WIMP Direct Search Challenges

- WIMP nuclear recoil signal is:
 - Low rate (<~events/tonne/year)
 - Small energy (1-100 keV actual: observed is less)
- Detection technique must be:
 - Low background
 - Gamma, beta: from U/Th/Co/Pb/etc radio-impurities
 - Neutron: from U/Th radio-impurities and c.r. µ spallation
 - Radon daughters: environment and emanation
 - Low energy threshold
 - To minimise form factor, maximise energy spectrum
 - Discriminating & Position sensitivity
 - Discriminate between WIMPs/n and $\gamma/\beta/\alpha$
 - Background rejection, neutron multiplicity calibrations
 - Directionality
 - Large mass

Effect of over-burden

- Deep underground facilities provide significant rock overburden and commensurate reduction in c.r. flux, and c.r.-spallation induced products (neutrons)
- Muons can be veto'd in anti-coincidence shield; secondary products may be an issue
- Cosmogenics may require underground material production or purification
 - May also contribute to b/grounds (e.g. ¹¹C)
- Muon flux depends on
 - overburden
 - overburden profile
 - seasonal effects

∆ R_µ/<R_µ>(%

Adamson 2010

Nigel J.T. Smith

17th TAUP Workshop, Sudbury

24th July, 2017

Neutron backgrounds

- Neutron production from
 - c.r. muon spallation
 - U/Th fission
 - α , n reactions
 - radon reactions

- Spectrum in laboratory depends on local geology (rock composition)
 - both for fast and thermal neutrons
 - U/Th + moderators
 - muons + moderators
 - small levels of high neutron crosssection contaminants make a big difference

Persiani / Selvi

γ-ray Backgrounds

- Reduction in γ-ray background at higher energies from c.r. and neutron reduction
 - important for nuclear astrophysics dedicated beam experiments, and some $0\nu\beta\beta$ isotopes

- Below 3.5MeV dependent on local geology and rock material
 - Boulby (red)
 - Gran Sasso (blue)
 - surface (black)

Nigel J.T. Smith

Underground Facilities

Intrinsic Backgrounds

- Removal of external backgrounds by depth and shielding
- Challenge is now control of internal backgrounds:

Nigel J.T. Smith

17th TAUP Workshop, Sudbury

24th July, 2017

Response to elastic scattering

- Principle technique for WIMPs and neutrino detection is coherent elastic scattering off target nucleii
- For WIMP detection
 - low threshold required in xenon to maximise signal
 - higher threshold in argon for discrimination

Chepel/Araújo

Following Araujo

Following Araujo

Following Araujo

Strong and steady progress made

After Gaitskell

Particles from the HALO

DM particles (whatever they are) interact in detectors producing low energy events (keV) with two characteristic **signatures**:

Annual Modulation

$$R(t) = Background + S_0 + S_m \cos\left(\frac{2\pi}{T}(t - t_0)\right)$$

Directionality

DAMA-LIBRA

DAMA

pioneering experiment with ultra-low background 1996-2002

LIBRA

25 Nal(Tl) ~1 kg ultrapure crystals

(residual contam. ~10⁻¹² g/g in Th/U/K)

- two low radioactivity PM for each crystal
- heavy shielded: Cu+Pb+Cd+polyethylene/paraffin
- three level anti Rn system
- PHASE II (PM upgrade) running

Dama/Libra – annual modulation

ANY EVENT in 2-6 keV: Electron Recoils & Nuclear Recoils

Dama/Libra – cross checks

PHASE I: results pubblished

several cross checks:

- 1) reliability of the result
- 2) alternative sources of modulation done

Single-hit residuals vs. multi hit residuals

S_m =-(0.0005±0.0004) cpd/kg/keV

- No modulation above 6 keV
- No modulation in the whole energy spectrum
- No modulation in the 2-6 keV multiple-hit events

