
quantum matter
as the source for classical gravity

André Großardt
Queen’s University Belfast

Frascati, 4 July 2018



quantum matter + gravity: what we know

Quantum matter in the gravitational field:

Colella, Overhauser, Werner (1975)
▶ external field (Earth)
▶ Newtonian gravity

iℏ ψ̇ =

(
− ℏ2

2m∇2 −mgx
)
ψ
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quantum matter as a source mass for gravity

What is the gravitational field of a superposition state?
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what is newtonian quantum gravity?

Do we need quantum gravity (i. e. unification of GR and QFT)?
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what is wrong with quantised gravity?

In analogy to electrodynamics:
The field sourced by a superposition state is itself in a superposition
⇒ superposition of two spacetimes

Problems:

▶ Nonrenormalisability of gravity as a field theory:
→ gravity must be different in some respect
→ there is no fully consistent theory of quantum gravity (yet?)

▶ How to identify points in different spacetimes?
→ quantum matter on curved spacetime is not a conceptually
consistent theory even in the Newtonian, low energy limit of the
double slit experiment
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semi-classical gravity

▶ Quantum fields living on spacetime and dynamics of spacetime
are two conceptually very different things

▶ Take (classical) GR seriously
(and leave it to experiments, at which point it might brake down):
spacetime is a 4-dim. manifold with quantum matter living on it

Rμν −
1
2Rgμν︸ ︷︷ ︸

spacetime (class.)

E
=

8π G
c4 T̂μν︸ ︷︷ ︸

matter (quantum)

▶ Quantisation of gravity: spacetime is “quantum” in some way
At low energies: gμν = ημν + hμν with “quantum field” ĥμν(x)

▶ Gravitisation of QM: replace T̂μν by a classical object, e. g. ⟨T̂μν⟩
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newtonian semi-classical gravity



the schrödinger-newton equation

Expectation value ⟨T̂μν⟩ is source of spacetime curvature.

In the weak-field nonrelativistic limit: ρ̂ = mψ̂†ψ̂

Rμν − 1
2Rgμν =

8π G
c4 ⟨ψ| T̂μν |ψ⟩ → ∇2V = 4π G ⟨ψ| ρ̂ |ψ⟩

Ĥint = − 1
2
∫
d3r hμν T̂μν → Ĥint =

∫
d3r V ρ̂

Results in the Schrödinger-Newton equation (here for one particle)

iℏ ψ̇(t, r) =
(
− ℏ2

2m∇2 − Gm2
∫
d3r′ |ψ(t, r

′)|2

|r− r′|

)
ψ(t, r)

⇒ Nonlinear Schrödinger equation
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two main concerns about schrödinger-newton equation

▶ An instantaneous collapse violates divergence freedom of
Einstein’s equations: ∇μGμν = 0

▶ With the standard collapse: faster-than-light signalling
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the locc approach

▶ Kafri, Taylor, Milburn [NJP 16 (2014) 065020]: gravity transmitted by
local operations and classical communication

ancilla

gravity gravity

particles interact with
ancilla (not each other)

ρ̇ = − i
ℏ
[H0, ρ]

− 2iGm2

ℏd3 [x1x2, ρ]

− Gm2

ℏd3
∑
j=1,2

[xj, [xj, ρ]]

▶ 100% compatible with standard Quantum Mechanics
(same interpretation/measurement problem)

▶ not motivated by General Relativity (or fundamental principles)
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the collapse model approach

▶ Tilloy, Diósi [PRD 93 (2016) 024026]: Gravity sourced by collapse events
▶ GRW: gravitational potential of particle i flashing at time tf and
position xf: V̂G ∼ −G

λ
∑

j
mimj

|xf−x̂j| δ(t− tf)

▶ CSL: total decoherence term λ
8 [m̂, [m̂, ρ]] + 1

2λ [Φ̂, [Φ̂, ρ]]
▶ Mathematically equivalent to feedback from entangled detectors

