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Graphene 

 In recent times, a special attention has been paid to the possibility of a 

targeted modification of graphene with the help of purposely introduced 

impurities, formed defects, and atoms or chemical functional groups 

deposited on a surface. In this case, wide possibilities to change the physical 

properties of graphene are opened, due to the controlled introduction of 

impurities by the method of ion implantation. 

 The quasirelativistic spectrum of charge carriers determines the unique 

properties of graphene and, simultaneously, hampers the use of graphene in 

field-effect transistors due to the absence of a gap in its spectrum. It is 

known that the impurities can lead to the appearance of such a gap, 

whose width depends on the type of impurities and their concentration. 
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Graphene 

 The numerical calculations The recent investigations of the energy 

spectrum of graphene are based on the density functional theory. It is 

worth to note the advantages of this theory related to the self-consistent 

meta-generalized gradient approximation within the projector-augmented-

wave method [1] which is realized with softwares WASP and GAUSSIAN [1]. 

made within the method have demonstrated the appearance of a gap in 

the energy spectrum of graphene caused by the presence of an impurity. 

However, in order to clarify the nature of this effect, it is necessary to 

supplement the mentioned numerical calculations by analytic studies of 

the influence of impurities on the energy spectrum and properties of 

graphene. 4 



Energy spectrum 
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Energy spectrum 
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4. Pershoguba S.S., Skrypnyk Yu.V., Loktev V.M. Numerical simulation 

evidence of spectrum rearrangement in impure graphene, Phys. Rev. 

B.  V. 80, No.21. P. 214201 (2009). 

 
6 



Energy spectrum 

In work [5], the influence of the ordering of atoms on the energy 

spectrum and the electrical conductance of an alloy was studied 

analytically in the above-mentioned one-band model. It was found 

[5] that, at the long-range ordering of the alloy, a gap appears in the 

energy spectrum of electrons. Its width is equal to the difference of 

the scattering potentials of the components of the alloy.  

5. V. F. Los’, S. P. Repetsky. A theory for the electrical conductivity of 

an ordered alloy, J. Phys.: Condens. Matter. V. 6: P. 1707–1730 (1994). 
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Energy spectrum 

The Hamiltonian describing the one-electron states of graphene with  

 

substitutional impurity atoms can be presented in the form [5] 

1 

,

,

in in i n

in in i n in

H in v in in h i n 

 

   
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Energy spectrum of pure graphene 
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Energy spectrum 

𝐻 = 𝐻 + 𝑉  

The Hamiltonian of graphene can be presented in the form 

,

,

i in i n

in in i n in

H in in in h i n  

 

   

𝑉 =  𝑣 𝑖𝑛
𝑖𝑛

 𝑣 𝑖𝑛 =  𝑖𝑛 𝑣𝑖𝑛 − 𝜎𝑖  𝑖𝑛  
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Energy spectrum 

The retarded Green function of graphene, which is an analytic 

function of the complex energy z in the upper half-plane, reads  

 1)()(  HzzG

. 

The Green function satisfies the Dyson equation 

𝐺 = 𝐺 + 𝐺 𝑉 𝐺 

where 

𝐺 = 𝑧 − 𝐻 
−1
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Energy spectrum 

The T-matrix of the scattering by a random potential is determined by 

the relation [5] 

 

. 

and satisfies the equation 

𝑇 = 𝑉 + 𝑉 𝐺 𝑇 

𝐺 = 𝐺 + 𝐺 𝑇𝐺  
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Energy spectrum 

The T-matrix as an infinite series [5]: 

. 

Here,  

1 1 1 1 2 2

1 1 1 1 2 2

(2)  ,

( ) ( ) ( )

...
n i n i n i

n i n i n i

T t T


   

1 1 2 2 1 1 2 2 1 1 2 2 1 1
1

(2) ,n i n i n i n i n i n i n i
T I t Gt G t Gt I Gt



        

where 

1
ni

in int I v G v


   
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Energy spectrum 

We present the density of one-electron states of graphene in the form 

. 

