooky action at distance" at speed greater than 10⁴c.


Phys. Rev. Lett. 110, 260407 (2013)

Bell's test with detectors in relative motion


the two observers disagree on the relative time ordering of the measurement events

Bell's test with detectors in relative motion

- the two observers disagree on the relative time ordering of the measurement events
- The probabilities predicted by quantum theory do not depend on the time-ordering of spacelike events, so its predictions will not be changed.
- understanding the physical reality of quantum states and the non-local collapse of the wave functions.

COW experiment with photons


 $\lambda = 800 \text{ nm}$ $h \sim 400 \text{ km}$ $\ell = 6 \text{ km}$ $\Delta \phi = \frac{2\pi\ell}{\lambda} \frac{gh}{c^2} \sim 2 \text{ rad.}$

- First direct measurement of quantum interference due to curved spacetime
- Different from a test with massive particle: in the Newtonian limit no effect on a massless system would be expected.

Conclusions

Quantum Communication in SPACE

how to explore the limits of Quantum Mechanics and quantum correlations over very long distances

THANK YOU FOR YOUR ATTENTION!

QuantumFuture

Università degli Studi di Padova

The shift in the communication paradigm

email: vallone@dei.unipd.it

http://www.dei.unipd.it/~vallone

http://quantumfuture.dei.unipd.it/