Quantized Spheres

A quantization of Maxwell's wave

Béatrice Reuillard

Is quantum theory exact?
The quest for the spin-statistics connections violation and related items

Laboratori Nazionali di Frascati INFN
4 July 2018

QUANTIZED SPHERES

1/ Proposition of geometry in 2D for:
--- a monochromatic photon's wave
--- a full chromatic photon's wave
--- its spectrum and superposition states
2 / Proposition of geometry in 3D for :
--- photon's wave
--- Electromagnetic wave
3/ The photon's wave in perspective with the Schrödinger equation

4/ the collapse wave
5/ the interference pattern
6/ Correlation and entanglement
7/ Conclusion

Euler formula

$$
\mathrm{e}^{\mathrm{i} \varphi}=\cos (\varphi)+\mathrm{i} \sin (\varphi)
$$

$8 \mathrm{e}^{\mathrm{i} \theta}=\mathbf{2}$ groups of $4 \mathrm{e}^{\mathrm{i} \mathrm{\theta}}$ in opposite rotation

Real axes and imaginary axes of both groups of 4 double pairs
$4 \times e^{i \theta} \Omega$

$4 \times e^{i \theta} \Omega$

For the $2 \mathrm{e}^{\mathrm{i} \theta}$ pairs axis $\alpha \alpha^{\prime}$
For the $2 \mathrm{e}^{\mathrm{i} \mathrm{\theta} \theta}$ pairs axis $\beta \beta^{\prime}$

Different positions of the 8 imaginary numbers i with different value angle

Beyond 90° the 2 pairs of $e^{i \theta}$ of a same axis swap their poles

Creation of a wave

For the classical model

A shift added simultaneously to the rotation of the unique $e^{i \theta}$ creates a sinusoidal wave

For the $8 \mathrm{e}^{\mathrm{i} \mathrm{\theta}}$ Model

For the $8 \mathrm{e}^{\mathrm{i} \mathrm{\theta}}$ a shift is added in 8 different directions.
The 4 axes made by a pair of hypotenuses are increasing in opposite direction

Photon's wave propagation through duplication of the $\mathbf{8} \mathrm{e}^{\mathrm{i} \mathrm{\theta}}$ Matrix

due to 8 shifts in opposite directions per pair

1/ with space added, hypotenuse lengths increase and

For each different degree of their rotation the 8 Matrix $e^{i \theta}$ duplicate themselves in 8 new Son $e^{i \theta}{ }^{\text {' }}$

A set of 43 Son Circles

+ the first triangle Son Set made by the 44° Matrix

With the set of first 8 Son triangles $\mathrm{e}^{\mathrm{i}{ }^{\prime} \text { ' for each Son Circle }}$

The Son Circles do not create anything new; they only rotate. Their speed is largely superior to the Matrix' speed rotation : 360° for each degree of the Matrix

The duplication of each Matrix $\mathrm{e}^{\mathrm{i} \theta}$ is provoked by the stretching of their hypotenuse by eigenvalue $\boldsymbol{\lambda}$

In same direction, the vector \mathbf{x} (ei θ hypotenuse) is stretched for the eigenvalue $\boldsymbol{\lambda}$.

$\mathbf{x}=$ eigenvector for A
$\boldsymbol{\lambda}=$ the length of the radian for 1 degree of the Matrix Circle.
$1^{\circ} \theta$ angle $=1 \lambda$
$2^{\circ} \theta$ angle $=2 \lambda$
$3^{\circ} \theta$ angle $=3 \lambda$
$\mathrm{n}^{\circ} \theta$ angle $=\mathrm{n} \boldsymbol{\lambda}$
But each degree get its own hypotenuse direction

The Matrix rotation = 1 Son Circle per degree

The development of the photon's wave is done through cycles of 4 sections of 45 Son Circles

The $1^{\text {st }}$ section of the 45 Son Circles (0° to 45°)

β The $2^{\text {nd }}$ section of 45 Son Circles $\left(45^{\circ}\right.$ to $\left.90^{\circ}\right)$

Matrix geometry = long sine set

+ crossing directionality
above: 45°
here: 85°

The $\mathbf{3}^{\text {rd }}$ section of 45 Son Circles (90° to $\mathbf{1 3 5}^{\circ}$)

above: 90°
here 134°

The Matrix shapes the distance between its Son Circles
This distance is identical and unique to a Matrix
= its barcode
Each Matrix = its own barcode

a barcode $=$ an eigenvalue $\boldsymbol{\lambda}$
it determines wavelength and frequency

