AUSTRIAN CADEMY OF

In-beam hyperfine spectroscopy of (anti)hydrogen

E. Widmann Stefan Meyer Institute, Vienna

Quantum Workshop Frascati 5 *Jul* 2018

Antiproton Decelerator & ELENA @ CERN

SMI - STEFAN MEYER INSTITUTE

AD: 5 MeV ELENA: 5 MeV \rightarrow 100 keV Pulsed beam, 3x10⁷ \bar{p} every ~ 100 s

AUSTRIAN CADEMY OF SCIENCES

ASACUSA collaboration

	(-) - F
A tomic	(2) p a
S pectroscopy	(3) H
A nd	-
C ollisions	I
U sing	University of Tokyo Y. Matsuda
S low	RIKEN: P. Dupré,
A ntiprotons	Y. Yamazaki
A A A A A A A A A A A A A A A A A A A	Hiroshima Universit
THIS TAS ARNOL	Univerita di Brescia
A BELLS DAMAGE	V. Mascagna, L. Vent
	Stefan Meyer Institu
	M. Fleck, A. Gligoro
	Simon, H. Spitzer, M
	LINESKAI
	CERN : H. Breuker, C

ASACUSA collaboration

SMI - STEFAN MEYER INSTITUTE

- ASACUSA Scientific projects
- (1) Spectroscopy of \overline{p} He
 - annihilation cross-section
 - production and spectroscopy
 - The Antihydrogen team
 - , Komaba: N. Kuroda, T. Matsudate, M. Tajima,
 - Y. Kanai, Y. Nagata, B. Radics, S. Ulmer,
 - ty: C. Kaga, H. Higaki
 - a & INFN Brescia: M. Leali, E. Lodi-Rizzini, turelli
 - It für Subatomare Physik: C. Amsler, S. Cuendis, ova, B. Kolbinger, V. Mäckel, A. Nanda, M.C. I. Strube, D. Than, E. Widmann, M. Wiesinger, J
 - . Malbrunot

RIKEN

HIROSHIMA UNIVERSI

Fundamental symmetries C, P, T

- •C: charge conjugation particle antiparticle
- P: parity: spatial mirror
- •T: time reversal
- CPT theorem: consequence of
 - Lorentz-invariance
 - local interactions
 - unitarity
 - Lüders, Pauli, Bell, Jost 1955
- all QFT of SM obey CPT
- not necessarily true for string theory

CPT \rightarrow particle/anitparticle: same masses, lifetimes, g-factors, |charge|,...

SMI - STEFAN MEYER INSTITUTE

4

CPT symmetry & cosmology

- Mathematical theorem, not valid e.g. in string theory, quantum gravity
- Possible hint: antimatter absence in the universe
 - Big Bang -> if CPT holds: equal amounts of matter/antimatter
 - Standard scenario for Baryogenesis (Sakharov 1967)
 - Baryon-number non-conservation
 - C and CP violation
 - Deviation from thermal equilibrium
- Currently known CPV not large enough
 - Other source of baryon asymmetry?
 - CPT non-conservation?

Antihydrogen spectroscopy

AUSTRIAN

ADEMY OF

In-beam HFS spectroscopy

- Goals
 - In-beam measurement of ground-state hyperfine structure of antihydrogen to ppm-level and below
 - Produce polarized slow (<100 K) Hbar beam

- Resolution: line width $\Delta v \sim 1/T$
 - 1000 m/s, 10 cm:

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

0.00

v (GHz)

- 7x10⁻⁶ for T = 50 K *cf part IV*
- > 100 \overline{H} /s in 1S state into 4π needed
- event rate 1 / minute: background from cosmics, annihilations upstreams

Ground-State Hyperfine Splitting of H/H

- spin-spin interaction positron antiproton
- Leading: Fermi contact term

 $\nu_F = \frac{16}{3} \left(\frac{M_p}{M_p + m_e}\right)^3 \frac{m_e}{M_p} \frac{\mu_p}{\mu_N} \alpha^2 c \ Ry.$