   0 0

,

1 i i

i
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v

 



  


   



0 0 ' / 0

0

(2)  0 , (2) ,  0

0 ,0

2
( )  Im    

   

i i lj i

lj i

lj i lj lj i

i i

g G G t G P

G t T T G

   





      

     


    



where 
0 ( )ig  is conditional partial density of states, 𝜈 = 2 

is the number of sublattices of graphene. 14 



The parameter of atomic ordering 

In these formulas,  is the probability of the occupation of node 0i of the 

crystal lattice (𝑖 = 1, 2) by atoms of the sort  𝜆 = 𝐴, 𝐵: 

  

𝑃𝐵01 = 𝑦1 = 𝑦 +
1

2
𝜂, 𝑃𝐵02 = 𝑦2 = 𝑦 −

1

2
𝜂,  𝑃𝐴0𝑖 = 1 − 𝑃𝐵0𝑖,   

  

where  𝑦 is the concentration of impurity atoms, and 𝜂 is the parameter of 

atomic ordering. 

 

. 
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The electrical conductance of graphene 

Using the Kubo—Greenwood formula and neglecting the contribution of the 

processes of scattering by clusters composed of at least three atoms, we get 

the static electrical conductance of graphene in the form (T=0) [5]: 

. 
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𝜎𝛼,𝛽 = −
𝑒2ℏ

2𝜋Ω1
  

 
𝑣𝛽𝐾 𝑠𝑠′ 𝑣𝛼 , 𝜀

𝑖𝑠,𝑠′=𝑟,𝑎

+  𝑃𝜆0𝑖

 
𝐾 𝑠′𝑠 𝑣𝛽, 𝜀 𝑡𝑠

𝜆0𝑖 𝜀 𝐾 𝑠𝑠′ 𝑣𝛼 , 𝜀 𝑡𝑠′
𝜆0𝑖 𝜀

𝜆

+  𝑃𝜆′𝑙𝑗 𝜆0𝑖  𝐾 𝑠′𝑠 𝑣𝛽, 𝜀 𝑣𝛼𝐺 𝑠′ 𝜀 𝑇
𝑠′
2 𝜆0𝑖,𝜆′𝑙𝑗

𝜀 + 𝐾 𝑠′𝑠 𝑣𝛽, 𝜀 𝑣𝛼𝐺 𝑠′ 𝜀 𝑇
𝑠′
2 𝜆′𝑙𝑗,𝜆0𝑖

𝜀
𝑙𝑗≠0𝑖,

𝜆′

+ 𝐾 𝑠𝑠′ 𝑣𝛼 , 𝜀 𝑣𝛽𝐺 𝑠 𝜀 𝑇𝑠
2 𝜆0𝑖,𝜆′𝑙𝑗

𝜀 + 𝐾 𝑠𝑠′ 𝑣𝛼 , 𝜀 𝑣𝛽𝐺 𝑠 𝜀 𝑇𝑠
2 𝜆′𝑙𝑗,𝜆0𝑖

𝜀

+ 𝐾 𝑠′𝑠 𝑣𝛽, 𝜀  𝑡𝑠
𝜆′𝑙𝑗

𝜀 𝐾 𝑠𝑠′ 𝑣𝛼 , 𝜀 𝑡𝑠′
𝜆0𝑖 𝜀 + 𝑡𝑠

𝜆′𝑙𝑗
𝜀 𝐾 𝑠𝑠′ 𝑣𝛼 , 𝜀 𝑇

𝑠′
2 𝜆0𝑖,𝜆′𝑙𝑗

𝜀

+ 𝑇𝑠
2 𝜆′𝑙𝑗,𝜆0𝑖

𝜀 𝐾 𝑠𝑠′ 𝑣𝛼 , 𝜀 𝑡𝑠′
𝜆0𝑖 𝜀 + 𝑇𝑠

2 𝜆′𝑙𝑗,𝜆0𝑖
𝜀 𝐾 𝑠𝑠′ 𝑣𝛼 , 𝜀 𝑇

𝑠′
2 𝜆0𝑖,𝜆′𝑙𝑗

𝜀

+ 𝑇𝑠
2 𝜆′𝑙𝑗,𝜆0𝑖

𝜀 𝐾 𝑠𝑠′ 𝑣𝛼 , 𝜀 𝑇
𝑠′
2 𝜆′𝑙𝑗,𝜆0𝑖

𝜀   
  

0𝑖,0𝑖

 

