Radon emanation studies in the SuperNEMO double beta decay experiment

Hugon Christophe Université Aix-Marseille, CPPM, IN2P3/CNRS on behalf of the SuperNEMO collaboration

collaboration

The double beta decay

Mass excess of isobar nucleides N = 82

Gives an access to 3 fundamental informations

- Neutrino nature (Dirac or Majorana)
 Effective mass v_{ee}
 Neutrino mass hierarchy

The both decays have a different energy spectrum

$$T^{1/2}(2\beta 0\nu) \propto \frac{1}{\left|M\right|^2 \left|m_{\beta\beta}\right|^2}$$

The calorimetry/tracking technology From NEMÓ-3 to SuperNEMO

source = calorimeter

→ GERDA, KamLAND-Zen, CUORE, ...

démonstrateur (≥ 2016)

The calorimetry/tracking technology

- Has a lower efficiency
- Poor energy resolution (8%@1MeV for SuperNEMO)

But

- It has a good electron identification and ββ kinematics
- It can identify other particles $(\alpha, \gamma, \beta^+, \beta^-)$
- It can be multi-sources
- Background identification an rejection
 Multi-channel study ββ0ν, ββ2ν, ββ*, ...

Mars 2018

The new generation: SuperNEMO

- Installed at the Frejus lab. 4,800 mwe depth
- The full detector will be composed by 20 modules
- For a total source mass of 100 kg (mainly ⁸²Se and ¹⁵⁰Nd)
- The calorimeter will be composed by scintillator+PMTs walls
 - 8% of energy resolution @ 1MeV
 - 250 of time spread
 - <1% of linearity divergence from 200 keV to 3 MeV
- The tracking will be done by a wire chamber of 2000 cells at Geiger mode
- 25 G field for particles identification

ββ0ν lifetime objective: T₁₂(ββ0ν) > 10²⁶ years

The background reduction and control are essential to reach this goal

Underground laboratories and muon flux

- Very rare events \rightarrow needs a very low background
- "Laboratoire souterrain de Modane"
 - In the frejus tunnel
 - Dug in 1983 for the proton decay research
 1780 m underground, 4800 m MWE

Reduction of muon flux by a factor of 10⁶

Laboratoire Souterrain de Modane (LSM) : 4800 M.W.E.

March 2017

Underground laboratories and muon flux

Depth (meters of water equivalent)

C. Hugon

The SuperNEMO international collaboration

SuperNEMO demonstrator sources

- Source
 - 7 kg of ⁸²Se ≠ 17.5 kg.yr
 - ~40 mg/cm²
 - $T_{1/2}(2\nu\beta\beta) = 10.3 \pm 0.3$ (stat) ± 0.7 (syst) 10^{19} y

-
$$Q_{\beta\beta} = 2,966 \text{ MeV}$$

SuperNEMO demonstrator tracker

- 2034 wires in Geiger mode in each module (~45 km of wires)
- Ultra pure material (copper, steel, duracon, HPGe tested)
- 3d track reconstruction

Mars 2018

SuperNEMO demonstrator calorimeter walls

Calorimeter

- 520 x 8" PM + 192 x 5" PMs coupled with polystyrene scintillators
- Energy resolution:
 8% FWHM @ 1 MeV
- Time resolution: $\sigma = 400 \text{ ps} @ 1 \text{MeV}$

SuperNEMO demonstrator status

- Calorimeter on site, under final
- Cabling ongoing at the LSM
 The demonstrator data taking will start by the half of 2018

Mars 2018

The Background noise: Internal background

Regroups the backgrounds coming from the source foil, mainly come from :

- Radio-impurities inside the source foil
 ²⁰⁸TI (from ²³²Th), ²¹⁴Bi (from ²³⁸U)
 Single beta emitter (⁴⁰K, ^{234m}Pa, ²¹⁰Bi)
- ²¹⁴Bi from radon decay in tracker volume

Backgrounds are measured through different background channels using event topologies