TRANSITION FREQUENCY (Hz)

Ground-State Hyperfine Splitting of H/H

- spin-spin interaction positron antiproton
- Leading: Fermi contact term

Finite size effect of proton/antiproton important below ~ 10 ppm

 $\nu_F = \frac{16}{3} \left(\frac{M_p}{M_p + m_e}\right)^3 \frac{m_e}{M_p} \frac{\mu_p}{\mu_N} \alpha^2 c \ Ry.$

BASE C. Smorra et al., *Nature*, 550(7676), 371–374.

Comparison of CPT tests I

•Mass & frequency

SMI - STEFAN MEYER INSTITUTE

Right edge: value Bar length: relative precision Left edge: absolute sensitivity Source: PDG

Comparison of CPT tests II

•Standard Model Extension SME

$$(i\gamma^{\mu}D_{\mu} - m_e - a^e_{\mu}\gamma^{\mu} - b^e_{\mu}\gamma_5\gamma^{\mu} - \frac{1}{2}H^e_{\mu\nu}\sigma^{\mu\nu} + ic^e_{\mu\nu}\gamma^{\mu}D^{\nu} + id^e_{\mu\nu}\gamma_5\gamma^{\mu}D^{\nu})\psi = 0.$$

D. Colladay and V.A. Kostelecky, PRD 55, 6760 (1997)

- Minimal SME: only HFS
- Non-minimal SME: also 1S-2S shows CPTV

CPT & LORENTZ

LORENTZ VIOLATION

E. Widmann LNF 2018

Comparison of CPT tests II

•Standard Model Extension SME

D. Colladay and V.A. Kostelecky, PRD 55, 6760 (1997)

Bluhm, R., Kostelecky, V., & Russell, N., PRL 82, 2254–2257 (1999).

E. Widmann LNF 2018

PDG, Kostelecky & Bluhm arXiv:0801.0287

AUSTRIAN ACADEMY OF SCIENCES

Antihydrogen beam status

- H
 production 1st time in 2010 in nested Penning trap
- Three body recombination expected to produce Rydberg states
- 1st observation of beam in field free region 2014
 - *n*≤43: 6 *H*/15 *min*
 - *n*≤29: 4 *H*/15 *min*

Results 2016

- Time distribution of \overline{H} within mixing cycle
 - At cavity position
- •Principal quantum number by field ionization
 - •0.5 m upstream of cavity
 - •n<14 significance 4.5σ
 - Using machine learning techniques
 - τ (n=14) ~ 50 µs

35

30

25

counts

15

10 .

3.0

2.5

un 2.0 Lo counts ber run 1.5 1.0

0.5

0.0

Antihydrogen detector fibre upgrade

ASACUSA collaboration

E. Widmann LNF 2018

SMI - STEFAN MEYER INSTITUTE

SIDE VIEW

SIDE VIEW

-100

New mixing schemes 2017~

•Slow extraction scheme

•Cross merging scheme

SMI - STEFAN MEYER INSTITUTE

17

Future directions

Increase production rate

• Positron temperature, density

FIG. 6. Dependence of ground-state antihydrogen atoms on positron temperature (a) and density (b) for various positron density and temperature values (respectively) after 1 ms of flight. The $\propto n_e^2 T_e^{-4.5}$ (solid line) and $\propto n_e^{1.3} T^{-2.0}$ (dashed line) scaling behaviors are indicated for reference.

Radics, B., Murtagh, D. J., Yamazaki, Y. & Robicheaux, Phys. Rev. A 90, 1-6 (2014).

- •Other improvements
- •Other geometries

 - •New ideas?