→ no faster-than-light signalling
→ ∇μGμν = 0??? (no relativistic version)

▶ Requires collapse models to be correct
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experimental signatures



testing the schrödinger-newton equation

▶ Inhibition of free expansion of wave packets
requires large masses (picograms), long evolution (minutes)
→ space tests

▶ Effects in optomechanical systems:

Yang et al. PRL 110 (2013) 170401
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testing locc gravity

▶ Decoherence in atom fountain experiments
▶ Newtonian gravitational potential must be accompanied by
minimal decoherence in order to avoid entanglement:

Γmin =
Gm1m2
ℏR3 Δx2

(here: homogeneous sphere of radius R in superposition by Δx)

Altamirano et al. arXiv:1612.07735 [quant-ph]
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testing collapse sourced gravity

▶ Evidence for collapse models would be strong argument
▶ Falsifiable by ruling out CSL collapse
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entanglement as an indicator for “quantumness”

Is there a single experiment to rule out all semi-classical models?
Idea: only quantised gravity can entangle distant quantum states

Bose et al. PRL 119 (2017) 240401 15



spin entanglement in the schrödinger-newton equation

At the lowest order, gravity yields a phase φ ∼ Gm1 m2 Δt
ℏ Δx

▶ Quantised gravity:

(| L⟩1+ | R⟩1)⊗ (| L⟩2+ | R⟩2)
→| L⟩1 | L⟩2+ | L⟩1 | R⟩2 + eiφ | R⟩1 | L⟩2+ | R⟩1 | R⟩2

Entanglement witness:
∣∣∣⟨σ(1)x ⊗ σ(2)z

⟩
+
⟨
σ(1)y ⊗ σ(2)y

⟩∣∣∣ = ∣∣1+ eiφ
∣∣

▶ Schrödinger-Newton equation:

(| L⟩1+ | R⟩1)⊗ (| L⟩1+ | R⟩1)
→ eiφ/2 | L⟩1 | L⟩2+ | L⟩1 | R⟩2 + eiφ | R⟩1 | L⟩2 + eiφ/2 | R⟩1 | R⟩2

= (| L⟩1 + eiφ/2 | R⟩1)⊗ (eiφ/2 | L⟩2+ | R⟩2)

Entanglement witness:
∣∣∣⟨σ(1)x ⊗ σ(2)z

⟩
+
⟨
σ(1)y ⊗ σ(2)y

⟩∣∣∣ = 1
2
∣∣1+ eiφ

∣∣
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conclusion

▶ A coupling of quantum matter to classical gravity is viable in
multiple ways

▶ Experimental tests are usually model specific
▶ Entanglement generation through gravity might be a universal
way to test whether or not gravity is quantised, however open
questions remain:
∙ does the Schrödinger-Newton equation leave separable states
separable in any situation?

∙ is this correct for any semi-classical coupling of space-time curvature
to quantum matter?
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Thank You!

Questions?

Layout based on by M. Vogelgesangcba 18



additional slides



many particles to centre of mass

Realistic systems for testing SN are not single particles:

iℏΨ̇N(rN) =
[
−

N∑
i=1

ℏ2

2mi
Δri + Vlinear(rN) + VG[ΨN(rN)]

]
ΨN(rN)

VG[ΨN(rN)] = −G
N∑
i=1

N∑
j=1

mimj

∫ ∣∣∣ΨN(r′N)∣∣∣2∣∣∣ri − r′j
∣∣∣ dV′N

Centre of mass equation (approx.), separation ΨN = ψ⊗ χN−1:

iℏ ψ̇(t, r) =
(

− ℏ2

2M∇2+Vext.lin. − G
∫
d3r′

∣∣ψ(t, r′)∣∣2 Iρ(r− r′)
)
ψ(t, r)

Iρ(d) =
∫
d3xd3yρ(x)ρ(y− d)

|x− y| (where ρ is given by
∣∣χN−1

∣∣2)
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mass density dependence of sn

For a homogeneous sphere:

