No-hypersignaling principle

Michele Dall'Arno, Sarah Brandsen, AT, Francesco Buscemi, Vlatko Vedral

No-hypersignaling principle, Phys. Rev. Lett. 119, 020401 (2017)

Alessandro Tosini, QUIT group, Pavia University

2-5 July 2018 Laboratori Nazionali di Frascati INFN, Italy

John
Templeton
Foundation

Scenario

Scenario

Characterise quantum space-like correlations (Bell-like)

Scenario

Characterise quantum space-like correlations (Bell-like)

Characterise quantum time-like correlations

All probabilistic theories

Constraints on spacelike
correlations
no-signaling

Constraints on spacelike
correlations
no-signaling
information causality
Nature 46, 1101 (2009)

All probabilistic theories

All probabilistic theories

In this talk:
superquantum time-like
correlations
superquantum space-like correlations

Outline

1. Operational notion of system dimension
set of all possible "input-output correlations" it allows
2. Separation principle: No-hypersignaling
describes how this dimension behaves under system composition in the quantum case
3. No-hypersignaling violation: superquantum toy model

Find a toy model that outperforms QT in a communication game

Operational probabilistic theories

Operational probabilistic theories

Hardy, L. quant-ph/0101012 (2001)
CDP, Phys. Rev. A 84, 012311 (2011)

Systems:

Operational probabilistic theories

Hardy, L. quant-ph/0101012 (2001)
CDP, Phys. Rev. A 84, 012311 (2011)

Operational probabilistic theories

Systems:

Events:

preparation event state	transformation event maps	observation event measurement
ρ	A	

sequential
Composition:

$$
\stackrel{\mathrm{A}}{\mathcal{C}} \sqrt{\mathrm{~B}} \mathscr{D}^{\mathrm{C}}:=\frac{\mathrm{A}}{\mathcal{D} \circ \mathcal{C}}
$$

parallel

Operational probabilistic theories

Systems:

Events:

preparation event state	transformation event maps	observation event measurement
A		

sequential
Composition:

$$
\stackrel{\mathrm{A}}{\mathcal{C}}{ }^{\mathrm{B}} \mathscr{D}^{\mathrm{C}}:=\frac{\mathrm{A}}{\mathcal{D} \circ \mathcal{C}}-
$$

parallel

Probabilistic structure:

Prob. theory

Operational notion of system dimension

Let S be a system of a generic probabilistic theory
How much information can practically be transmitted via S ?

Operational notion of system dimension

Let S be a system of a generic probabilistic theory
How much information can practically be transmitted via S ?

Operational notion of system dimension

Let S be a system of a generic probabilistic theory
How much information can practically be transmitted via S ?

Set of all m-input n-output cond. prob. dis. via S

convex set

$\mathcal{P}_{S}^{m \rightarrow n}$

Operational notion of system dimension

Let S be a system of a generic probabilistic theory
How much information can practically be transmitted via S ?

Set of all m-input n-output cond. prob. dis. via S
convex set

$$
\mathcal{P}_{S}^{m \rightarrow n}
$$

Recent results"gen. of Holevo bound"

Operational notion of system dimension

Let S be a system of a generic probabilistic theory
How much information can practically be transmitted via S ?

Set of all m-input n-output cond. prob. dis. via S

convex set

$\mathcal{P}_{S}^{m \rightarrow n}$

Operational notion of system dimension

Let S be a system of a generic probabilistic theory
How much information can practically be transmitted via S ?

Set of all m-input n-output cond. prob. dis. via S
convex set

$$
\mathcal{P}_{S}^{m \rightarrow n}
$$

DEFINITION. Signaling Dimension of system S:
the smallest integer d s.t.

Operational notion of system dimension

Let S be a system of a generic probabilistic theory
How much information can practically be transmitted via S ?

DEFINITION. Signaling Dimension of system S:
the smallest integer d s.t.

Signaling dimension of S denoted $\kappa(S)$

Separation principle: No-hypersignaling

Intuitive: Any input-output correlation that can be obtained by transmitting a composite system should also be obtainable by independently transmitting its constituents.

Separation principle: No-hypersignaling

Intuitive: Any input-output correlation that can be obtained by transmitting a composite system should also be obtainable by independently transmitting its constituents.