𝜀=𝜇

2𝛿𝑠𝑠′ − 1 , 
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where 𝐾 𝑠𝑠′ 𝑣𝛼, 𝜀 = 𝐺 𝑠 𝜀 𝑣𝛼𝐺 𝑠′ 𝜀 , 

  

𝐺 𝑟 𝜀  and 𝐺 𝑎 𝜀  are the retarded and advanced Green functions,  

  

𝑡𝑠
𝜆′𝑙𝑗

𝜀  and 𝑇𝑠
2 𝜆′𝑙𝑗,𝜆0𝑖

𝜀  are scattering operators determined by the Green 

function 𝐺 𝑠 𝜀 , 𝛿𝑠𝑠′ is Kronecker’s symbol,  Ω1 = 𝜈Ω0 is the volume of an 

elementary cell of graphene, and Ω0 is the volume per atom. 
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The coherent potential  

The coherent potential is determined from the condition   .  

𝜎𝑖 = 𝑣𝑖 − 𝑣𝐴 − 𝜎𝑖 𝐺 0𝑖,0𝑖 𝜀 𝑣𝐵 − 𝜎𝑖 ;  𝑣𝑖 = 1 − 𝑦𝑖 𝑣𝐴 + 𝑦𝑖𝑣𝐵.  

 Setting 𝑣𝐴 = 0, we get 

𝑣𝑖 = 𝑦𝑖𝛿,            

where  

𝛿 = 𝑣𝐵 − 𝑣𝐴           

is the difference of the scattering potentials of components of graphene. 

 

1 1 0
n i

t 
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The coherent potential approximation  

𝑔 𝜀 = −
2

𝜋𝜈
𝐼𝑚  𝐺 0𝑖,0𝑖 𝜀 =

𝑖

−
2

𝜋𝜈𝑁
𝐼𝑚  𝐺 𝑖𝑖 𝒌, 𝜀 ,

𝑖,𝒌

 

  

𝜎𝛼𝛼 = −
𝑒2ℏ

2𝜋Ω1
 𝑣𝛼 𝐺 𝜀 − 𝐺 ∗ 𝜀 𝑣𝛼 𝐺 𝜀 − 𝐺 ∗ 𝜀

𝑖 0𝑖,0𝑖

= 

= −
𝑒2ℏ

2𝜋Ω1𝑁
 𝑣𝛼 𝒌 𝐺 𝒌, 𝜀 − 𝐺 ∗ 𝒌, 𝜀 𝑣𝛼 𝒌 𝐺 𝒌, 𝜀 − 𝐺 ∗ 𝒌, 𝜀

𝑖,𝒌 0𝑖,0𝑖

. 
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The Green function 

We calculated  ℎ𝑖𝑖′ 𝒌  in the approximation of nearest neighbors. 

The Fourier transform of the Green function in this approximation 

takes the form 

𝑮 𝟏𝟏 𝒌, 𝜺 =
𝜺−𝝈𝟐

𝑫 𝒌,𝜺
,  𝑮 𝟏𝟐 𝒌, 𝜺 =

𝒉𝟐𝟏 𝒌

𝑫 𝒌,𝜺
,   

𝑮 𝟐𝟏 𝒌, 𝜺 =
𝒉𝟏𝟐 𝒌

𝑫 𝒌,𝜺
,  𝑮 𝟐𝟐 𝒌, 𝜺 =

𝜺−𝝈𝟏

𝜺−𝝈𝟐
𝑮 𝟏𝟏 𝒌, 𝜺 , 

  

𝐷 𝒌, 𝜀 = 𝜀 − 𝜎1 𝜀 − 𝜎2 − ℎ12 𝒌 ℎ21 𝒌 .  21 



The Green function 

In the used model, the main contribution to the energy spectrum 

of electrons in the middle of the zone is given by the values of the 

wave vector 𝒌, which belong to the domains near Dirac points. 