PHASE II ongoing

all PMTs replaced with new ones of higher Q.E. (2010)

Previous PMTs: 5.5-7.5 ph.e./keV New PMTs: up to 10 ph.e./keV

PHASE III possible

How can this result be confirmed ?

identical technique → **SABRE (ANAIS, IDM-Ice)**

scrutinize DAMA signal: identical technique + improved set-up

Nal(TI) scintillating crystals:

NFN

- very low background via crystal purity
- active rejection through liquid scintillator veto

twin detectors:

- underground at LNGS
- Stawell (Australia) gold mine \rightarrow Seasons have opposite phases !!

key issue: control of ⁴⁰K

 40 K \rightarrow (EC 10%) \rightarrow 1460 keV+ 3 keV (X/Auger)

2kg crystal grown from SA Astrograde powder ³⁹K in crystal: 11-15 ppb ⁴⁰K in crystal → at DAMA level

7

SABRE – Prove of Principle (PoP)

PoP under construction at LNGS

SABRE – Sensitivity

How can this result be confirmed ?

identical technique → **SABRE (ANAIS, IDM-Ice)**

similar approach (ER+NR) → CoGENT - Xenon – XMASS

assuming NR interaction → **many other**

Maura Pavan – INFN Commissione II – April 2017

interaction and detector

Cryogenic Solid State detectors

CDMS II (Soudan)	EDELWEISS (Modane)	CRESST II (Gran Sasso)
Phonon	Bolometríc	Phonon
Photolithography W-TES sensors w/Al fins SQUID readout	(NTD-Ge) sensor FET	Superconducting thin W-film TES SQUID readout

Ionízatíon

Apply voltage across crystal Read out drifted charge from FET

Scintillation

light from CaWO₄

Maura Pavan – INFN Commissione II – April 2017

35

SuperCDMS & CDMSLite

- 2 km w. e. Soudan
- CDMS II infrastructure
- 0.6 kg Ge x 15 detectors
- ionization + phonon (Luke-Neganov)
- iZIP fiducial volume definition

SuperCDMS

- 577 kg y (7 detectors)
- 11 events survive cuts

(compatible with bkg)

CDMSlite

10.1 day x 1 detector

specially operated in high V Luke-Neganov to reach a **0.8 keV**_{NR}

move to SNOLAB + operate iZIP and HV (no ionization)

CRESST

Cryogenic Rare Event Search with Superconducting Thermometers

Scintillating CaWO₄ crystals as target

Target crystals operated as cryogenic calorimeters (~15mK)

Separate cryogenic light detector to

CRESST II- phase 1 (2014) re-analyzed no more signal

CRESST II- phase 2 (2015) LISA 300 g → 0.307 keV NR threshold

- 300g crystal
- 307eV nuclear recoil threshold
- world-leading result below 1.7GeV/c²
- first experiment to explore masses in the sub-GeV/c² range

Searching for light dark matter requires a low threshold!

Change of strategy to improve sensitivity to low masses

Detector layout optimized for low-mass dark matter

- clean self-grown crystals
- small crystal of (20×20×10)mm³ (25g)
- 100eV threshold design goal
- small light detector (20×20)mm²

6 modules with threshold <100eV running at LNGS

Threshold design goal exceeded

CRESST III – data taking ongoing since Summer

XENON1T

First science run: 34.2 live-days

- Largest ever Xe fiducial mass: 1042 kg
- Lowest ever low-E ER bg.: (0.193 ± 0.025) mDRU
- Most stringent SI-WIMP limit

Still running, >100 live-days taken

More information:

- Manfred Lindner's talk (Thursday)
- Paper preprint: arxiv:1705.06655
- <u>http://xenon1t.org/</u>
- <u>https://twitter.com/Xenon1T</u>

