No-hypersignaling principle

Michele Dall'Arno, Sarah Brandsen, AT, Francesco Buscemi, Vlatko Vedral

No-hypersignaling principle, Phys. Rev. Lett. 119, 020401 (2017)

Alessandro Tosini, QUIT group, Pavia University

2-5 July 2018 Laboratori Nazionali di Frascati INFN, Italy

Scenario

Scenario

Scenario

Constraints on spacelike correlations **no-signaling**

Constraints on spacelike correlations **no-signaling information causality**

Nature 46, 1101 (2009)

Outline

1. Operational notion of system dimension

set of all possible "input-output correlations" it allows

2. Separation principle: No-hypersignaling

describes how this dimension behaves under system composition in the quantum case

3. No-hypersignaling violation: superquantum toy model

Find a toy model that *outperforms QT in a communication game*

Hardy, L. quant-ph/0101012 (2001) CDP, Phys. Rev. A 84, 012311 (2011)

Hardy, L. quant-ph/0101012 (2001) CDP, Phys. Rev. A 84, 012311 (2011)

Systems: A

Hardy, L. quant-ph/0101012 (2001) CDP, Phys. Rev. A 84, 012311 (2011)

Systems:

preparation event state

А

transformation event maps

observation event measurement

Events:

Hardy, L. quant-ph/0101012 (2001) CDP, Phys. Rev. A 84, 012311 (2011)

Systems:

Events:

preparation event state

А

ρ<u>Α</u>

observation event measurement

 $\begin{array}{c|c} A & B & C \\ \hline \mathcal{C} & \mathcal{D} \\ \hline \mathcal{D} \\ \hline \mathcal{C} \\ \hline \end{array} := \begin{array}{c} A & \mathcal{D} \circ \mathcal{C} \\ \hline \mathcal{D} \circ \mathcal{C} \\ \hline \end{array} \end{array} \begin{array}{c} B \\ \hline \end{array}$

А

Hardy, L. quant-ph/0101012 (2001) CDP, Phys. Rev. A 84, 012311 (2011)

Systems: ____

Let *S* be a system of a generic probabilistic theory

How much information can practically be transmitted via S?

Let *S* be a system of a generic probabilistic theory How much information can practically be transmitted via *S*?

Let *S* be a system of a generic probabilistic theory How much information can practically be transmitted via *S*?

Set of all *m*-input *n*-output cond. prob. dis. via *S*

Let *S* be a system of a generic probabilistic theory How much information can practically be transmitted via *S*?

Set of all *m*-input *n*-output cond. prob. dis. via *S*

convex set

Recent results "gen. of Holevo bound"

P.E. Frenkel, M. Weiner, Commun. Math. Phys. 340, 563 (2015)

Let *S* be a system of a generic probabilistic theory How much information can practically be transmitted via *S*?

Set of all *m*-input *n*-output cond. prob. dis. via *S*

Let *S* be a system of a generic probabilistic theory How much information can practically be transmitted via *S*?

Set of all *m*-input *n*-output cond. prob. dis. via *S*

Let *S* be a system of a generic probabilistic theory How much information can practically be transmitted via *S*?

Set of all *m*-input *n*-output cond. prob. dis. via *S*

Intuitive: Any input-output correlation that can be obtained by transmitting a composite system should also be obtainable by independently transmitting its constituents.

Intuitive: Any input-output correlation that can be obtained by transmitting a composite system should also be obtainable by independently transmitting its constituents.

This is the quantum behaviour

Intuitive: Any input-output correlation that can be obtained by transmitting a composite system should also be obtainable by independently transmitting its constituents.

Formal: For any set of systems
$$\{S_k\}$$

with signalling dimensions $\kappa(S_k) \Rightarrow \kappa(\otimes_k S_k) \leq \prod_k \kappa(S_k)$

This is the quantum behaviour

Intuitive: Any input-output correlation that can be obtained by transmitting a composite system should also be obtainable by independently transmitting its constituents.

Formal: For any set of systems $\{S_k\}$ with signalling dimensions $\kappa(S_k) \Rightarrow \kappa(\otimes_k S_k) \leq \prod_k \kappa(S_k)$

This is the quantum behaviour

no-hypersignaling violation

A class of toy models

Elementary system

A class of toy models

Composite systems

A class of toy models

trade-off states/effects

Not all states and effects are compatible

A. J. Short, J. Barrett, J. Phys. 12, 033034 (2010)

Composite systems

Full classification

1. all the **8** non-local states only (factorized) effects

PR-Model: The well known PR-boxes

superquatum space-like corr.