This is the quantum behaviour

Separation principle: No-hypersignaling

Intuitive: Any input-output correlation that can be obtained by transmitting a composite system should also be obtainable by independently transmitting its constituents.
$\begin{aligned} & \text { Formal: For any set of systems }\left\{S_{k}\right\} \\ & \qquad \text { with signalling dimensions } \kappa\left(S_{k}\right)\end{aligned} \Rightarrow \kappa\left(\otimes_{k} S_{k}\right) \leq \prod_{k} \kappa\left(S_{k}\right)$

This is the quantum behaviour

Separation principle: No-hypersignaling

Intuitive: Any input-output correlation that can be obtained by transmitting a composite system should also be obtainable by independently transmitting its constituents.
$\begin{aligned} & \text { Formal: For any set of systems }\left\{S_{k}\right\} \\ & \qquad \text { with signalling dimensions } \kappa\left(S_{k}\right)\end{aligned} \Rightarrow \kappa\left(\otimes_{k} S_{k}\right) \leq \prod_{k} \kappa\left(S_{k}\right)$

no-hypersignaling violation

This is the quantum behaviour

A class of toy models

Elementary system

A class of toy models

Elementary system

Composite systems

24 possible bipartite states and effects

$$
\text { states } \Omega_{k}
$$

effects E_{k}

A class of toy models

Elementary system

trade-off states/effects

Not all states and effects are compatible
A. J. Short, J. Barrett, J. Phys. 12, 033034 (2010)

Composite systems

24 possible bipartite states and effects
states Ω_{k}

16 factorized
$\omega_{i} \otimes \omega_{j}$

+ 8 non-local
effects E_{k}

16 factorized $e_{i} \otimes e_{j}$

+ 8 non-local

Full classification

Full classification

All the admissible choices

1. all the $\mathbf{8}$ non-local states only (factorized) effects

PR-Model: The well known PR-boxes

Full classification

All the admissible choices

1. all the $\mathbf{8}$ non-local states only (factorized) effects

PR-Model: The well known PR-boxes
superquatum
space-like corr.
2. only factorized states
all the $\mathbf{8}$ non-local effects

HS-Model: "Dual of the PR-boxes"

Full classification

All the admissible choices

1. all the $\mathbf{8}$ non-local states only (factorized) effects

PR-Model: The well known PR-boxes
superquatum
space-like corr.
2. only factorized states
all the $\mathbf{8}$ non-local effects
3. $\mathbf{2}$ non-local states

2 non-local states

HS-Model: "Dual of the PR-boxes"

Hybrid-Models

Full classification

All the admissible choices

1. all the $\mathbf{8}$ non-local states only (factorized) effects
2. only factorized states all the $\mathbf{8}$ non-local effects
3. $\mathbf{2}$ non-local states

2 non-local states

PR-Model: The well known PR-boxes
superquatum
space-like corr.

HS-Model: "Dual of the PR-boxes"
superquatum
time-like corr.

Hybrid-Models
no-hypersignaling violation

No-hypersignaling violation

No-hypersignaling violation

Theorem:

If a theory violates no-hypersignaling then the violation occurs for POVMs with extremal effects

No-hypersignaling violation

Theorem:

If a theory violates no-hypersignaling then the violation occurs for POVMs with extremal effects