LUX Impact 2013/17,

- LUX First Science Run in 2013 Second Science Run 2014-2016 Full exposure: 47,500 kg.days (427 live-days)
- Improved Spin-Indep. WIMP Sensitivity by Factor 20x since state prior to 2013. Also Neutron Spin-Dep. Sensitivity.
- Axion/ALP Search
- Full self-consistent models for all backgrounds events and detector response
- In parallel: Major program improving LXe ER and NR calibration over wide energy range (including sub keV) with high statistics and low systematics. Allowed significant improvement in accuracy of Xe response models. Also clearly establishes sensitivity to 8B coh. scattering.
- LZ: Kim Palladino LZ: Christine Ignarra, Tues 15:30 LUX: Rick Gaitskell
 Wed 14:00

LZ Detector - 10 tonnes Xe

Replacing LUX at the Sanford Underground Research Facility (SURF)

Technical Design Report arXiv:1703.09144 260 Authors, 400 Pages

DEAP-3600

Electron Recoil Band Background Model

Background Model in ER Band (0.2 < fprompt < 0.4) MC components scaled to radioassay data

- Empiric energy calibration based on 1460 keV (⁴⁰K) and 2614 keV (²⁰⁸TI) peak
- Scaling of MC simulations to known screening / literature values (this is not a fit)
- Low energy region (< 0.5 MeV) dominated by ³⁹Ar
- Mid energy region (0.5 2.6 MeV) dominated by gamma from outside components (mainly PMT glass)
- High energy region (> 2.6 MeV) dominated by ⁴²K and beta components from very close ²⁰⁸TI sources

- Gamma line measurements can be used to constrain (α ,n) neutron production

DarkSide: direct WIMP searches with two-phase argon TPCs

- High light yield: LAr Pulse Shape Discrimination >10⁷
- Underground Argon: low ³⁹Ar
- TPC 3D event reconstruction
- High-efficiency neutron vetoing

DarkSide-50

150/50/30 kg total/active/fiducial Sensitivity<10⁻⁴⁴ cm² Data: 2013-present

70-d of Underground Ar

PICO Programme

- Superheated fluid bubble chambers
- Particle interactions nucleate bubbles
 - Good discrimination against backgrounds
 - Alphas 'louder'
 - Gammas do not nucleate
- Visual and acoustic sensors

Propylene Glycol (hydraulic fluid)

Nigel J.T. Smith

DAMIC at SNOLAB

Charge-coupled devices (CCDs) to search for faint (few e⁻) ionization signals from dark matter particles in the Galactic halo.

- Low-mass WIMP limits with 0.6 kg d exposure PRD94 082006.
- Nuclear / electron recoil response characterized down to 60 eV_{ee} threshold PRD94 082007, JINST12 P06014, arXiv:1706.06053.
- High-spatial resolution for powerful background rejection JINST 10 P08014.
- Lowest leakage current ever achieved in a silicon device PRL118 141803.
- Demonstrated single e⁻ detection with "skipper" technology for next generation arXiv:1706.00028.

New Experiment With Spheres-Gas

Search for low-mass WIMPs with **S**pherical **P**roportional **C**ounters (**SPCs**)

Designed to search for low-mass WIMPs down to 0.1 GeV/c $^{\rm 2}$

Low capacitance of the sensor & High amplification gain :

=> detection thresholds of 10 to 40 eVee

Light target gases (H, He, Ne) : => optimization of momentum transfers for low-mass particles

Rise-time based pulse-shape discrimination: => surface event rejection

Results with Neon @ LSM :Q. Arnaud et al. [NEWS-G Collaboration], (2017) submitted to Astropart. Phys. (arXiv:1706.04934)

to be installed @ SNOLAB by summer 2018

Optimisation of sensor to obtain low threshold and homogeneity of response

Current Status

17th TAUP Workshop, Sudbury

Current status and projections

Spin-dependent WIMP-nucleon (p or n) cross section Spin-independent, low mass, WIMP-nucleon cross section

US Cosmic Visions Report: arxiv.org/1707.04591