- all the 8 non-local states only (factorized) effects
- **PR-Model:** The well known PR-boxes
- superquatum space-like corr.

only factorized states
 all the 8 non-local effects

HS-Model: "Dual of the PR-boxes"

- 1. all the **8** non-local states only (factorized) effects **PR-Model:** The well known PR-boxes **space-like corr.**
- only factorized states
 all the 8 non-local effects
- 3. 2 non-local states2 non-local states

HS-Model: "Dual of the PR-boxes"

Hybrid-Models

- 1. all the **8** non-local states only (factorized) effects
- only factorized states
 all the 8 non-local effects
- 3. 2 non-local states2 non-local states

PR-Model: The well known PR-boxes	superquatum space-like corr.
HS-Model: "Dual of the PR-boxes"	superquatum time-like corr.
Hybrid-Models	no-hypersignaling violation

No-hypersignaling violation

No-hypersignaling violation

Theorem:

If a theory violates no-hypersignaling then the violation occurs for POVMs with extremal effects

No-hypersignaling violation

Theorem:

If a theory violates no-hypersignaling then the violation occurs for POVMs with extremal effects

	Characterization of all extremal POVMS																								
\mathbf{M}	#	$\mathbf{E_0}$	$\mathbf{E_1}$	$\mathbf{E_2}$	$\mathbf{E_3}$	$\mathbf{E_4}$	$\mathbf{E_5}$	E ₆	$\mathbf{E_{7}}$	$\mathbf{E_8}$	E ₉	$\mathbf{E_{10}}$	\mathbf{E}_{11}	$\mathbf{E_{12}}$	E_{13}	$\mathbf{E_{14}}$	$\mathbf{E_{15}}$	$\mathbf{E_{16}}$	E_{17}	$ \mathbf{E_{18}} $	E ₁₉	E ₂₀	$\mathbf{E_{21}}$	E_{22}	E ₂₃
0	2																	$\frac{1}{2}$		$\frac{1}{2}$					
1	4	1/4		1/4						1/4		1/4													
2	4	1/4		1/4							1/4		1/4												
3	6	1/8	1/8									1/8	1/8							1/4					1/4
4	6	1/8					1/8					1/8					1/8					1/4			1/4
5	6	1/6										$^{1/6}$							$^{1/6}$	$^{1/6}$		$^{1/6}$			$^{1/6}$
6	7	1/8	1/8					1/8		1/8		1/8					1/8								1/4
7	8		1/12			$^{1}/_{12}$						1/6					1/12			$\frac{1}{6}$		1/6			$^{1}/_{6}$
8	8		1/12					1/6		$^{1}/_{12}$	1/12						1/6	1/6							1/6
9		1	1/12					1/12			1/12		1/6			1/12				$\frac{1}{6}$					1/6
	8	1/8					1/8						1/8			1/8				1/8	1/8	1/8			1/8
11	9	1/12	1/12			$^{1/12}$		1/12			1/12	1/12					1/6					1/6			1/6
12	9	1/16	1/16			1/16		1/8			1/8						3/16	1/8				1/8			1/8
13	9		$\frac{1}{12}$			$\frac{1}{12}$			1/12			1/12	1/12		$^{1/12}$	1/12				1/3					
14	9	$\frac{1}{10}$		1/10			1/10						$\frac{1}{5}$		1/10					1/10	1/10			1/10	1/10
\mathbf{M}	#	E ₀	$\mathbf{E_1}$	$\mathbf{E_2}$	$\mathbf{E_3}$	$\mathbf{E_4}$	$\mathbf{E_5}$	E ₆	$\mathbf{E_7}$	$\mathbf{E_8}$	E ₉	E ₁₀	$\mathbf{E_{11}}$	$\mathbf{E_{12}}$	E_{13}	E_{14}	$\mathbf{E_{15}}$	E ₁₆	$\mathbf{E_{17}}$	$\mathbf{E_{18}}$	E_{19}	E ₂₀	$\mathbf{E_{21}}$	$\mathbf{E_{22}}$	E ₂₃

No-hypersignaling violation

Outlook Is no-hypersignaling trivial?

NOTICE: violation of info-causality

 $\Rightarrow \exists$ entangles state

violation of no-hypersignaling

 $\Rightarrow \exists$ entangled measure

Outlook Is no-hypersignaling trivial?

NOTICE: violation of info-causality

 $\Rightarrow \exists$ entangles state

violation of no-hypersignaling

 $\Rightarrow \exists$ entangled measure

Outlook Is no-hypersignaling trivial?

G. M. D'Ariano, F. Manessi, P. Perinotti and AT, IJMPA (2014)

Theories compatible with elementary system

PR-Model only factorized effects

HS-Model only factorized states

Hybrid-Models 2 entangled states and 2 entangled effects

Theories compatible with elementary system

PR-Model only factorized effects

HS-Model only factorized states

Hybrid-Models 2 entangled states and 2 entangled effects

Thank you!