Characterization of all extremal POVMS

M	\#	E_{0}	\mathbf{E}_{1}	\mathbf{E}_{2}	\mathbf{E}_{3}	\mathbf{E}_{4}	E_{5}	E_{6}	E_{7}	E_{8}	E_{9}	\mathbf{E}_{10}	\mathbf{E}_{11}	\mathbf{E}_{12}	\mathbf{E}_{13}	E_{14}	E_{15}	E_{16}	E_{17}	E_{18}	\mathbf{E}_{19}	\mathbf{E}_{20}	\mathbf{E}_{21}	\mathbf{E}_{22}	\mathbf{E}_{23}
0	2																	$\frac{1}{2}$		$\frac{1}{2}$					
1	4	1/4		1/4						$1 / 4$		1/4													
2	4	1/4		$1 / 4$							1/4		1/4												
3	6	$1 / 8$	1/8									1/8	1/8							1/4					1/4
4	6	$1 / 8$					$1 / 8$					1/8					1/8					1/4			1/4
5	6	$1 / 6$										$1 / 6$							1/6	$1 / 6$		$1 / 6$			1/6
6	7	1/8	$1 / 8$					1/8		$1 / 8$		$1 / 8$					1/8								1/4
			$1 / 12$			1/12						1/6					1/12			1/6		1/6			1/6
8			1/12					1/6		1/12	$1 / 12$						1/6	1/6							1/6
		$1 / 8$	1/12					1/12			1/12		$1 / 6$			1/12				$1 / 6$					1/6
		$1 / 8$					$1 / 8$						1/8			1/8				1/8	1/8	1/8			$1 / 8$
11	9	1/12	1/12			1/12		1/12			1/12	1/12					1/6					1/6			1/6
12	9	1/16	$1 / 16$			1/16		1/8			1/8						3/16	1/8				1/8			1/8
13	9	1/12	1/12			1/12			1/12			1/12	1/12		1/12	1/12				1/3					
14	9	1/10		1/10			1/10						$1 / 5$		1/10					1/10	1/10			1/10	1/10
M	\#	\mathbf{E}_{0}	\mathbf{E}_{1}	\mathbf{E}_{2}	\mathbf{E}_{3}	\mathbf{E}_{4}	\mathbf{E}_{5}	E_{6}	E_{7}	E_{8}	E9	\mathbf{E}_{10}	\mathbf{E}_{11}	E_{12}	\mathbf{E}_{13}	E_{14}	E_{15}	E_{16}	E_{17}	\mathbf{E}_{18}	\mathbf{E}_{19}	\mathbf{E}_{20}	\mathbf{E}_{21}	\mathbf{E}_{22}	\mathbf{E}_{23}

No-hypersignaling violation

Outlook is no-hypersignaling trivial?

NOTICE: violation of info-causality $\Rightarrow \exists$ entangles state

violation of no-hypersignaling
$\Rightarrow \exists$ entangled measure

Outlook is no-hypersignaling trivial?

NOTICE: violation of info-causality $\Rightarrow \exists$ entangles state
violation of no-hypersignaling
$\Rightarrow \exists$ entangled measure

Outlook is no-hypersignaling trivial?

NOTICE: violation of info-causality $\Rightarrow \exists$ entangles state

No-hypersignaling

PR model:

- info-causality
- no-hypersignaling (only separable measurements)

HS model:

- info-casuality (only separable states)
- no-hypersignaling
violation of no-hypersignaling $\kappa(S)$ signaling dimension $\kappa\left(S_{1} \otimes S_{2}\right)>\kappa\left(S_{1}\right) \kappa\left(S_{2}\right)$
violation of local tomography
$D(S)$ lineal dimension
$D\left(S_{1} S_{2}\right)>D\left(S_{1}\right) D\left(S_{2}\right)$

No-hypersignaling

violation of no-hypersignaling
$\kappa(S)$ signaling dimension
$\kappa\left(S_{1} \otimes S_{2}\right)>\kappa\left(S_{1}\right) \kappa\left(S_{2}\right)$
violation of local tomography
$D(S)$ lineal dimension
$D\left(S_{1} S_{2}\right)>D\left(S_{1}\right) D\left(S_{2}\right)$

Real quantum theory

- local tomography
L. Hardy and W. K. Wootters, FOOP 42, 45(2012)
- no-hypersignaling
it is a superselection of quantum theory
G. M. D’Ariano, F. Manessi, P. Perinotti and AT, IJMPA (2014)
violation of no-hypersignaling
$\kappa(S)$ signaling dimension
$\kappa\left(S_{1} \otimes S_{2}\right)>\kappa\left(S_{1}\right) \kappa\left(S_{2}\right)$
violation of local tomography
$D(S)$ lineal dimension
$D\left(S_{1} S_{2}\right)>D\left(S_{1}\right) D\left(S_{2}\right)$

No-hypersignaling

Real quantum theory

- local tomography
L. Hardy and W. K. Wootters, FOOP 42, 45(2012)
- no-hypersignaling
it is a superselection of quantum theory
G. M. D’Ariano, F. Manessi, P. Perinotti and AT, IJMPA (2014)
local tomography

Quantum theory

- HS model
- local tomography

- no-hypersignaling

Can a theory have both superquantum space-time and time-like correlations

Can a theory have both superquantum space-time and time-like correlations

Can a theory have both superquantum space-time and time-like correlations

Theories compatible with
elementary system

PR-Model only factorized effects
HS-Model only factorized states
Hybrid-Models 2 entangled states and 2 entangled effects

Can a theory have both superquantum space-time and time-like correlations

Theories compatible with
elementary system

PR-Model only factorized effects
HS-Model only factorized states
Hybrid-Models 2 entangled states and 2 entangled effects