1 Cycle = 1 phase $=4$ half curves

Matrix and Son Circles

Creation of a new Matrix

The extension of 180λ for the $180^{\circ} \theta$ angle costs 1 quantum of energy to a Matrix

At the end of its first Son Cycle, a Matrix creates a duplicate of itself but with an energy lower about 1 quantum

The photon's wave with 2 Matrix Circles

+ all the first sets of $8 \mathrm{e}^{\mathrm{i} \mathrm{\theta} \theta}$ triangles in superposition for each Son Circle (on the right)

Son Cycles in superposition as created by many Matrices simultaneously

The new Matrix produces a Cycle of 179 Son Circles

This new Son Cycle belongs simultaneously to both Matrices (1 and 2)

At the end of its Cycle the $2^{\text {nd }}$ Matrix creates a $3^{\text {th }}$ Matrix, and so on...

A Son Cycle belongs at the same time either to the $1^{\text {st }}$, the $2^{\text {nd }}$, the $3^{\text {rd }}$ Matrices and so on...

For the photon's wave each Son Cycle is in superposed state
 = white color

The electromagnetic spectrum is the property of a photon's wave

The three-dimensional space

introduces the magnetic pole to the previous electric one by pairs of perpendicular circles in opposite rotation
Each circle is in double way rotation for their 2 sets of $4 \mathrm{e}^{\mathrm{i} \theta}$

in 3D = 1 Matrix Set $=3$ Matrix Circles

with the same geometry and Son Circles production

An equivalence for the change of sign in Maxwell's wave

The Fiber Sphere

1 Matrix Set = 1 orientation set = 1 Fiber a Fiber can get any possible orientation in space = the base

The model Fiber \mathbf{X} the base $\boldsymbol{=}$ the total space $\mathbf{=} \mathbf{a}$ Fiber Sphere

The model Matrix Fiber

The Fiber Sphere

A photon's wave 3D evolution

due to opposite forces added to each degree of a Matrix:

Matrix Circle creates concentric Son Circles Matrix Fiber creates concentric Son Fibers Matrix Sphere creates concentric Son Spheres

Here each Sphere = a few circles only to avoid saturation

A collective electromagnetic wave

=
aggregate sum of its units, photons' waves

a collective wave

Photon/wave A + Photon/wave B + Photon/wave C + n = an electromagnetic Wave

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} .
$$

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

$$
\vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t}
$$

In perspective with Schrödinger equation in 3D

Dependent of time
$H|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle$

1 Sphere = a dot of time

Multiple Son Spheres
= a continuum of time

But Photon has no mass and no Hamiltonian

$$
H \psi(x)=E \psi(x)
$$

Independent of time

In perspective with Schrödinger equation in 2D

Dependent of time
$H|\psi(t)\rangle=i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle$

Multiple Son Circles
= a continuum of time

But Photon has no mass and no Hamiltonian

1 unique Son Circle = a dot of time

$$
H \psi(x)=E \psi(x)
$$

Independent of the flow of time

Around this dot the Fiber is half virtual and the Sphere is virtual \rightarrow

The interference pattern

Geometry collective wave = Geometry Photon's wave => no difference if sent simultaneously or one by one

long sine set

long sine set

Short sine set

The photon's wave and the collective wave echo each other in regard to their actualized axis or dot photon

1 unit = 1 photon's wave

Collective wave

1 collective axis can be actualized by absorbing the energy of all its units.

When actualized, this axis cannot be actualized by any other photon.

Correlation and Entanglement

Correlation = the sharing of a common diagonal or axis of a collective wave

Entanglement $=$ the sharing of a common diagonal or axis of an individual wave by 2 photons. They rebuild a single Fiber and a single wave with 2 Focuses

To resume

--- Electromagnetic wave = aggregate sum of its units
--- 1 unit = 1 photon's wave
--- A corpuscle photon appears as an actualized dot, wrapped in its halfvirtual Fiber and virtual wave.
--- Actualization = a single beat of time
--- Its wave can starts over from the level of the selected Sphere.
--- Any Cycle of a chromatic photon's wave is in a superposed state and belongs to many different Matrix Fibers
--- The electromagnetic spectrum = photon's wave property in conclusion
The geometry of collective wave = Geometry of each of its units
This geometry potentially explains:
--- The speed invariance of light
--- The interference pattern
--- The entanglement
--- It gives a new perspective on the nature of matter particles
--- It potentially unifies Maxwell's wave and Einstein's quantum in a single frame and creates a bridge with Schrödinger equation
beatrice.reuillard@gmail.com

Thank you for your attention