ASACUSA collaboration

E. Widmann LNF 2018

• Deexcite high-n Hbar • Starck mixing: simulations • THz radiation, MW: Chloé • Inhomogeneous CUSP field -> mixing in MUSASHI? • CUSP magnet makes inhomoeneous field at cavtiy

AUSTRIAN ACADEMY OF SCIENCES

Hydrogen beam measurments

- Polarized source of cold hydrogen
- Primary goal: verify spectroscopy method:
 - reproduce expected antihydrogen beam parameters
 - •Use same spectroscopy apparatus

Spin-flip resonator

- •*f* = challenge: homogeneity over $10x10x10cm^{3}@\lambda = 21cm$
- solution: strip line
- •1.420 GHz, $\Delta f = \text{few MHz}$,

transverse field: homogeneous

longitudinal field: cos(z)

• Full line shape: sum of simulated line shape for velocity distribution

SMI - STEFAN MEYER INSTITUTE

Line shape by optical Bloch equations for single velocity

AUSTRIAN ACADEMY OF SCIENCES

σ -transition in H using \overline{H} setup

Line width ~ 6 kHz: 4 ppm (v~900 m/s)

Error **2.7 ppb**: 18x improvement over *Kush, Phys. Rev. 100, 1188 (1955)* Deviation from maser ($\Delta f/f^{-10^{-12}}$) : **3.4 Hz** < 1 σ error Extrapolation to \overline{H} : **8000** atoms needed to achieve **1 ppm**

In-beam measurement of the hydrogen hyperfine splitting and prospects for antihydrogen spectroscopy

M. Diermaier¹, C.B. Jepsen^{2,†}, B. Kolbinger¹, C. Malbrunot^{1,2}, O. Massiczek¹, C. Sauerzopf¹, M.C. Simon¹, J. Zmeskal¹ & E. Widmann¹

AUSTRIAN ACADEMY OF SCIENCES

H-beam next steps and non-minimal SME

• π_1 transition

- Better field homogeneity
 - Inproved coils, shielding
- SME: effect only in π_1
- Non-minimal SME: direction dependent coefficients accessible by beam
- Conditions
 - Invert direction of B-field
 - Rotate B-field
 - Measure also σ_1 (no CPTV) as reference

$$\Delta(2\pi\nu_{\pi}) \equiv 2\pi\nu_{\pi}(\boldsymbol{B}) - 2\pi\nu_{\pi}(-\boldsymbol{B})$$
$$= -\frac{\cos\vartheta}{\sqrt{3\pi}} \sum_{q=0}^{2} (\alpha m_{\rm r})^{2q} (1 + 4\delta_{q2}) \sum_{w} \left[g_{w}_{(2q)10}^{\rm NR,Sun}(\boldsymbol{A})\right]_{w}$$

SMI - STEFAN MEYER INSTITUTE

Kostelecký, V. A., & Vargas, A. J. PRD, 92, 056002 (2015).

First π_1 measurements •New optics

SMI - STEFAN MEYER INSTITUTE

23

1st extrapolations

• Measurement campaign to start

From Rabi to Ramsey

- Amit Nanda (AVA Fellow)
- Boost precision of HFS in-beam measurement by introducing Ramsey's method Resolution:

Polarized Beam

SMI - STEFAN MEYER INSTITUTE

State Analysis & Detection

ÖAW

New RF structure: cavity vs. surface coils

AUSTRIAN

ACADEMY OF SCIENCES

AUSTRIAN ADEMY OF

Summary

- Precise measurement of the hyperfine structure of antihydrogen promises one of the most sensitive tests of CPT symmetry
 - First "beam" of \overline{H} observed in field-free region
 - 1st quantum state distribution at zero B-field
 - Next steps: optimize rate, check polarization, velocity
- •HFS measurement in H beam of 2.7 ppb achieved
 - Proof-of-principle for H measurement
 - Potential to measure non-minimal SME coefficients
 - Modifications to increase precision being studied
 - Other atoms: D looks feasible

SMI - STEFAN MEYER INSTITUTE

ERC Advanced Grant 291242 **HbarHFS** www.antimatter.at **PI FW**

FIIF Der Wissenschaftsfonds.

DOKTORATSKOLLEG PI