The Brillouin zone contains two such domains, where 

ℎ12 𝒌 = ℎ21 𝒌 = ℏ𝑣𝐹𝑘, 

𝑣𝐹 =
3 𝛾1 𝑎0

2ℏ
 is the velocity of the electron on the Fermi level, and 

𝛾1 = 𝑝𝑝𝜋  and 𝑎0  are the hopping integral and the distance 

between the nearest neighbors, respectively. 
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The Green function 

 

  

𝐺 01,01 𝜀 = −
S1 𝜀 − 𝜎2

𝜋𝑑ℏ2𝑣𝐹
2 𝑙𝑛 1 −

𝑤2

𝜀 − 𝜎1 𝜀 − 𝜎2
, 

  

𝐺 02,02 𝜀 = −
S1 𝜀 − 𝜎1

𝜋𝑑ℏ2𝑣𝐹
2 𝑙𝑛 1 −

𝑤2

𝜀 − 𝜎1 𝜀 − 𝜎2
, 

where 𝑤 = 3 𝛾1  is the half-width of the energy band of pure graphene, and 

S1 = 3 3𝑎0
2 2  is the area of an elementary cell of graphene. 
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The energy gap  

Let us consider the influence of the ordering of atoms on the energy 

spectrum of electrons of graphene with a substitutional impurity in the limiting 

case of weak scattering where 𝛿 𝑤 ≪ 1. 

In this case, the solution of the system of equations is as follows: 

𝐺 01,01 𝜀 = −
S1 𝜀 − 𝜎2

′

𝜋𝑑ℏ2𝑣𝐹
2 𝑙𝑛 1 −

𝑤2

𝜀 − 𝜎1
′ 𝜀 − 𝜎2

′ , 

  

𝐺 02,02 𝜀 = −
S1 𝜀 − 𝜎1

′

𝜋𝑑ℏ2𝑣𝐹
2 𝑙𝑛 1 −

𝑤2

𝜀 − 𝜎1
′ 𝜀 − 𝜎2

′ , 
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The energy gap  

𝜎1
′ = 𝑦1𝛿 − 𝑦1 1 − 𝑦1 𝛿2

Ω1 𝜀 − 𝜎2
′

𝜋ℏ2𝑣𝐹
2 𝑙𝑛

𝑤2

𝜀 − 𝜎1
′ 𝜀 − 𝜎2

′ + 1, 

𝜎2
′ = 𝑦2𝛿 − 𝑦2 1 − 𝑦2 𝛿2

Ω1 𝜀 − 𝜎1
′

𝜋ℏ2𝑣𝐹
2 𝑙𝑛

𝑤2

𝜀 − 𝜎1
′ 𝜀 − 𝜎2

′ + 1. 

 

where sign 𝜀 − 𝜎1
′ = −sign 𝜀 − 𝜎2

′ ,  
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The energy gap  

and 

𝐺 01,01 𝜀 = −
S1 𝜀 − 𝜎2

′

𝜋𝑑ℏ2𝑣𝐹
2 𝑙𝑛

𝑤2

𝜀 − 𝜎1
′ 𝜀 − 𝜎2

′ − 1 − 𝑖
S1 𝜀 − 𝜎2

′

2𝑑ℏ2𝑣𝐹
2 , 

 