- 208 Tl in 1e1y, 1e2y and 1e3y 40 K, 210 Bi, 234m Pa in 1e channel 210 Bi, 222 Rn in 1e1 α and 1e1y channel

Example: Internal Background from NEMO-3 (¹¹⁶Cď)

The background noise: External background

- Regroups the backgrounds not coming from the source foil, come from :
- Radio-impurities in detector material (208 TI, 214 Bi)
- y from (n,y) reactions
- µ from Bremsstrahlung
- Are measured in 2 main channels, requiring the timing informations :
 - external crossing electron
 - external $\gamma \rightarrow e$

Example: External background from NEMO-3 (¹¹⁶Cd)

Concours 01/02 C. Hugon

The background noise: The radon in the wire chamber

- ²¹⁴Bi is an important background with a Q_{B} =3,3 MeV
- Arise from ²³⁸U chain or ²²²Rn emanation
- Measured in 1e1a channel

 → Background free measurement

 Alpha track length provide
- Alpha track length provide information on contamination origins

Concours 01/02 C. Hugon

SuperNEMO demonstrator sensitivity

- Train BDTs to discriminate signal events from background events
- Radiopurity requirements : $A(208TI) = 2 \mu Bq/kg$, $A(214Bi) = 10 \mu Bq/kg$
- and A(Radon) = 150 μ Bq/m³
- Half-life limit as a function of the background contamination levels :

The radon measurements among the SuperNEMO collaboration

- **CENBG Bordeaux**
- UCL London
- IEAP CTU Prague
 CPPM Marseille

Mars 2018

Radon studies at CPPM

CPPM is in charge of radon background

- gas purificaton
- radon background transport simulatons and measurements
- radon concentraton measurement

We need less than 50 atoms of radon on 3.10²⁵ atoms of He

R&D on low background studies in the SuperNEMO CPPM group

- Proportional spherical detector for continuous survey of radon rate in SuperNEMO gas
- Charcoal radon trap testing for the SuperNEMO gas purification
- Radon transportation in the SuperNEMO gas studies
- Radon Emanation of material depending on the gas nature (helium, humidity, ethanol...)

Instrumentation SuperNEMO Post-doctorat CPPM : études radon

Problematic: $E_{trans}^{214}Bi$ close to the E_{trans}^{β} SuperNEMO Objective : 150 µBq/m³

- Hard to reach
- Hard to measure

The idea:

1) Direct usage of the SuperNEMO gas for measurements

- \rightarrow Spherical proportional detector
- Big volume
- Good noise/background discrimination
- High purity and low material quantity (copper)
- Simple:
 - To integrate: directly on the gas cycle
 - only one output channel!

Travaux de post-doctorat

14/03/2017

Concours 01/02 C. Hugon

Instrumentation SuperNEMO Post-doctorat CPPM : études radon

- Ongoing works:
 Experimental detector (iron) at the CPPM
 Simulations « finite elements method » \rightarrow electric fields and fluid mechanics
- Development and construction of new "canes"
- Measurements of radon and sources

14/03/2017

Concours 01/02 C. Hugon

Where is it in the gas cycle?

- Principle:
 - Continuous purified gas flushing in the detector wire chamber
 - Order of magnitude 1 m³/h
 - ²²²Rn goal for SuperNEMO 150 μBq/m³
 - Gas recycling system for SuperNEMO

The radon transportation in the detector

Radon hot spots in NEMO-3 wire chamber

⇒ Fluid mechanics, electrostatic and neutralization/decays simulation to estimate the radon transportation in the wire chamber

The experimental setup of radon transportation measurements

- Objective: Estimation of deposit of ²¹⁸Po²⁺ in the SuperNEMO chamber wires → simulation FEM and experimental measurements
- Simpler setup for calibration/validation of simulation and measurements
- Measurement of ethanol role transportation/neutralization
- kBq/m³ of radon in the input gas 1 kV/cm between electrodes
- The deposit on the anode is measured with an Ge detector