Iρ(d) = −M
2

R ×

{
6
5 − 2

( d
2R
)2

+ 3
2
( d
2R
)3 − 1

5
( d
2R
)5

(d ≤ 2R)
R
d (d > 2R)

▶ different behaviour for narrow and wide wave functions
▶ enhancement of O(103) for narrow wf. in crystalline matter
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inhibition of free expansion, scaling law

In the wide wave function limit: one-particle SN equation
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ρ = 4π r2 |ψ|2 for masses of 7× 109 u and 1010 u

▶ For a mass of ∼ 1010 u and a wave packet size of about 500nm a
significant deviation is visible after several hours

▶ Scaling law: with ψ(t, x) for mass m, a solution for mass μm is
obtained as μ9/2ψ(μ5t,μ3x) ⇒ e. g. 1011 u at 0.5 nm would
show an effect in less than a second but must remain in wide
wave function regime (Os at 1010 u has 100nm diameter)
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realistic model for time evolution

Assumption: a Gaussian wave packet stays approximately Gaussian

The free spreading of a Gaussian wave packet and spherical particle
can be approximated by a third order ODE for the width u(t) = ⟨r2⟩(t):

...u(t) = −3ω2
SN f(u(t)) u̇(t)

with ωSN =
√
Gm/R3 ∼

√
Gρ, initial conditions

u(0) = u0 , u̇(0) = 0 , ü(0) = 9ℏ2
2m2 u0

−ω2
SN g(u0)u0 ,

and the functions (with u in units of R)

f(u) = erf
(√

3
u

)
+

√
u
3π

(
u− 7

2 − 324− 162u− 35u4 + 70u5
70u4 e−3/u

)

g(u) = erf
(√

3
u

)
+

√
u
3π

(
2
3u− 3+ 486+ 105u3 − 70u4

105u3 e−3/u
)
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short time expansion

u(t) ≈ u0 +
1
2 ü(0) t

2

▶ exact without self-gravity term
▶ deviates from usual evolution by dependence on g(u0) in

ü(0) = 9ℏ2
2m2 u0

−ω2
SN g(u0)u0

▶ stationarity condition ü(0) = 0 yields (pessimistic) estimate for
the scales where self-gravity becomes important

▶ Assume osmium particle initially trapped with ω0
⇒ characteristic time scale τ = ω−1

0 , u0 = 3ℏ τ/m
▶ ü(0) = 0 determines characteristic (m, τ) graph
▶ limit g(u) → 1 for u→ 0 yields τ(m) = const. for large m
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inhibition of free expansion

For narrower wave functions (here O(10 nm) ≲ particle size):
approximate ODE (assume: Gaussian wave packet remains Gaussian)

d3

dt3 ⟨r
2⟩ = −3ω2

SN f(⟨r2⟩)
d
dt ⟨r

2⟩
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rel. deviation from standard Schrödinger evolution for m = 109 u and 1010 u
⇒ 1% deviation after 200 s → maybe in space?
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evolution time and mass requirements

green line intuitively: free wave function would have increased by
25% but maintains its width due to self-gravity 26



localised states in crystalline matter

d

R

σ

a

ρnucl

ρ

▶ the relevant radius is σ
(localisation of the nuclei)

▶ effective mass density ρnucl
∼ 103ρ

▶ ωSN =
√

Gmatom
σ3 ∼

√
Gρnucl

∼ 1 Hz for osmium

Need ground state cooling for:
mass ∼ 1015 u (μm sized) particle

trapped at O(10Hz)
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material choices

ωSN =

√
Gmatom
σ3

Material matom / u ρ / g cm-3 σ / pm ωSN / s-1

Silicon 28.086 2.329 6.96 0.096
Tungsten 183.84 19.30 3.48 0.695
Osmium 190.23 22.57 2.77 0.996
Gold 196.97 19.32 4.66 0.464

Note: ωSN enters squared in the evolution equation
⇒ osmium two orders of magnitude better than silicon
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experimental setup (proposal)
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