

Next obvious question

Where does the v mass come from?

—> it is clear that experimental effort (and possibly prizes...) has to be now directed in this direction!

One remarkable possibility:

see-saw mechanism (type I) with one/two/three massive and sterile Majorana-type neutrinos

$$A = \begin{pmatrix} 0 & M \\ M & B \end{pmatrix},$$

where B is taken to be much larger than M.

It has two very disproportionate eigenvalues:

$$\lambda_{\pm}=rac{B\pm\sqrt{B^2+4M^2}}{2}.$$

The larger eigenvalue, λ_+ , is approximately equal to *B*, while the smaller eigenvalue is approximately equal to

$$\lambda_{-}pprox -rac{M^2}{B}.$$

Thus, |M| is the geometric mean of λ_+ and $-\lambda_-$, since the determinant $\lambda_+\lambda_- = -M^2$.

If one of the eigenvalues goes up, the other goes down, and vice versa. This is the point of the name "seesaw" of the mechanism.

A matrice di massa dei neutrini, B componente di Majorana (O GUT), M componente di Dirac O(v.e.v. EW)

-> λ- porta alla massa dei neutrini leggeri O(eV)

See-saw generation of neutrino masses

Most general renormalisable Lagrangian of SM particles (+3 singlets wrt SM gauge group):

$$L_{singlet} = i\bar{N}_I\partial_\mu\gamma^\mu N_I - Y_{I\alpha}\bar{N}_I^c\tilde{H}L_\alpha - M_I\bar{N}_I^cN_I + h.c$$

Yukawa term: mixing of N_I with active neutrinos to explain oscillations

Majorana term which carries no gauge charge

The scale of the active neutrino mass is given by the see-saw formula: $m_{\nu} \sim \frac{m_D^2}{M} = M^2/B$ where $m_D \sim Y_{I\alpha}v$ - typical value of the Dirac mass term

 $v\sim 246~{\rm GeV}$

Example:

For M ~ 1 GeV and m_{ν} ~ 0.05 eV it results in m_{D} ~ 10 keV and Yukawa coupling ~ 10⁻⁷

Which observable effects allow to test such models?

- M >> Λ_{EW}: "Non-unitarity effects" (indirect tests)
- M ~ Λ_{EW}: On-shell heavy neutrino effects (direct tests at colliders, various promising signature processes)
- M < m_w: Very sensitive searches via "displaced vertices" at colliders

The vMSM and its fellows

g

V

3 Majorana (HNL) partners of ordinary v, with M_N<M_W

Three Generations

In a peculiar param masscharge degenerate in mase decoupled with m=

neutrino masses (s lepto-genesis) and of the theory, DM r ν MSM, by e.g. the c **Higgs portal**)

of Matter (Fermions) spin 1/2 Ш Ш 2.4 MeV 1.27 GeV 173.2 GeV 0 2/3 2/3 С U up charm top gluon 104 MeV 4.8 MeV 4.2 GeV Quarks d b **-¹∕**₃ S 0 down strange bottom photon 91.2 GeV በ spin $^{\circ}V$ $^{\circ}V$ (Forces) weak force 0.511 MeV 1.777 GeV 80.4 GeV 105.7 MeV -eptons Bosons ¹ e μ muon τ electron tau

No hierarchy problem (if also the inflaton or the NP yielding N₁ has mass below EW scale)

vMSM: T.Asaka, M.Shaposhnikov PL **B620** (2005) 17 M.Shaposhnikov Nucl. Phys. B763 (2007) 49

Naturalness of the above parameter space comes from a U(1) lepton symmetry, broken at 10⁻⁴ level.

+ all other, less noble but less constrained, variations of this theory

inverted mass hyerarchy

Interaction with the Higgs v.e.v. ->mixing with active neutrinos with U²

in the vMSM strong limitations in the parameter space (U²,m)

a lot of HNL searches in the past but, for m>m_K, with a sensitivity not of cosmological interest

ex. meson decays ->

N_{2,3} decays

Very weak HNL-active v —>at masses below few GeV, $N_{2,3}$ have very long life-time

```
decay paths of O(km)!: for U_{\mu}^{2}=10^{-7}, T<sub>N</sub> =1.8x10<sup>-5</sup>s
```


Various decay modes : the BR's depend on flavor mixing

The probability that $N_{2,3}$ decays within the fiducial volume of the experiment $\propto U_{\mu}^2$

-> number of events $\ \simeq U_{\mu}{}^4$ if N detected

Decay mode	Branching ratio		
N _{2,3} → μ⁄e + π	0.1 - 50 %		
$N_{2,3} \rightarrow \mu^{-}/e^{-} + \rho^{+}$	0.5 - 20 %		
$N_{23} \rightarrow v + \mu + e$	1 - 10 %		

Probing hidden sectors with very small couplings to SM

High fluxes

K+

Displaced decays

Searches with proton beams

- masses up to 0.45 GeV probed through pion and kaon decays
 - → PS191 Phys. Lett. B 203, 332 (1988)
 - NA62 in beam mode (production)
- masses up to 2 GeV probed through charmed meson decays
 - → CHARM Phys. Lett. B 166, 473 (1986)
 - → NuTeV Phys. Rev. Lett. 83, 4943 (1999)
 - NA62 in dump mode (production and decay)

 \rightarrow

PROTON BEAM DUMPS: THE PAST

Experiment	Location	approx. Date	Amount of Beam (10 ²⁰ POT)	Beam Energy (GeV)	Target Mat.	Ref.
CHARM	CERN	1983	0.024	400	Cu	[16]
PS191	CERN	1984	0.086	19.2	Be	[17, 18]
E605	Fermilab	1986	4×10^{-7}	800	Cu	[19]
SINDRUM	SIN, PSI					
ν -Cal I	IHEP Serpukhov	1989	0.0171	70	Fe	[20-22]
LSND	LANSCE	1994-1995	813	0.798 H20 W,	H20, Cu	[23]
		1996-1998	882		W,Cu	
NOMAD	CERN	1996-1998	0.41	450	Be	[18, 24]
WASA	COSY	2010		0.550	LH2	[25]
HADES	GSI	2011	0.32 pA*t	3.5	LH2,No,Ar+KCI	[26]
		2003-2008	6.27		Be	[27]
MiniBooNE	Fermilab	2005-2012	11.3	8.9	Be	[28]
		2013-2014	1.86		Steel	[29]

+ DONUT

FNAL

3.6x10⁻³

W

800

PROTON BEAM DUMP: (hopefully) THE FUTURE!

400GeV p, 2x10²⁰pot/5 year (already reached yearly rate with LNGS)

Search for Hidden Particles (SHiP)

- Proposed facility: 400 GeV protons from the CERN SPS
 - New beam line and target complex
 - Aim at 2.10^{20} pot in 5 years ($\rightarrow \sim 5.10^{16}$ vs from charm decays)
- Collaboration of 250 members from 46 institutes
- Technical proposal arXiv:1504.04956 (2015) Physics paper Rep. Prog. Phys. 79 (2016)

SHiP – detector

 \mathbf{x}

Designed for large acceptance and zero backgrounds

N at CERN in a 10-year timesecale ... and beyond Fig from arXiv:1704.08635

HNL mass (GeV)

HiÌ

renormalizable couplings, i.e. NOT suppressed!

+other of higher dimensions (e.g. axion-like portal)

(stolen from A.Fradette, New Physics at the Intensity Frontier - Victoria, BC,Sept 2014)

Dark Higgs