The experimental setup of radon transportation measurements

- Objective: Estimation of deposit of ²¹⁸Po²⁺ in the SuperNEMO chamber the wire → simulation FEM and experimental measurements
 Simpler setup for calibration/validation of simulation
- and measurements
- Measurement of ethanol role transportation/neutralization
- kBq/m³ of radon in the input gas 1 kV/cm between electrodes
- The deposit on the anode is measured with an Ge detector

C. Hugon, CPPM

The fluid mechanics simulation

- Finite Element Method: ElmerFEM
 - Electrostatic
 - Fluid Mechanics

- Time dependence
- Custom step-by-step simulation
 - Taking elmer data as input
 - Transportation of ²²²rn/²¹⁸po²⁺ in in the flux
 - Decays/neutralization based on the half-life time
- Experimental measurement and simulation done with 0% and 4% of ethanol in the gas.
- Once validated and calibrated, it will be applied to the SuperNEMO volume

Mars 2018

The fluid mechanics simulation

- Finite Element Method: ElmerFEM
 - Electrostatic
 - Fluid Mechanics

- Time dependence
- Custom step-by-step simulation
 - Taking elmer data as input
 - Transportation of ²²²rn/²¹⁸po²⁺ in in the flux
 - Decays/neutralization based on the half-life time
- Experimental measurement and simulation done with 0% and 4% of ethanol in the gas.
- Once validated and calibrated, it will be applied to the SuperNEMO volume

Mars 2018

The first results and by-product

- The first results showed an disagreement between the experimental data and simulation! (roughly 2 times experimental excess in the 4% ethanol case)
- Hypothesis:
 - There's a known humidity effect that increase the emanation rate (IJSR, ISSN (Online): 2319-706)
 - The radon emanation from the source material is also dependent to the rate of ethanol in the gas?
- Inverting the source and ethanol in the circuit suppressed this effect
- By-product measurement: emanation rate of the source with and without ethanol in the gas

Measurment of the radon emanation with of ethanol exposure

- The common radon detector is based on the detection of ²¹⁸Po²⁺ thanks to a electrostatic collection of alpha-emitters.
- The presence of alcohol **neutralize the** ²¹⁸**Po**²⁺ and make the measurements unreliable.

A Lucas cell has been used instead.

Measurement with "dried" source then exposed to ethanol

The measurement has 3 zones:
1) Rising until the equilibrium of the source activity and the Lucas cell volume
2) Flushing with dry nitrogen: stable (slow decrease)
3) Ethanol (4%): activity multiplied

The source emanation measurements showed increase mean of 1,7!

bv ~2

A different setup based on sample injection and germanium detector indirect measurement validated this result at 3σ .

There is a strong dependence on ethanol rate and source emanation The radio-purity should be measured taking this effect in account

Mars 2018

Measurement with "dried" source then exposed to ethanol

1) Rising until the equilibrium of the source activity and the Lucas cell volume 2) Flushing with dry nitrogen: stable (slow decrease)

3) Ethanol (4%): activity multiplied bv ~2

The source emanation measurements showed increase mean of 1,7!

A different setup based on sample injection and germanium detector indirect measurement validated this result at 3σ .

There is a strong dependence on ethanol rate and source emanation The radio-purity should be measured taking this effect in account

Mars 2018

Summary, conclusions and perspectives

- SuperNEMO detector
 - Calorimeter/tracking technology validated by NEMO-3, used by SuperNEMO
 - The data taking should start by this year
 - Sensitivity $T_{1/2}^{0v} \sim 10^{24}$ years ($T_{1/2}^{0v} \sim 10^{26}$ years for full detector)
- Radon measurement R&D
 - Expertises from the NEMO-3 experiment (emanation chambers, gas circulation etc.)
 - New innovative radon studies (transportation) for very low background experiments
 - Evidences for material emanation in function of the nature of gas (ethanol rate)
 - Essential for very low background experiment! New ²²²Rn detector under development
 - The material radio-purity measurements have to be done in the experimental gas
 - Work still under progress (humidity, helium, nitrogen etc...)