𝐺 02,02 𝜀 = −
S1 𝜀 − 𝜎1

′

𝜋𝑑ℏ2𝑣𝐹
2 𝑙𝑛

𝑤2

𝜀 − 𝜎1
′ 𝜀 − 𝜎2

′ − 1 − 𝑖
S1 𝜀 − 𝜎1

′

2𝑑ℏ2𝑣𝐹
2 , 
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The energy gap  

 𝜎1
′ = 𝑦1𝛿 − 𝑦1 1 − 𝑦1 𝛿2 Ω1 𝜀−𝜎2

′

𝜋ℏ2𝑣𝐹
2 𝑙𝑛

𝑤2

𝜀−𝜎1
′ 𝜀−𝜎2

′ − 1, 

 𝜎1
′′ = −𝑦1 1 − 𝑦1 𝛿2 Ω1 𝜀−𝜎2

′

2ℏ2𝑣𝐹
2 , 

 𝜎2
′ = 𝑦2𝛿 − 𝑦2 1 − 𝑦2 𝛿2 Ω1 𝜀−𝜎1

′

𝜋ℏ2𝑣𝐹
2 𝑙𝑛

𝑤2

𝜀−𝜎1
′ 𝜀−𝜎2

′ − 1, 

 𝜎2 
′′ = −𝑦2 1 − 𝑦2 𝛿2 Ω1 𝜀−𝜎1

′

2ℏ2𝑣𝐹
2 , 

 where sign 𝜀 − 𝜎1
′ = sign 𝜀 − 𝜎2

′ . 
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The energy gap  

The analysis of formula  shows that, at the ordering of impurity 

atoms, the gap 𝜂 𝛿  in width centered at the point 𝑦𝛿 arises in 

the energy spectrum of graphene. The energies 𝜀 corresponding 

to the energy gap edges are determined from the equations: 

𝜀 − 𝜎1
′ = 0,  𝜀 − 𝜎2

′ = 0. In the considered approximation of weak 

scattering 𝛿 𝑤 ≪ 1, the second terms in the formulas for 𝜎1
′ and 

𝜎2
′ can be neglected.  
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The energy gap  

Relation implies that the maximum value of the parameter of 

ordering equals  𝜂𝑚𝑎𝑥 = 2𝑦, 𝑦 ≤ 1 2  . For the complete 

ordering of impurity atoms, the energy gap width is equal to 

2𝑦 𝛿 , i.e., it is proportional to the concentration of an impurity 

𝑦  and to the modulus of the difference of the scattering 

potentials for components of graphene 𝛿. For 𝑦 = 1 2 , the gap 

width takes the maximum value equal to 𝛿 . For 𝛿 > 0 and 

𝛿 < 0, the energy gaps lie, respectively, to the right and to the 

left from the Dirac point on the energy scale. 29 



Influence of the ordering of impurities on 

the electrical conductance of graphene 

Formulas imply that, at the energies outside the region of the gap, the density 

of electron states reads  

𝑔 𝜀 =
Ω1 𝜀− 𝜎1

′+𝜎2 
′ 2 

𝜋ℏ2𝑣𝐹
2 . 

Let us study the electrical conductance of graphene in the case where the 

Fermi level is located outside the gap.   

𝜎𝛼𝛼 =
2𝑒2ℏ𝑣𝐹

2

𝜋2𝑎0
2𝑑 𝑦2 −

1
4

𝜂2 𝛿2
, 

where 𝑑 is the thickness of graphene. 30 



Energy spectrum of graphene with 

adsorbed potassium atoms 

We study the influence of adsorbed impurities, namely potassium atoms, 

on the energy spectrum of electrons in graphene [6]. The electron states 

of the system are described in the frame of the self-consistent multiband 

strong-coupling model. It is shown that, at the ordered arrangement of 

potassium atoms corresponding to a minimum of the free energy, the gap 

arises in the energy spectrum of graphene [7].  

The unit cell includes two carbon atoms and one potassium atom, the 

latter being placed on the graphene surface above a carbon atom at a 

distance of 0.286 nm, the energy gap is equal to ~ 0.25 eV.  
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Energy spectrum of graphene with 

adsorbed potassium atoms 
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Energy spectrum of graphene with 

adsorbed potassium atoms 
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