backup

- External y, if not tagged
 - Origin : detector radioactivity, neutrons and cosmics
 - Underground (Modane, 4800 m e.w.), shielding (steel and water), E <
 2.6 MeV
 ⇒ background for ββ2ν
- Internal contamination in β emitter with $Q_{\beta} \ge Q_{\beta\beta} \sim 3$ MeV
 - ${}^{214}Bi$ in ${}^{238}U$ chain (Q_B = 3.3 MeV)
 - 208 Tl in 232 Th chain (Q_B = 4.9 MeV)
- Radon inside tracking detector
 - decay then deposit of daughter on wire and foil surfaces
 - feed internal contamination in ²¹⁴Bi

- External y, if not tagged
 - Origin : detector radioactivity, neutrons and cosmics
 - Underground (Modane, 4800 m e.w.), shielding (steel and water), E <
 2.6 MeV
 - \Rightarrow background for $\beta\beta2\nu$
- Internal contamination in β emitter with $Q_{\beta} \geq Q_{\beta\beta} \sim 3 \text{ MeV}$
 - ²¹⁴Bi in ²³⁸U chain (Q_{β} = 3.3 MeV)
 - ²⁰⁸Tl in ²³²Th chain (Q_{β} = 4.9 MeV)
- Radon inside tracking detector
 - decay then deposit of daughter on wire and foil surfaces
 - feed internal contamination in ²¹⁴Bi

- External y, if not tagged
 - Origin : detector radioactivity, neutrons and cosmics
 - Underground (Modane, 4800 m e.w.), shielding (steel and water), E <
 2.6 MeV
 - \Rightarrow background for $\beta\beta2\nu$
- Internal contamination in β emitter with $Q_{\beta} \geq Q_{\beta\beta} \sim 3 \text{ MeV}$
 - ${}^{214}Bi$ in ${}^{238}U$ chain (Q_β = 3.3 MeV)
 - 208 Tl in 232 Th chain (Q_β = 4.9 MeV)
- Radon inside tracking detector
 - decay then deposit of daughter on wire and foil surfaces
 - feed internal contamination in ²¹⁴Bi

- External y, if not tagged
 - Origin : detector radioactivity, neutrons and cosmics
 - Underground (Modane, 4800 m e.w.), shielding (steel and water), E <
 2.6 MeV
 - \Rightarrow background for $\beta\beta2\nu$
- Internal contamination in β emitter with $Q_{\beta} \ge Q_{\beta\beta} \sim 3 \text{ MeV}$
 - ${}^{214}Bi$ in ${}^{238}U$ chain (Q_β = 3.3 MeV)
 - ²⁰⁸Tl in ²³²Th chain (Q_{β} = 4.9 MeV)
- Radon inside tracking detector
 - decay then deposit of daughter on wire and foil surfaces
 - feed internal contamination in ²¹⁴Bi

²²²Rn is a major BG The 150μBq/m³ goal is hard to reach, but also to control: Radon contamination measurements

The Double beta decay and the mass hierarchy

$$(T_{1/2}^{0\nu})^{-1} = G_{0\nu}(Q_{\beta\beta}, Z) |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$$

$$\langle m_{\beta\beta} \rangle \equiv \left| \sum_{\iota} m_k U_{ek}^2 \right|$$
$$m_{\nu_e} = \left(\sum_{i} |V_{ei}^2| \; m_i^2 \right)^{1/2}$$

The measurement of the double beta decay lifetime and the PMNS angle values gives an access to the hierarchy: • NH: $< m_{ee} > = [4;0] \text{ meV}$

- IH: <m_> > = [60;15] meV & m_ ~ 40 meV

Nemo-3 ¹⁰⁰Mo result: 300-900 meV

SuperNEMO goal: 50-100 meV

Results with source, no alcohol

The source has been directly used, from ambient air (and "normal" humidity)
The flushing gas is dried nitrogen, at 10 l/h
The preparatory measurement has been done for 17 hours. 2 zones are observed:
1) Flushing period: the radon come to equilibrium between the source and the Lucas cell,
2) The "stable" zone

The measurement seems stable and reliable

The slow decreasing will be explained later.

Test of the Lucas cell stability and alcohol sensitivity

To test the Lucas cell (PMT gain fluctuations, noise fluctuations) the Lucas was left without gas flushing, with and without alcohol injection: 1)No flushing, we see the decreasing of the ²²²Rn decay rate (3.8 days) from the previous measurement 2)~5 hours of 5% alcohol nitrogen flushing 3)No flushing (the alcohol remains inside the cell)

No counting rate fluctuations No alcohol impact

A word about the source and its preparation

- We have two kinds of source
 - Rocks
 - Centimeter sized
 - Porous ?
 - The recipient contains smaller rocks (mm) and dust
 - Clock hands
 - Millimeter sized
 - Less porous than rock?
- The drying out process has been automatized
 - At 150°
 - The recipient is emptied and fill back each minutes during 15 min cycles
 - A cycle each 30 min during a full night
- We are thinking to do it with the tested gas (now using ambient air)

Why a different setup

- To have a detector that is not exposed to the gas mixture (totally independent to the ethanol/humidity rates)
- To cross check the result with another way to measure it
- Idea:
 - Injection in a small bottle of source gas
 - Measurements done thanks to a germanium detector (²¹⁴Bi 609 keV gamma rays)

Summary of the new setup

- The setup is mostly the same:
 - The source is exposed to the gas during one hour
 - The sample bottle is under vacuum (50 mbar)
 - The vans are open such a way that the sample bottle fill itself with the gas from the source
 - Then the bottle is closed and placed in a germanium detector to measure the gas activity

The result is given in "hit", the interesting point is to get a relative result with and without ethanol

Summary of the first results and remarks

	Dried out source	5% ethanol + source	Totals, difference & sigma total
Nb Measurem ents	32	15	Total: 47
609 keV γ hits mean	359	578	Difference: 219
Errors	+/-52	+/-51	+/-73

- The measurements gave a relative difference of ~1.6 at 3σ between dried out and ethanol exposed sources
- This setup much harder to manage (complex protocole) so it has bigger systematics errors
- Even if during the measurement protocol weakness has been identified, few measurement has been excluded (only them with clearly identified errors)

It validates previous measurements at 3σ Need to reach 5σ ?

What it looks like?

C. Hugon, CPPM

Alcool (14° Celsius)

- Remarks :
 - The two decay chains are identical in the chemical point of view
 - The main difference comes from the periods : 56 seconds for the thoron

3.8 days for the radon

Mars 2018

Some experimental results (from Roger Abou-Khalil thesis):

time,s humidity

Renoux (1965)	²¹⁸ Po	air	-	air ambiant	81,5% positive 18,5% neutre
Raabe (1968)	²¹⁸ Po	air	330	13 33	Neutre
Porstendörfer (1979)	²¹⁸ Po	air	au moment de formation	≥ 95	88% positive 12% négative
Dua (1981)	Descendants du ²²² Rn	air	0,046	16 - 19	90,8% positive 3,9% négative 5,3% neutre
Dankelmann et al. (2001)	²¹⁸ Po	air	-	air ambiant	49% chargé 51% neutre
Porstendörfer (2005)	²¹⁸ Po	air		30 - 95	48% positive
	²¹⁴ Pb	air	-		45% positive 55% neutre

- In most cases positively charged, ~80%
- Exact conditions of measurement are important!
- Typical voltage in these experiments ~ 500 V/cm

From NEMO-3 to SuperNEMO

- Tracker + calorimetric experiment searching for $0\nu\beta\beta$ decay
- Located at Modane underground laboratory from Feb. 2003 to Jan. 2011
- 5 years of effective data taking
- 10 kg total of different $\beta\beta$ isotopes

reconstruction

The reconstruction of the events and NEMO3 spectrums

Event reconstruction C. Hugon Ph.D (NAT++)

Mars 2018

Muon flux per depth

Depth (meters of water equivalent)

C. Hugon

March 2017

C. Hugon